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Abstract

In this year’s Semantic Textual Similarity
evaluation, we explore the contribution of
models that provide soft similarity scores
across spans of multiple words, over the pre-
vious year’s system. To this end, we ex-
plored the use of neural probabilistic language
models and a TF-IDF weighted variant of Ex-
plicit Semantic Analysis. The neural language
model systems used vector representations of
individual words, where these vectors were
derived by training them against the context
of words encountered, and thus reflect the dis-
tributional characteristics of their usage. To
generate a similarity score between spans, we
experimented with using tiled vectors and Re-
stricted Boltzmann Machines to identify simi-
lar encodings. We find that these soft similar-
ity methods generally outperformed our previ-
ous year’s systems, albeit they did not perform
as well in the overall rankings. A simple anal-
ysis of the soft similarity resources over two
word phrases is provided, and future areas of
improvement are described.

1 Introduction

For this year’s Semantic Textual Similarity (STS)
evaluation, we built upon the best performing sys-
tem we deployed last year with several methods for
exploring the soft similarity between windows of
words, instead of relying just on single token-to-
token similarities. From the previous year’s eval-
uation, we were impressed by the performance of
features derived from bigrams and skip bigrams. Bi-
grams capture the relationship between two concur-
rent words, while skip bigrams can capture longer

distance relationships. We found that characterizing
the overlap in skip bigrams between the sentences in
a STS problem pair proved to be a major contributor
to last year’s system’s performance.

Skip bigrams were matched on two criteria, lexi-
cal matches, and via part of speech (POS). Lexical
matching is brittle, and even if the match were made
on lemmas, we lose the ability to match against syn-
onyms. We could rely on the token-to-token simi-
larity methods to account for these non-lexical sim-
ilarities, but these do not account for sequence nor
dependencies in the sentencees. Using POS based
matching allows for a level of generalization, but at
a much broader level. What we would like to have
is a model that can capture these long distance re-
lationships at a level that is less broad than POS
matching, but allows for a soft similarity scoring be-
tween words. In addition, the ability to encompass
a larger window without having to manually insert
skips would be desirable as well.

To this end we decided to explore the use of neu-
ral probabilistic language models (NLPM) for cap-
turing this kind of behavior (Bengio et al., 2003).
NLPMs represent individual words as real valued
vectors, often at a much lower dimensionality than
the original vocabulary. By training these rep-
resentations to maximize a criterion such as log-
likelihood of target word given the other words in its
neighborhood, the word vectors themselves can cap-
ture commonalities between words that have been
used in similar contexts. In previous studies, these
vectors themselves can capture distributionally de-
rived similarities, by directly comparing the word
vectors themselves using simple measures such as
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Euclidean distance (Collobert and Weston, 2008).
In addition, we fielded a variant of Explicit

Semantic Analysis (Gabrilovich and Markovitch,
2009) that used TF-IDF weightings, instead of using
the raw concept vectors themselves. From previous
experiments, we found that using TF-IDF weight-
ings on the words in a pair gave a boost in perfor-
mance over sentence length comparisons and above,
so this simple modification was incorporated into
our system.

In order to identify the contribution of these soft
similarity methods against last year’s system, we
fielded three systems:

1. System 1, the system from the previous year,
incorporating semantic similarity resources,
precision focused and Bilingual Evaluation Un-
derstudy (BLEU) overlaps (Papineni et al.,
2002), and several types of skip-bigrams.

2. System 2, features just the new NLPM scores
and TFIDF-ESA.

3. System 3, combines System 1 and System 2.

For the rest of this system description, we briefly
describe the previous year’s system (System 1), the
TFIDF weighted Explicit Semantic Analysis, and
the NLPM systems. We then describe the experi-
ment setup, and follow up with results and analysis.

2 System 1

The system we used in SemEval 2012 consisted of
the following components:

1. Resource based word-to-word similarities,
combined using a Semantic Matrix (Fernando
and Stevenson, 2008).

2. Cosine-based lexical overlap measure.

3. Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) lexical overlap.

4. Precision focused part-of-speech (POS) fea-
tures.

5. Lexical match skip-bigram overlap.

6. Precision focused skip-bigram POS features.

The Semantic Matrix assesses similarity between
a pair s1 and s2 by summing over all of the word
to word similarities between the pair, subject to nor-
malization, as given by Formula 1.

sim(s1, s2) =
vT

1 Wv2

‖v1‖ ‖v2‖
(1)

The matrix W is a symmetric matrix that en-
codes the word to word similarities, derived from
the underlying resources this is drawn from. From
the previous year’s assessment, we used similarities
derived from Personalized PageRank (Agirre et al.,
2010) over WordNet (Fellbaum, 1998), the Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2009) concept vector signatures for each lemma, and
the Dekang Lin Proximity-based Thesaurus 1.

