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Abstract

We report the results of UNIBA participation
in the first SemEval-2012 Semantic Textual
Similarity task. Our systems rely on distribu-
tional models of words automatically inferred
from a large corpus. We exploit three differ-
ent semantic word spaces: Random Indexing
(RI), Latent Semantic Analysis (LSA) over RI,
and vector permutations in RI. Runs based on
these spaces consistently outperform the base-
line on the proposed datasets.

1 Background and Related Research

SemEval-2012 Semantic Textual Similarity (STS)
task (Agirre et al., 2012) aims at providing a gen-
eral framework to “examine the degree of semantic
equivalence between two sentences.”

We propose an approach to Semantic Textual
Similarity based on distributional models of words,
where the geometrical metaphor of meaning is ex-
ploited. Distributional models are grounded on the
distributional hypothesis (Harris, 1968), according
to which the meaning of a word is determined by
the set of textual contexts in which it appears. These
models represent words as vectors in a high dimen-
sional vector space. Word vectors are built from a
large corpus in such a way that vector dimensions
reflect the different uses (or contexts) of a word in
the corpus. Hence, the meaning of a word is de-
fined by its use, and words used in similar contexts
are represented by vectors near in the space. In this
way, semantically related words like “basketball”
and “volleyball”, which occur frequently in similar
contexts, say with words “court, play, player”, will
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be represented by near points. Different definitions
of contexts give rise to different (semantic) spaces.
A context can be a document, a sentence or a fixed
window of surrounding words. Contexts and words
can be stored through a co-occurrence matrix, whose
columns correspond to contexts, and rows to words.
Therefore, the strength of the semantic association
between words can be computed as the cosine simi-
larity of their vector representations.

Latent Semantic Analysis (Deerwester et al.,
1990), BEAGLE (Jones and Mewhort, 2007),
Random Indexing (Kanerva, 1988), Hyperspace
Analogue to Language (Burgess et al., 1998),
WordSpace (Schiitze and Pedersen, 1995) are all
techniques conceived to build up semantic spaces.
However, all of them intend to represent semantics at
a word scale. Although vectors addition and multi-
plication are two well defined operations suitable for
composing words in semantic spaces, they miss tak-
ing into account the underlying syntax, which regu-
lates the compositionality of words. Some efforts to-
ward this direction are emerging (Clark and Pulman,
2007; Clark et al., 2008; Mitchell and Lapata, 2010;
Coecke et al., 2010; Basile et al., 2011; Clarke,
2012), which resulted in theoretical work corrob-
orated by empirical evaluation on how small frag-
ments of text compose (e.g. noun-noun, adjective-
noun, and verb-noun pairs).

2 Methodology

Our approach to STS is inspired by the latest devel-
opments about semantic compositionality and distri-
butional models. The general methodology is based
on the construction of a semantic space endowed
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with a vector addition operator. The vector addition
sums the word vectors of each pair of sentences in-
volved in the evaluation. The result consists of two
vectors whose similarity can be computed by co-
sine similarity. However, this simple methodology
translates a text into a mere bag-of-word representa-
tion, depriving the text of its syntactic construction,
which also influences the overall meaning of the sen-
tence. In order to deal with this limit, we experi-
ment two classical methods for building a semantic
space, namely Random Indexing and Latent Seman-
tic Analysis, along with a new method based on vec-
tor permutations, which tries to encompass syntactic
information directly into the resulting space.

2.1 Random Indexing

Our first method is based on Random Indexing (RI),
introduced by Kanerva (Kanerva, 1988). This tech-
nique allows us to build a semantic space with no
need for (either term-document or term-term) ma-
trix factorization, because vectors are inferred by
using an incremental strategy. Moreover, it allows
us to solve efficiently the problem of reducing di-
mensions, which is one of the key features used to
uncover the “latent semantic dimensions” of a word
distribution.

RI' (Widdows and Ferraro, 2008) is based on
the concept of Random Projection according to
which high dimensional vectors chosen randomly
are “nearly orthogonal”.

Formally, given an n x m matrix A and an m X
k matrix R made up of k m-dimensional random
vectors, we define a new n x k matrix B as follows:

Bk = Amm gk | <<m (1)

The new matrix B has the property to preserve the
distance between points scaled by a multiplicative
factor (Johnson and Lindenstrauss, 1984).

Specifically, RI creates the semantic space B™*
in two steps (we consider a fixed window w of terms
as context):

1. A context vector is assigned to each term. This
vector is sparse, high-dimensional and ternary,
which means that its elements can take values

'"An implementation of RI can be found at:

http://code.google.com/p/semanticvectors/
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in {-1, 0, 1}. A context vector contains a small
number of randomly distributed non-zero ele-
ments, and the structure of this vector follows
the hypothesis behind the concept of Random
Projection;

2. Context vectors are accumulated by analyzing
co-occurring terms in a window w. The seman-
tic vector for a term is computed as the sum of
the context vectors for terms which co-occur in
w.

