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Abstract

CLaC-CORE, an exhaustive feature combina-
tion system ranked 4th among 34 teams in the
Semantic Textual Similarity shared task STS
2013. Using a core set of 11 lexical features
of the most basic kind, it uses a support vector
regressor which uses a combination of these
lexical features to train a model for predicting
similarity between sentences in a two phase
method, which in turn uses all combinations
of the features in the feature space and trains
separate models based on each combination.
Then it creates a meta-feature space and trains
a final model based on that. This two step pro-
cess improves the results achieved by single-
layer standard learning methodology over the
same simple features. We analyze the correla-
tion of feature combinations with the data sets
over which they are effective.

1 Introduction

The Semantic Textual Similarity (STS) shared task
aims to find a unified way of measuring similarity
between sentences. In fact, sentence similarity is
a core element of tasks trying to establish how two
pieces of text are related, such as Textual Entailment
(RTE) (Dagan et al., 2006), and Paraphrase Recog-
nition (Dolan et al., 2004). The STS shared task was
introduced for SemEval-2012 and was selected as its
first shared task. Similar in spirit, STS differs from
the well-known RTE shared tasks in two important
points: it defines a graded similarity scale to mea-
sure similarity of two texts, instead of RTE’s binary
yes/no decision and the similarity relation is consid-
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ered to be symmetrical, whereas the entailment rela-
tion of RTE is inherently unidirectional.

The leading systems in the 2012 competition used
a variety of very simple lexical features. Each sys-
tem combines a different set of related features.
CLaC Labs investigated the different combination
possibilities of these simple lexical features and
measured their performance on the different data
sets. Originally conceived to explore the space of
all possible feature combinations for ‘feature com-
bination selection’, a two-step method emerged that
deliberately compiles and trains all feature combina-
tions exhaustively and then trains an SVM regressor
using all combination models as its input features.
It turns out that this technique is not nearly as pro-
hibitive as imagined and achieves statistically sig-
nificant improvements over the alternative of feature
selection or of using any one single combination in-
dividually.

We propose the method as a viable approach when
the characteristics of the data are not well under-
stood and no satisfactory training set is available.

2 Related Work

Recently, systems started to approach measuring
similarity by combining different resources and
methods. For example, the STS-2012 shared task’s
leading UKP (Bir et al., 2012) system uses n-grams,
string similarity, WordNet, and ESA, and a regres-
sor. In addition, they use MOSES, a statistical ma-
chine translation system (Koehn et al., 2007), to
translate each English sentence into Dutch, German,
and Spanish and back into English in an effort to in-
crease their training set of similar text pairs.
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TakeLab (éaric et al., 2012), in place two of the
2012 STS shared task, uses n-gram models, two
WordNet-based measures, LSA, and dependencies
to align subject-verb-object predicate structures. In-
cluding named-entities and number matching in the
feature space improved performance of their support
vector regressor.

(Shareghi and Bergler, 2013) illustrates two ex-
periments with STS-2012 training and test sets us-
ing the basic core features of these systems, outper-
forming the STS-2012 task’s highest ranking sys-
tems. The STS-2013 submission CLaC-CORE uses
the same two-step approach.

3 CLaC Methodology

Preprocessing consists of tokenizing, lemmatizing,
sentence splitting, and part of speech (POS) tagging.
We extract two main categories of lexical features:
explicit and implicit.

3.1 Explicit Lexical Features

Sentence similarity at the explicit level is based
solely on the input text and measures the similar-
ity between two sentences either by using an n-gram
model (ROUGE-1, ROUGE-2, ROUGE-SU4) or by
reverting to string similarity (longest common sub-
sequence, jaro, ROUGE-W):

Longest Common Subsequence  (Allison and
Trevor, 1986) compare the length of the
longest sequence of characters, not necessarily
consecutive ones, in order to detect similarities

Jaro (Jaro, 1989) identifies spelling variation be-
tween two inputs based on the occurrence of
common characters between two text segments
at a certain distance

ROUGE-W (Lin et al., 2004a), a weighted version
of longest common subsequence, takes into ac-
count the number of the consecutive characters
in each match, giving higher score for those
matches that have larger number of consecu-
tive characters in common. This metric was de-
veloped to measure the similarity between ma-
chine generated text summaries and a manually
generated gold standard

ROUGE-1 unigrams (Lin et al., 2004a)
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ROUGE-2 bigrams (Lin et al., 2004a)

ROUGE-SU4 4-Skip bigrams
grams) (Lin et al., 2004a)

