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Abstract

This paper describes a system for automat-
ically measuring the semantic similarity be-
tween two texts, which was the aim of the
2013 Semantic Textual Similarity (STS) task
(Agirre et al., 2013). For the 2012 STS task,
Heilman and Madnani (2012) submitted the
PERP system, which performed competitively
in relation to other submissions. However,
approaches including word and n-gram fea-
tures also performed well (Bär et al., 2012;
Šarić et al., 2012), and the 2013 STS task fo-
cused more on predicting similarity for text
pairs from new domains. Therefore, for the
three variations of our system that we were al-
lowed to submit, we used stacking (Wolpert,
1992) to combine PERP with word and n-
gram features and applied the domain adapta-
tion approach outlined by Daume III (2007)
to facilitate generalization to new domains.
Our submissions performed well at most sub-
tasks, particularly at measuring the similarity
of news headlines, where one of our submis-
sions ranked 2nd among 89 from 34 teams, but
there is still room for improvement.

1 Introduction

We aim to develop an automatic measure of the se-
mantic similarity between two short texts (e.g., sen-
tences). Such a measure could be useful for vari-
ous applications, including automated short answer
scoring (Leacock and Chodorow, 2003; Nielsen et
al., 2008), question answering (Wang et al., 2007),

∗ System description papers for this task were required to
have a team ID and task ID (e.g., “HENRY-CORE”) as a prefix.

and machine translation evaluation (Przybocki et al.,
2009).

In this paper, we describe our submissions to the
2013 Semantic Textual Similarity (STS) task (Agirre
et al., 2013), which evaluated implementations of
text-to-text similarity measures. Submissions were
evaluated according to Pearson correlations between
gold standard similarity values acquired from hu-
man raters and machine-produced similarity val-
ues. Teams were allowed to submit up to three
submissions. For each submission, correlations
were calculated separately for four subtasks: mea-
suring similarity between news headlines (“head-
lines”), between machine translation outputs and hu-
man reference translations (“SMT”), between word
glosses from OntoNotes (Pradhan and Xue, 2009)
and WordNet (Fellbaum, 1998) (“OnWN”), and be-
tween frame descriptions from FrameNet (Fillmore
et al., 2003) and glosses from WordNet (“FNWN”).
A weighted mean of the correlations was also com-
puted as an overall evaluation metric (the OnWn and
FNWN datasets were smaller than the headlines and
SMT datasets).

The suggested training data for the 2013 STS
task was the data from the 2012 STS task (Agirre
et al., 2012), including both the training and test
sets for that year. The 2012 task was similar ex-
cept that the data were from a different set of sub-
tasks: measuring similarity between sentences from
the Microsoft Research Paraphrase corpus (Dolan
et al., 2004) (“MSRpar”), between sentences from
the Microsoft Research Video Description corpus
(Chen and Dolan, 2011) (“MSRvid”), and between
human and machine translations of parliamentary
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proceedings (“SMTeuroparl”). The 2012 task pro-
vided training and test sets for those three subtasks
and also included two additional tasks with just test
sets: a similar OnWN task, and measuring similar-
ity between human and machine translations of news
broadcasts (“SMTnews”).

Heilman and Madnani (2012) described the PERP
system and submitted it to the 2012 STS task. PERP
measures the similarity of a sentence pair by find-
ing a sequence of edit operations (e.g., insertions,
deletions, substitutions, and shifts) that converts one
sentence to the other. It then uses various features
of the edits, with weights learned from labeled sen-
tence pairs, to assign a similarity score. PERP per-
formed well, ranking 7th out of 88 submissions from
35 teams according to the weighted mean correla-
tion. However, PERP lacked some of the useful
word and n-gram overlap features included in some
of the other top-performing submissions. In addi-
tion, domain adaptation seemed more relevant for
the STS 2013 task since in-domain data was avail-
able only for one (OnWN) of the four subtasks.

Therefore, in this work, we combine the PERP
system with various word and n-gram features.
We also apply the domain adaptation technique of
Daume III (2007) to support generalization beyond
the domains in the training data.

2 System Details

In this section, we describe the system we devel-
oped, and the variations of it that comprise our sub-
missions to the 2013 STS task.