The cosine-based lexical overlap measure simply
measures the cosine similarity, using strict lexical
overlap, between the sentence pairs. The BLEU,
precision focused POS, and skip-bigrams are direc-
tional measures, which measure how well a target
sentence matches a source sentence. To score pair of
sentences, we simply averaged the score where one
sentence is the source, the other the target, and then
vice versa. These directional measures were origi-
nally used as a precision focused means to assess the
quality of machine translations output against ref-
erence translations. Following (Finch et al., 2005),
these measures have also been shown to be good for
assessing semantic similarity between pairs of sen-
tences.

For BLEU, we measured how well ngrams of or-
der one through four were matched by the target sen-
tence, matching solely on lexical matches, or POS
matches. Skip bigrams performed similarly, except
the bigrams were not contiguous. The precision fo-
cused POS features assess how well each POS tag
found in the source sentence has been matched in
the target sentence, where the matches are first done
via a lemma match.

To combine the scores from these features, we
used the LIBSVM Support Vector Regression (SVR)
package (Chang and Lin, 2011), trained on the train-
ing pair gold scores. Per the previous year, we used
a radial basis kernel with a degree of three.

1http://webdocs.cs.ualberta.ca/ lindek/downloads.htm
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For a more in-depth description of System 1,
please refer to (Yeh and Agirre, 2012).

3 TFIDF-ESA

This year instead of using Explicit Semantic Anal-
ysis (ESA) to populate a word-by-word similarity
matrix, we used ESA to derive a similarity score be-
tween the sentences in a STS pair. For a given sen-
tence, we basically treated it as an IR query against
the ESA concept-base: we tokenized the words, ex-
tracted the ESA concept vectors, and performed a
TFIDF weighted average to arrive at the sentence
vector. A cutoff of the top 1000 scoring concepts
was further applied, per previous experience, to im-
prove performance. The similarity score for two
sentence vectors was computed using cosine simi-
larity.

4 Neural Probabilistic Language Models

Neural probabilistic language models represent
words as real valued vectors, where these vectors are
trained to jointly capture the distributional statistics
of their context words and the positions these words
occur at. These representations are usually at a much
lower dimensionality than that of the original vocab-
ulary, forcing some form of compression to occur in
the vocabulary. The intent is to train a model that
can account for words that have not been observed
in a given context before, but that word vector has
enough similarity to another word that has been en-
countered in that context before.

Earlier models simply learnt how to model the
next word in a sequence, where each word in the vo-
cabulary is initially represented by a randomly ini-
tialized vector. For each instance, a larger vector is
assembled from the concatenation of the vectors of
the words observed, and act as inputs into a model.
This model itself is optimized to maximize the like-
lihood of the next word in the observed sequence,
with the errors backpropagated through the vectors,
with the parameters for the vectors being tied (Ben-
gio et al., 2003).

In later studies, these representations are the
product of training a neural network to maxi-
mize the margin between the scores it assigns to
observed “correct” examples, which should have
higher scores, and “corrupted examples,” where the

"heart"
dim=50

"attack"
dim=50

"heart attack"
dim=100

Figure 1: Vector Window encoding for the phrase “heart
attack.”

token of interest is swapped out to produce an in-
correct example and preferably a lower score. As
shown in (Collobert and Weston, 2008) and then
(Huang et al., 2012), simple distance measures us-
ing the representations derived from this process are
both useful for assessing word similarity and relat-
edness. For this study, we used the contextually
trained language vectors provided by (Huang et al.,
2012), which were trained to maximize the margin
between training pairs and to account for document
context as well. The dimensionality of these vectors
was 50.

As we are interested in capturing information at
a level greater than individual words, we used two
methods to combine these NLPM word vectors to
represent an order n ngram: a Vector Window
where we simply concatenated the word vectors, and
one that relied on encodings learnt by Restricted
Boltzmann Machines.

For this work, we experimented with generating
encodings for ngrams sized 2,3,5,10, and 21. The
smaller sizes correspond to commonly those com-
monly used to match ngrams, while the larger ones
were used to take advantage of the reduced sparsity.
Similarities between a pair of ngram encodings is
given similarity of their vector encodings.

4.1 Vector Window

The most direct way to encode an order n ngram as
a vector is to concatenate the n NLPM word vectors
together, in order. For example, to encode “heart
attack”, the vectors for “heart” and “attack”, both
with dimensionality 50, are linked together to form
a larger vector with dimensionality 100 (Figure 1).