(including Uni-

3.2 Implicit Lexical Features

Sentence similarity at the implicit level uses exter-
nal resources to make up for the lexical gaps that
go otherwise undetected at the explicit level. The
synonymy of bag and suitcase is an example of an
implicit similarity. This type of implicit similarity
can be detected using knowledge sources such as
WordNet or Roget’s Thesaurus based on the Word-
Net::Similarity package (Pedersen et al., 2004) and
combination techniques (Mihalcea et al., 2006). For
the more semantically challenging non-ontologigal
relations, for example sanction and Iran, which lex-
ica do not provide, co-occurrence-based measures
like ESA are more robust. We use:

Lin (Lin, 1998) uses the Brown Corpus of Ameri-
can English to calculate information content of
two concepts’ least common subsumer. Then
he scales it using the sum of the information
content of the compared concepts

Jiang-Conrath (Jiang and Conrath, 1997) uses the
conditional probability of encountering a con-
cept given an instance of its parent to calculate
the information content. Then they define the
distance between two concepts to be the sum
of the difference between the information con-
tent of each of the two given concepts and their
least common subsumer

Roget’s Thesaurus is another lexical resource and
is based on well-crafted concept classifica-
tion and was created by professional lexicogra-
phers. It has a nine-level ontology and doesn’t
have one of the major drawbacks of WordNet,
which is lack of links between part of speeches.
According to the schema proposed by (Jarmasz
and Szpakowicz, 2003) the distance of two
terms decreases within the interval of [0,16],
as the the common head that subsumes them
moves from top to the bottom and becomes
more specific. The electronic version of Ro-
get’s Thesaurus which was developed by (Jar-
masz and Szpakowicz, 2003) was used for ex-
tracting this score



Explicit Semantic Analyzer (Gabrilovich and
Markovitch, 2007) In order to have broader
coverage on word types not represented in
lexical resources, specifically for named enti-
ties, we add explicit semantic analyzer (ESA)
generated features to our feature space

3.3 CLaC-CORE

CLaC-CORE first generates all combinations of the
11 basic features (jaro, Lemma, lcsq, ROUGE-W,
ROUGE-1, ROUGE-2, ROUGE-SU4, roget, lin, jcn,
esa), that is 2'' — 1 = 2047 non-empty combina-
tions. The Two Phase Model Training step trains
a separate Support Vector Regressor (SVR) for
each combination creating 2047 Phase One Models.
These 2V — 1 predicted scores per text data item
form a new feature vector called Phase Two Fea-
tures, which feed into a SVR to train our Phase Two
Model.

On a standard 2 core computer with <100 GB
of RAM using multi-threading (thread pool of size
200, a training process per thread) it took roughly 15
hours to train the 2047 Phase One Models on 5342
text pairs and another 17 hours to build the Phase
Two Feature Space for the training data. Building
the Phase Two Feature Space for the test sets took
roughly 7.5 hours for 2250 test pairs.

For the current submissions we combine all train-
ing sets into one single training set used in all of our
submissions for the STS 2013 task.

4 Analysis of Results

Our three submission for STS-2013 compare a base-
line of Standard Learning (RUN-1)with two ver-
sions of our Two Phase Learning (RUN-2, RUN-
3). For the Standard Learning baseline, one regres-
sor was trained on the training set on all 11 Basic
Features and tested on the test sets. For the remain-
ing runs the Two Phase Learning method was used.
All our submissions use the same 11 Basic Features.
RUN-2 is our main contribution. RUN-3 is identical
to RUN-2 except for reducing the number of support
vectors and allowing larger training errors in an ef-
fort to assess the potential for speedup. This was
done by decreasing the value of v (in the RBF ker-
nel) from 0.01 to 0.0001, and decreasing the value of
C (error weight) from 1 to 0.01. These parameters
resulted in a smoother and simpler decision surface
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but negatively affected the performance for RUN-3
as shown in Table 1.

The STS shared task-2013 used the Pearson Cor-
relation Coefficient as the evaluation metric. The re-
sults of our experiments are presented in Table 1.
The results indicate that the proposed method, RUN-

rank | headlines OnWN FNWN SMT
RUN-1 10 0.6774 0.7667  0.3793  0.3068
RUN-2 7 0.6921 0.7367 0.3793  0.3375
RUN-3 46 0.5276 0.6495 0.4158 0.3082
STS-bl 73 0.5399 0.2828 0.2146  0.2861

Table 1: CLaC-CORE runs and STS baseline perfor-
mance

2, was successful in improving the results achieved
by our baseline RUN-1I ever so slightly (the confi-
dence invervals at 5% differ to .016 at the upper end)
and far exceeds the reduced computation version of
RUN-3.