Our system is a linear model estimated using
ridge regression, as implemented in the scikit-learn
toolkit (Pedregosa et al., 2011). The system uses
a 5-fold cross-validation grid search to tune the α
penalty for ridge regression (with α ∈ 2{−5,−4,...,4}).
During development, we evaluated its performance
on the full STS 2012 data (training and test) us-
ing 10-fold cross-validation, with the 5-fold cross-
validation being used to tune within each training
partition.

2.1 Features

Our full system uses the following features com-
puted from an input sentence pair (s1, s2).

The system standardizes feature values to zero

mean and unit variance by subtracting the feature’s
mean and dividing by its standard deviation. The
means and standard deviations are estimated from
the training set, or from each training partition dur-
ing cross-validation.

2.1.1 n-gram Overlap Features
The system computes Jaccard similarity (i.e., the

ratio of the sizes of the set intersection to the set
union) for the following overlap features:

• character n-gram overlap (n = 1 . . . 12). Note
that this is computed from the entire original
texts for a pair, including punctuation, whites-
pace, etc.

• word n-gram overlap (n = 2 . . . 8). We do not
include n = 1 here because it would be identi-
cal to the n = 1 version for the unordered word
n-gram feature described next.

• unordered word n-gram overlap features (n =
1 . . . 3). By unordered, we mean combina-
tions (in the mathematical sense of “combi-
nations”) of word tokens, regardless of order.
Note that these features are similar to the word
n-gram overlap features except that the words
need not be contiguous to match. For example,
the text “John saw Mary” would result in the
following unordered word n-grams: {john},
{mary}, {saw}, {john, saw}, {mary, saw},
{john, mary}, and {john, mary, saw}.

For the word and unordered n-gram overlap fea-
tures, we computed two variants: one based on all
tokens and one based on just content words, which
we define as words that are not punctuation and do
not appear in the NLTK (Bird et al., 2009) English
stopword list. We lowercase everything for the word
overlap measures but not for character overlap.

2.1.2 Length Features
The system includes various length-related fea-

tures, where Lmax = max(length(s1), length(s2)),
Lmin = min(length(s1), length(s2)), and length(x)
denotes the number of tokens in x. log denotes the
natural logarithm.

• log(Lmax
Lmin

)

• Lmax−Lmin
Lmax
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• log(Lmin)

• log(Lmax)

• log(|Lmax − Lmin|+ 1)

2.1.3 Sentiment Features
The system includes various features based on the

proprietary sentiment lexicon described by Beigman
Klebanov et al. (2012). Each word in this lexicon
is associated with a 3-tuple specifying a distribution
over three classes: positive, negative, and neutral.
These distributions were estimated via crowdsourc-
ing. If a word is not in the lexicon, we assume its
positivity and negativity are zero.

We define the set of sentiment words in a sen-
tence s as σ(s) = {w : positivity(w) > 0.5 ∨
negativity(w) > 0.5}. We also define the pos-
itivity, negativity, and neutrality of a sentence as
the sum over the corresponding values of indi-
vidual words w. For example, positivity(s) =∑

w∈s positivity(w).
The system includes the following features:

• σ(s1)∩σ(s2)
σ(s1)∪σ(s2) (i.e., the Jaccard similarity of the
sentiment words)

• The cosine distance between
(positivity(s1), negativity(s1)) and
(positivity(s2), negativity(s2))

• |positivity(s1)− positivity(s2)|
• |negativity(s1)− negativity(s2)|
• |neutrality(s1)− neutrality(s2)|

2.1.4 PERP with Stacking
The system also incorporates the PERP system

(Heilman and Madnani, 2012) (as briefly described
in §1) as a feature in its model by using 10-fold
stacking (Wolpert, 1992). Stacking is a procedure
similar to k-fold cross-validation that allows one to
use the output of one model as the input to another
model, without requiring multiple training sets. A
PERP model is iteratively trained on nine folds and
then the PERP feature is computed for the tenth,
producing PERP features for the whole training set,
which are then used in the final regression model.

We trained PERP in a general manner using data
from all the STS 2012 subtasks rather than training
subtask-specific models. PERP was trained for 100
iterations.

We refer readers to Heilman and Madnani (2012)
for a full description of PERP. Next, we provide de-
tails about modifications made to PERP since STS
2012. Although these details are not necessary to
understand how the system works in general, we in-
clude them here for completeness.