For size n vector windows where the total number
of tokens is less than n, we pad the left and right
sides of the window with a “negative” token, which
was selected to be a vector that, on the average, is
anticorrelated with all the vectors in the vocabulary.

157



"heart attack"

compressed encoding

RBM trained encoder

original vector

Figure 2: Using a RBM trained compressor to generate a
compressed encoding of “heart attack.”

4.2 Restricted Boltzmann Machines

Although the word vectors we used were trained
against a ten word context, the vector windows may
not be able to describe similarities at multiword
level, as the method is still performing comparisons
at a word-to-word level. For example the vector win-
dow score for the related phrases heart attack and
cardiac arrest is 0.35. In order to account for sim-
ilarities at a multiword level, we trained Restricted
Boltzmann Machines (RBM) to further encode these
vector windows (Hinton, 2002). A RBM is a bi-
partite undirected graphical model, where the only
edges are between a layer of input variables and a
layer of latent variables. The latent layer consists of
sigmoid units, allowing for non-linear combinations
of the inputs. The training objective is to learn a set
of weights that maximize the likelihood of training
observations, and given the independences inherent,
in the model it can be trained quickly and effectively
via Contrastive Divergence. The end effect is the
system attempts to force the latent layer to learn an
encoding of the input variables, usually at a lower di-
mensionality. In our case, by compressing their dis-
tributional representations we hope to amplify sig-
nificant similarities between multiword expressions,
albeit for those of the same size.

To derive a RBM based encoding, we first gen-
erate a vector window for the ngram, and then used
the trained RBM to arrive at the compressed vector
(Figure 2). As before, we derive a similarity score
between two RBM based encodings by comparing
their cosine distance.

Following the above example, the vectors from an
RBM trained system for heart attack and cardiac ar-
rest score the pair at a higher similarity, 0.54. For
phrases that are unrelated, comparing door key with

cardiac arrest gives a score of -0.14 with the vector
window, and RBM this is -0.17.

To train a RBM encoder for order n ngrams,
we generated n sized vector windows over ngrams
drawn from the English language articles in
Wikipedia. The language dump was filtered to larger
sized articles, in order to avoid pages likely to be
content-free, such as redirects. The training set
size consisted of 35,581,434 words, which was split
apart into 1,519,256 sentences using the OpenNLP
sentence splitter tool 2. The dimensionality of the
encoding layer was set to 50 for window sizes 2,3,5,
and 200 for the larger windows.

4.3 Combining word and ngram similarity
scores

In order to produce an overall similarity score, we
used a variant of the weighted variant of the simi-
larity combination method given in (Mihalcea et al.,
2006). Here, we generated a directional similarity
score from a source to target by the following,

sim(S, T ) =

∑
s∈S maxSim(s, T )

|S|
(2)

where maxSim(s, T ) represents the maximum
similarity between the token s and the set of tokens
in the target sentence, T . In the case of ngrams with
order 2 or greater, we treat each ngram as a token for
the combination.

avgsim(T1, T2) =
1

2
(sim(T1, T2) + sim(T2, T1))

(3)
Unlike the original method, we treated each term

equally, in order to account for ngrams with order
2 and above. We also did not filter based off of the
part of speech, relying on the scores themselves to
help perform the filtering.

In addition to the given word window sizes,
we also directly assess the word-to-word similarity
scores by comparing the word vectors directly, using
a window size of one.

5 Evaluation Setup

System 2, the TFIDF-ESA score for a pair is a fea-
ture. For each of the given ngram sizes, we treated

2http://opennlp.apache.org/
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Training (2012) Test (2013)
Surprise1 (ONWN) FNWN
MSRPar Headlines
Surprise1 (ONWN) ONWN
Surprise2 (SMT) SMT

Table 1: Train (2012) and Test (2013) sets used to train
the regressors.

the ngram similarity scores from the Vector Window
and RBM methods as individual features. System
3 combines the features from System 2 with those
from System 1. For Systems 2 and 3, the SVR setup
used by System 1 was used to develop scorers. As no
training immediate training sets were provided for
the evaluation sets, we used the train and test parti-
tions given in Table 1, training on both the 2012 train
and test data, where gold scores were available.

6 Results and Discussion

The results of our three runs are given in the top half
of Table 2. To get a better sense of the contribution
of the new components, we also ran the NLPM vec-
tor window and RBM window models and TFIDF-
ESA components individually against the test sets.
The NLPM system was trained using the same SVR
setup as the main experiment.

In order to provide a lexical match comparison for
the NLPM system, we experimented with a ngram
matching system, where ngrams of size 1,2,3,5,10,
and 21 were used to generate similarity scores via
the same combination method as the NLPM models.
Here, hard matching was performed, where match-
ing ngrams were given a score of 1, else 0. Again,
we used the main experiment SVR setup to combine
the scores from the various ngram sizes.