4.1 Successful Feature Combinations

Having trained separate models based on each sub-
set of features we can use the predicted scores gen-
erated by each of these models to calculate their cor-
relations to assess which of the feature combinations
were more effective in making predictions and how
this most successful combination varies bewteen the
different datasets.

best worst
headlines [ ROUGE-1 ROUGE- [jcn lem lesq]

SU4 esa lem]

0.7329 0.3375
OnWN [ROUGE-1 ROUGE- [jaro]

SU4 esa lin jen roget

lem lcsq ROUGE-W ]

0.7768 0.1425
FNWN [roget ROUGE-1 [ROUGE-2 lem lcsq]

ROUGE-SU4]

0.4464 -0.0386
SMT [lin jen roget [esalcsq]

ROUGE-1]

0.3648 0.2305

Table 2: Best and worst feature combination performance

on test set

Table 2 lists the best and worst feature combina-

tions on each test set. ROUGE-1 (denoted by RO-
1), unigram overlap, is part of all four best perform-
ing subsets. The features ROUGE-SU4 and Roget’s



appear in three of the best four feature combina-
tions, making Roget’s the best performing lexicon-
based feature outperforming WordNet features on
this task. esa, lin, jcn are part of two of the best
subsets, where /in and jcn occur together both times,
suggesting synergy. Looking at the worst perform-
ing feature combinations is also instructive and sug-
gests that Icsg was not an effective feature (despite
being at the heart of the more successful ROUGE-W
measure).

We also analyze performance of individual fea-
tures over different datasets. Table 3 lists all the fea-
tures and, instead of looking at only the best com-
bination, takes the top three best combinations for
each test and compares how many times each fea-
ture has occurred in the resulting 12 combinations
(first column). Three clear classes of effectiveness
emerge, high (10-7), medium (6-4), and low (3-0).
Next, we observe that the test sets differ in the aver-
age length of the data: headlines and OnWN glosses
are very short, in contrast to the other two. Table 3
shows in fact contrastive feature behavior for these
two categories (denoted by short and long). The last
column reports the number of time a feature has oc-
curred in the best combinations (out of 4). Again,
ROUGE-1, ROUGE-SU4, and roget prove effective
across different test sets. esa and lem seem most re-
liable when we deal with short text fragments, while
roget and ROUGE-SU4 are most valuable on longer
texts. The individual most valuable features overall
are ROUGE-1, ROUGE-SU4, and roget.

Features total (/12)  short (/6) long (/6)  best (/4)
esa 6 6 0 2
lin 6 3 3 2
jen 4 1 3 2
roget 9 3 6 3
lem 6 6 0 2
jaro 0 0 0 0
lesq 3 3 0 1
ROUGE-W 7 4 3 1
ROUGE-1 10 6 4 4
ROUGE-2 3 1 2 0
ROUGE-SU4 10 5 5 3

Table 3: Feature contribution to the three best results over
four datasets
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5 Conclusion

CLaC-CORE investigated the performance possibil-
ities of different feature combinations for 11 basic
lexical features that are frequently used in seman-
tic distance measures. By exhaustively training all
combinations in a two-phase regressor, we were able
to establish a few interesting observations.

First, our own baseline of simply training a SVM
regressor on all 11 basic features achieves rank 10
and outperforms the baseline used for the shared
task. It should probably become the new standard
baseline.

Second, our two-phase exhaustive model, while
resource intensive, is not at all prohibitive. If the
knowledge to pick appropriate features is not avail-
able and if not enough training data exists to per-
form feature selection, the exhaustive method can
produce results that outperform our baseline and one
that is competitive in the current field (rank 7 of 88
submissions). But more importantly, this method al-
lows us to forensically analyze feature combination
behavior contrastively. We were able to establish
that unigrams and 4-skip bigrams are most versatile,
but surprisingly that Roget’s Thesaurus outperforms
the two leading WordNet-based distance measures.
In addition, ROUGE-W, a weighted longest com-
mon subsequence algorithm that to our knowledge
has not previously been used for similarity mea-
surements shows to be a fairly reliable measure for
all data sets, in contrast to longest common subse-
quence, which is among the lowest performers.

We feel that the insight we gained well justified
the expense of our approach.
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