• We extended PERP to model abbreviations as
zero cost edits, using a list of common abbrevi-
ations extracted from Wikipedia.1

• In a similar vein, we also extended PERP
to model multiword sequences with differing
punctuation (e.g., “Built-In Test” → “Built In
Test”) as zero cost edits.

• We changed the stemming and synonymy edits
in the original PERP (Heilman and Madnani,
2012) to be substitution edits that activate addi-
tional stemming and synonymy indicator fea-
tures.

• We added an incentive to TERp’s (Snover et
al., 2009) original inference algorithm to pre-
fer matching words when searching for a good
edit sequence. We added this to avoid rare
cases where other edits would have a negative
costs, and then the same word in a sentence
pair would be, for example inserted and deleted
rather than matched.

• We fixed a minor bug in the inference algo-
rithm, which appeared to only affect results on
the MSRvid subtask in the STS 2012 task.

• We tweaked the learning algorithm by increas-
ing the learning rate and not performing weight
averaging.

2.2 Domain Adaptation

The system also uses the domain adaptation tech-
nique described by Daume III (2007) to facilitate
generalization to new domains. Instead of having
a single weight for each of the features described
above, the system maintains a generic and a subtask-
specific copy. For example, the content bigram over-
lap feature had six copies: a generic copy and one
for each of the five subtasks in the training data from

1http://en.wikipedia.org/wiki/List_of_
acronyms_and_initialisms, downloaded April 27,
2012
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STS 2012 (i.e., OnWN, MSRpar, MSRvid, SMTeu-
roparl, SMTnews). And then for an instance from
MSRpar, only the generic and MSRpar-specific ver-
sions of the feature will be active. For an instance
from a new subtask (e.g., a test set instance), only
the generic feature will be active.

We also included a generic intercept feature and
intercept features for each subtask (these always had
a value of 1). These help the model capture, for
example, whether high or low similarities are more
frequent in general, without having to use the other
feature weights to do so.

2.3 Submissions

We submitted three variations of the system.

• Run 1: This run used all the features described
above. In addition, we mapped the test subtasks
to the training subtasks as follows so that the
specific features would be active for test data
from previously unseen but related subtasks:
headlines to MSRpar, SMT to SMTnews, and
FNWN to OnWN.

• Run 2: As in Run 1, this run used all the fea-
tures described above. However, we did not
map the STS 2013 subtasks to STS 2012 sub-
tasks. Thus, the specific copies of features were
only active for OnWN test set examples.

• Run 3: This run used all the features except for
the PERP and sentiment features. Like Run 2,
this run did not map subtasks.

3 Results

This section presents results on the STS 2012 data
(our development set) and results for our submis-
sions to STS 2013.

3.1 STS 2012 (development set)

Although we used cross-validation on the entire STS
2012 dataset during preliminary experiments (§2),
in this section, we train the system on the original
STS 2012 training set and report performance on the
original STS 2012 test set, in order to facilitate com-
parison to submissions to that task. It is important to
note that our system’s results here may be somewhat
optimistic since we had access to the STS 2012 test
data and were using it for development, whereas the

participants in the 2012 task only had access to the
training data.

Table 1 presents the results. We include the results
for our three submissions, the results for the top-
ranked submission according to the weighted mean
(“UKP”), the results for the best submission from
Heilman and Madnani (2012) (“PERPphrases”), and
the mean across all submissions. Note that while we
compare to the PERP submission from Heilman and
Madnani (2012), the results are not directly compa-
rable since the version of PERP is not the same and
since PERP was trained differently.

For Run 1 on the STS 2012 data, we mapped
OnWN to MSRpar, and SMTnews to SMTeuroparl,
similar to Heilman and Madnani (2012).

3.2 STS 2013 (unseen test set)

Table 2 presents results for our submissions to the
2013 STS task. We include results for our three sub-
missions, results for the top-ranked submission ac-
cording to the weighted mean, results for the base-
line provided by the task organizers, and the mean
across all submissions and the baseline from the or-
ganizers.2

Note that while our Run 2 submission outper-
formed the top-ranked UMBC submission on the
headlines subtask, as shown in 2, there was another
UMBC submission that performed better than Run 2
for the headlines subtask.

4 Discussion

The weighted mean correlation across tasks for our
submissions was relatively poor compared to the
top-ranked systems for STS 2013: our Run 1, Run 2,
and Run 3 submissions beat the baseline and ranked
41st, 26th, and 48th, respectively, out of 89 submis-
sions.