We found that overall the previous year’s sys-
tem did not perform adequately on the evaluation
datasets, short of the headlines dataset. Oddly
enough, TFIDF-ESA by itself would have arrived at
a good correlation with OnWN: one possible expla-
nation for this would be the fact that TFIDF-ESA
by itself is essentially an order-free “bag of words”
model that assesses soft token to token similarity. As
the other systems incorporate either some notion of
sequence and/or require strict lexical matching, it is
possible that characterization does not help with the

OnWN sense definitions.
Combining the new features with the previous

year’s system gave poorer performance; a prelimi-
nary assessment over the training sets showed some
degree of overfitting, likely due to high correlation
between the NLPM features and last year’s direc-
tional measures.

When using the same combination method, ngram
matching via lexical content over ngrams gave
poorer results than those from NLPM models, as
given in Table 2. This would also argue for identi-
fying better combination methods than the averaged
maximum similarity method used here.

What is interesting to note is that the NLPM and
TFIDF-ESA systems do not rely on any part of
speech information, nor hand-crafted semantic sim-
ilarity resources. Instead, these methods are de-
rived from large scale corpora, and generally out-
performed the previous year’s system which relied
on that extra information.

To get a better understanding of the NLPM and
TFIDF-ESA models, we compared how the com-
ponents would score the similarity between pairs of
two word phrases, given in Table 3. At least over this
small sampling we genearted, we found that in gen-
eral the RBM method tended to have a much wider
range of scores than the Vector Window, although
both methods were very correlated. Both systems
had very low correlation with TFIDF-ESA.

7 Future Work

One area of improvement would be to develop a bet-
ter method for combining the various ngram simi-
larity scores provided by the NLPMs. When using
lexical matching of ngrams, we found that the com-
bination method used here proved inferior to the di-
rectional measures from the previous year’s systems.
This would argue for a better way to use the NLPMs.
As training STS pairs are available with gold scores,
this would argue for some form of supervised train-
ing. For training similarities between multiword ex-
pressions, proxy measures for similarity, such as the
Normalized Google Distance (Cilibrasi and Vitányi,
2004), may be feasible.

Another avenue would be to allow the NLPM
methods to encode arbitrary sized text spans, as the
current restriction on spans being the same size is
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System headlines OnWN FNWN SMT mean rank
SRIUBC-system1 (Baseline) 0.6083 0.2915 0.2790 0.3065 0.4011 66
SRIUBC-system2 (NLPM, TFIDF-ESA) 0.6359 0.3664 0.2713 0.3476 0.4420 57
SRIUBC-system3 (Combined) 0.5443 0.2843 0.2705 0.3275 0.3842 70
NLPM 0.5791 0.3157 0.3211 0.2698 0.3714
TFIDF-ESA 0.5739 0.7222 0.1781 0.2980 0.4431
Lex-only 0.5455 0.3237 0.2095 0.3146 0.3483

Table 2: Pearson correlation of systems against the test datasets (top). The test set performance for the new Neural
Probabilistic Language Model (NLPM) and TFIDF-ESA components are given, along with a lexical-only variant for
comparison (bottom).

String 1 String 2 Vec. Window RBM Window TFIDF-ESA
heart attack cardiac arrest 0.354 0.544 0.182
door key cardiac arrest -0.14 -0.177 0
baby food cat food 0.762 0.907 0.079
dog food cat food 0.886 0.914 0.158
rotten food baby food 0.482 0.473 0.071
frozen solid thawed out 0.046 -0.331 0.102
severely burnt frozen stiff -0.023 -0.155 0
uphill slog raced downhill 0.03 -0.322 0.043
small cat large dog 0.817 0.905 0.007
ran along sprinted by 0.31 0.238 0.004
ran quickly jogged rapidly 0.349 0.327 0.001
deathly ill very sick 0.002 0.177 0.004
ran to raced to 0.815 0.829 0.013
free drinks drinks free 0.001 0.042 1
door key combination lock 0.098 0.093 0.104
frog blast vent core 0.003 0.268 0.004

Table 3: Cosine similarity of two input strings, as given by the vectors generated from the Vector Window size 2, RBM
Window size 2, and TFIDF-ESA.

unrealistic. One possibility is to use recurrent neural
network techniques to generate this type of encod-
ing.

Finally, the size of the Wikipedia dump used to
train the Restricted Boltzmann Machines could be
at issue, as 35 million words could be considered
small compared to the full range of expressions we
would wish to capture, especially for the larger win-
dow spans. A larger training corpus may be needed
to fully see the benefit from RBMs.
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