2.2 Latent Semantic Analysis

Latent Semantic Analysis (Deerwester et al., 1990)
relies on the Singular Value Decomposition (SVD)
of a term-document co-occurrence matrix. Given
a matrix M, it can be decomposed in the product
of three matrices UXV ", where U and V are the
orthonormal matrices and X is the diagonal matrix
of singular values of M placed in decreasing order.
Computing the LSA on the co-occurrence matrix M
can be a computationally expensive task, as a corpus
can contain thousands of terms. Hence, we decided
to apply LSA to the reduced approximation gener-
ated by RI It is important to point out that no trun-
cation of singular values is performed. Since com-
puting the similarity between any two words is equal
to taking the corresponding entry in the MM " ma-
trix, we can exploit the relation

MM' =UxZV'Vve'U'=USX'U" =
(uz)(ux)’

Hence, the application of LSA to RI makes possible
to represent each word in the U3 space.

A similar approach was investigated by Sellberg
and Jonsson (2008) for retrieval of similar FAQs in
a Question Answering system. Authors showed that
halving the matrix dimension by applying the RI re-
sulted in a drastic reduction of LSA computation
time. Certainly there was also a performance price
to be paid, however general performance was bet-
ter than VSM and RI respectively. We also experi-
mented LSA computed on RI versus LSA applied to
the original matrix during the tuning of our systems.
Surprisingly, we found that LSA applied on the re-
duced matrix gives better results than LSA. How-
ever, these results are not reported as they are not
the focus of this evaluation.



2.3 Vector Permutations in RI

The classical distributional models can handle only
one definition of context at a time, such as the whole
document or the window w. A method to add infor-
mation about context in RI is proposed in (Sahlgren
et al., 2008). The authors describe a strategy to en-
code word order in RI by the permutation of coor-
dinates in context vector. When the coordinates are
shuffled using a random permutation, the resulting
vector is nearly orthogonal to the original one. That
operation corresponds to the generation of a new
random vector. Moreover, by applying a predeter-
mined mechanism to obtain random permutations,
such as elements rotation, it is always possible to
reconstruct the original vector using the reverse per-
mutations. By exploiting this strategy it is possible
to obtain different random vectors for each context
in which the term occurs.

Our idea is to encode syntactic dependen-
cies using vector permutations. A syntactic
dependency between two words is defined as
dep(head, dependent), where dep is the syntac-
tic link which connects the dependent word to the
head word. Generally speaking, dependent is the
modifier, object or complement, while head plays a
key role in determining the behavior of the link. For
example, subj(eat, cat) means that “cat” is the sub-
ject of “eat”. In that case the head word is “eat”,
which plays the role of verb.

The key idea is to encode in the semantic space in-
formation about syntactic dependencies which link
words together. Rather than representing the kind
of dependency, our focus is to encompass informa-
tion about the existence of such a relation between
words in the construction of the space. The method
adopted to construct a semantic space that takes into
account both syntactic dependencies and Random
Indexing can be defined as follows:

1. acontext vector is assigned to each term, as de-
scribed in Section 2.1 (Random Indexing);

2. context vectors are accumulated by analyzing
terms which are linked by a dependency. In
particular the semantic vector for each term ¢;
is computed as the sum of the inverse-permuted
context vectors for the terms ¢; which are de-
pendents of ¢;, and the permuted vectors for
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the terms ¢; which are heads of ¢;. Moreover,
the context vector of ¢;, and those of ¢; terms
which appears in a dependency relation with
it, are sum to the final semantic vector in or-
der to provide distributional evidence of co-
occurrence. Each permutation is computed as
a forward/backward rotation of one element. If
IT' is a permutation of one element, the inverse-
permutation is defined as II7!: the elements
rotation is performed by one left-shifting step.
Formally, denoting with x the context vector
for a term, we compute the semantic vector for
the term ¢; as follows:

Si = X + Z (H*IXJ- + Xj) +
Vdep‘(yti,tj)

Z (Hlxk + xk)

k
Vdep(ty.t;)
Adding permuted vectors to the head word and
inverse-permuted vectors to the corresponding de-
pendent word allows to encode the information
about both heads and dependents into the space.
This approach is similar to the one investigated by
(Cohen et al., 2010) to encode relations between
medical terms.

3 Evaluation

Dataset Description. SemEval-2012 STS is a first
attempt to provide a “unified framework for the eval-
uation of modular semantic components.” The task
consists in computing the similarity between pair
of texts, returning a similarity score. Sentences
are extracted from five publicly available datasets:
MSR (Paraphrase Microsoft Research Paraphrase
Corpus, 750 pairs), MSR (Video Microsoft Research
Video Description Corpus, 750 pairs), SMTeuroparl
(WMT2008 development dataset, Europarl section,
459 pairs), SMTnews (news conversation sentence
pairs from WMT, 399 pairs), and OnWN (pairs of
sentences from Ontonotes and WordNet definition,
750 pairs). Humans rated each pair with values from
0 to 5. The evaluation is performed by comparing
humans scores against systems performance through
Pearson’s correlation. The organizers propose three
different ways to aggregate values from the datasets:



ALL Rank-ALL ALLnrm Rank-ALLNrm Mean Rank-Mean
baseline 3110 87 .6732 85 4356 70
UNIBA-RI .6285 41 7951 43 5651 45
UNIBA-LSARI .6221 44 .8079 30 5728 40
UNIBA-DEPRI .6141 46 .8027 38 5891 31

Table 1: Evaluation results of Pearson’s correlation.