The primary reason for this result is that perfor-
mance of our submissions was poor for the OnWN
subtask, where, e.g., our Run 2 submission’s corre-
lation was r = .4631, compared to r = .8431 for
the top-ranked submission for that subtask (“deft-
baseline”). Upon investigation, we found that
OnWN training and test data were very different in
terms of their score distributions. The mean gold

2The STS 2013 results are from http://ixa2.si.
ehu.es/sts/.
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Submission MSRpar MSRvid SMTeuroparl OnWN SMTnews W. Mean
Run 1 .6461 .8060 .5014 .7073 .4876 .6577
Run 2 .6461 .8060 .5014 .7274 .4744 .6609
Run 3 .6369 .7904 .5101 .7010 .4985 .6529
UKP (top-ranked) .6830 .8739 .5280 .6641 .4937 .6773
PERPphrases .6397 .7200 .4850 .7124 .5312 .6399
mean-2012 .4894 .7049 .3958 .5557 .3731 .5286

Table 1: Pearson correlations for STS 2012 data for each subtask and then the weighted mean across subtasks. “UKP”
was submitted by Bär et al. (2012), “PERPphrases” was submitted by Heilman and Madnani (2012), and “mean-2012”
is the mean of all submissions to STS 2012.

Submission headlines OnWN FNWN SMT W. Mean
Run 1 .7601 .4631 .3516 .2801 .4917
Run 2 .7645 .4631 .3905 .3593 .5229
Run 3 .7103 .3934 .3364 .3308 .4734
UMBC (top-ranked) .7642 .7529 .5818 .3804 .6181
baseline .5399 .2828 .2146 .2861 .3639
mean-2013 .6022 .5042 .2887 .2989 .4503

Table 2: Pearson correlations for STS 2013 data for each subtask and then the weighted mean across subtasks.
“UMBC” = “UMBC EBIQUITY-ParingWords”, and “mean-2013” is the mean of the submissions to STS 2013 and
the baseline.

standard similarity value for the STS 2012 OnWN
data was 3.87 (with a standard deviation of 1.02),
while the mean for the 2013 OnWN data was 2.31
(with a standard deviation of 1.76). We speculate
that our system performed relatively poorly because
it was expecting the OnWN data to include many
highly similar sentences (as in the 2012 data). We
hypothesize that incorporating more detailed Word-
Net information (only the PERP feature used Word-
Net, and only in a limited fashion, to check syn-
onymy) and task-specific features for comparing
definitions might have helped performance for the
OnWN subtask.

If we ignore the definition comparison subtasks,
and consider performance on just the headlines and
SMT subtasks, the system performed quite well.
Our Run 2 submission had a mean correlation of
r = .5619 for those two subtasks, which would rank
5th among all submissions.

We have not fully explored the effects on perfor-
mance of the domain adaptation approach used in
the system, but our approach of mapping tasks used
for our Run 1 submission did not seem to help. It
seems better to keep a general model, as in Runs 2
and 3.

Additionally, we observe that the performance of
Run 3, which did not use the PERP and sentiment
features, was relatively good compared to Runs 1
and 2, which used all the features. This indicates
that if speed and implementation simplicity are im-
portant concerns for an application, it may suffice to
use relatively simple overlap and length features to
measure semantic similarity.

The contribution of domain adaptation is not
clear. Mapping novel subtasks to tasks for which
training data is available (§2.3), in combination with
the domain adaptation technique we used, did not
generally improve performance. However, we leave
to future work a detailed analysis of whether the
domain adaptation approach (without mapping) is
better than simply training a separate system for
each subtask and using out-of-domain data when in-
domain data is unavailable.

5 Conclusion

In this paper, we described a system for predicting
the semantic similarity of two short texts. The sys-
tem uses stacking to combine a trained edit-based
similarity model (Heilman and Madnani, 2012) with
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simple features such as word and n-gram overlap,
and it uses the technique described by Daume III
(2007) to support generalization to domains not rep-
resented in the training data. We also presented eval-
uation results, using data from the STS 2012 and
STS 2013 shared tasks, that indicate that the system
performs competitively relative to other approaches
for many tasks. In particular, we observed very
good performance on the news headline similarity
and MT evaluation subtasks of the STS 2013 shared
task.
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