MSRpar MSRvid SMT-eur On-WN SMT-news
baseline 4334 .2996 4542 5864 .3908
UNIBA- RI 4128 7612 4531 .6306 4887
UNIBA- LSARI  .3886 7908 4679 .6826 4238
UNIBA- DEPRI 4542 7673 5126 .6593 4636

Table 2: Evaluation results of Pearson’s correlation for individual datasets.

ALL Pearson correlation with the gold standard for
the five datasets.

ALLnrm Pearson correlation after the system out-
puts for each dataset are fitted to the gold stan-
dard using least squares.

Mean Weighted mean across the five datasets,
where the weight depends on the number of
pairs in the dataset.

Experimental Setting. For the evaluation, we
built Distributional Spaces using the WaCkype-
dia_EN corpus®>. WaCkypedia_EN is based on a
2009 dump of the English Wikipedia (about 800 mil-
lion tokens) and includes information about: part-of-
speech, lemma and a full dependency parsing per-
formed by MaltParser (Nivre et al., 2007). The three
spaces described in Section 2 are built exploiting
information about term windows and dependency
parsing supplied by WaCkypedia. The total number
of dependencies amounts to about 200 million.

The RI system is implemented in Java and re-
lies on some portions of code publicly available in
the Semantic Vectors package (Widdows and Fer-
raro, 2008), while for LSA we exploited the publicly
available C library SVDLIBC?>.

We restricted the vocabulary to the 50,000 most
frequent terms, with stop words removal and forc-
ing the system to include terms which occur in the
dataset. Hence, the dimension of the original matrix
would have been 50,000 x 50,000.

2http://wacky.sslmit.unibo.it/doku.php?id=corpora
3http://tedlab.mit.edu/ dr/SVDLIBC/

594

Our approach involves some parameters. In par-
ticular, each semantic space needs to set up the di-
mension k of the space. All spaces use a dimen-
sion of 500 (resulting in a 50,000 x 500 matrix). The
number of non-zero elements in the random vector
is set to 10. When we apply LSA to the output space
generated by the Random Indexing we hold all the
500 dimensions since during the tuning we observed
a drop in performance when a lower dimension was
set. The co-occurrence distance w between terms
was set up to 4.

In order to compute the similarity between the
vector representations of sentences we used the co-
sine similarity, and then we multiplied by 5 the ob-
tained value.

Results. Table 1 shows the overall results obtained
exploiting the different semantic spaces. We re-
port the three proposed evaluation measures with the
corresponding overall ranks with respect to the 89
runs submitted by participants. We submitted three
different runs, each exploring a different semantic
space: UNIBA-RI (based on Random Indexing),
UNIBA-LSARI (based on LSA performed over RI
outcome), and UNIBA-DEPRI (based on Random
Indexing and vector permutations). Each proposed
measure stresses different aspects. ALL is the Pear-
son’s correlation computed over the concatenated
dataset. As a consequence this measure ranks higher
systems which obtain consistent better results. Con-
versely, ALLNrm normalizes results by scaling val-
ues obtained from each dataset, in this way it tries
to give emphasis to systems trained on each dataset.



The result of these different perspective is that our
three spaces rank differently according to each mea-
sure. It seems that UNIBA-RI is able to work better
across all datasets, while UNIBA-LSARI gives the
best results on specific datasets, even though all our
methods are unsupervised and do not need training
steps. A deeper analysis on each dataset is reported
on Table 2. Here results seem to be at odds with
Table 1.

Considering individual datasets, UNIBA-RI gives
only once the best result, while UNIBA-LSARI and
UNIBA-DEPRI are able to provide the best results
twice. Generally, all results outperform the base-
line, based on a simple keyword overlap. Lower re-
sults are obtained in MSRpar, we ascribe this result
to the notably long sentences here involved. In par-
ticular, UNIBA-LSARI gives a result lower than the
baseline, and in line with the one obtained by LSA
during the tuning. Hence, we ascribe this low per-
formance to the application of LSA method to this
specific dataset. Only UNIBA-DEPRI was able to
outperform the baseline in this dataset. This shows
the usefulness of encoding syntactic features in se-
mantic word space where longer sentences are in-
volved. Generally, it is interesting to be noticed that
our spaces perform rather well on short and similarly
structured sentences, such as MSRvid and On-WN.

4 Conclusion

We reported evaluation results of our participation in
Semantic Textual Similarity task. Our systems ex-
ploit distributional models to represent the seman-
tics of words. Two of such spaces are based on a
classical definition of context, such as a fixed win-
dow of surrounding words. A third spaces tries to
encompass more definitions of context at once, as
the syntactic structure that relates words in a cor-
pus. Although simple, our methods have achieved
generally good results, outperforming the baseline
provided by the organizers.
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