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Abstract

The Choice of Plausible Alternatives (COPA)
task in SemEval-2012 presents a series of
forced-choice questions wherein each question
provides a premise and two viable cause or ef-
fect scenarios. The correct answer is the cause
or effect that is the most plausible. This paper
describes the COPACETIC system developed
by the University of Texas at Dallas (UTD) for
this task. We approach this task by casting it
as a classification problem and using features
derived from bigram co-occurrences, TimeML
temporal links between events, single-word po-
larities from the Harvard General Inquirer, and
causal syntactic dependency structures within
the gigaword corpus. Additionally, we show
that although each of these components im-
proves our score for this evaluation, the dif-
ference in accuracy between using all of these
features and using bigram co-occurrence infor-
mation alone is not statistically significant.

1 The Problem

“The surfer caught the wave.” This statement, al-
though almost tautological for human understanding,
requires a considerable depth of semantic reasoning.
What is a surfer? What does it mean to “catch a
wave”? How are these concepts related? What if
we want to ascertain, given that the surfer caught the
wave, whether the most likely next event is that “the
wave carried her to the shore” or that “she paddled her
board into the ocean”? This type of causal and tempo-
ral reasoning requires a breadth of world-knowledge,
often called commonsense understanding.

Question 15 (Find the EFFECT)
Premise: I poured water on my sleeping friend.
Alternative 1: My friend awoke.
Alternative 2: My friend snored.

Question 379 (Find the CAUSE)
Premise: The man closed the umbrella.
Alternative 1: He got out of the car.
Alternative 2: He approached the building.

Figure 1: An example of each type of question, one target-
ing an effect, and another targeting a cause.

The seventh task of SemEval-2012 evaluates pre-
cisely this type of cogitation. COPA: Choice of Plau-
sible Alternatives presents 1,0001 sets of two-choice
questions (presented as a premise and two alterna-
tives) provided in simple English sentences. The
goal for each question is to choose the most plausible
cause or effect entailed by the premise (the dataset
provided an equal distribution of cause and effect
targetting questions). Additionally, each question is
labeled so as to describe whether the answer should
be a cause or an effect, as indicated in Figure 1.

The topics of these questions were drawn from two
sources:

1. Randomly selected accounts of personal stories
taken from a collection of Internet weblogs (Gor-
don and Swanson, 2009).

2. Randomly selected subject terms from the Li-
brary of Congress Thesaurus for Graphic Mate-
rials (of Congress. Prints et al., 1980).

Additionally, the incorrect alternatives were authored
1This data set was split into a 500 question development (or

training) set and a 500 question test set.
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Figure 2: Architecture of the COPACETIC System

with the intent of impeding “purely associative meth-
ods” (Roemmele et al., 2011). The task aims to
evaluate the state of commonsense causal reasoning
(Roemmele et al., 2011).

2 System Architecture

Given a question, such as Question 15 (as shown
in Figure 1), our system selects the most plausible
alternative by using the output of an SVM classifier,
trained on the 500 provided development questions
and tested on the 500 provided test questions. The
classifier operates with features describing informa-
tion extracted from the processing of the question’s
premise and alternatives. As illustrated by Figure 2,
the preprocessing involves part of speech (POS) tag-
ging, and syntactic dependency parsing provided
by the Stanford parser (Klein and Manning, 2003;
Toutanova et al., 2003), multi-word expression detec-
tion using Wikipedia, automatic TimeML annotation
using TARSQI (Verhagen et al., 2005; Pustejovsky
et al., 2003), and Brown clustering as provided in
(Turian, 2010).

The architecture of the COPACETIC system is di-
vided into offline (independent of any question) and
online (question dependent) processing. The online
aspect of our system inspects each question using
an SVM and selects the most likely alternative. Our
system’s offline functions focus on pre-processing
resources so that they may be used by components

of the online aspect of our system. In the next sec-
tion, we describe the offline processing upon which
our system is built, and in the following section, the
online manner in which we evaluate each question.

2.1 Offline Processing

Because the questions presented in this task require
a wealth of commonsense knowledge, we first ex-
tracted commonsense and temporal facts. This sub-
section describes the process of mining this informa-
tion from the fourth edition of the English Gigaword
corpus2 (Parker et al., 2009).

We collected commonsense facts by extracting
cause and effect pairs using twenty-four hand-crafted
patterns. Rather than lexical patterns, we used pat-
terns over syntactic dependency structures in order
to capture the syntactic role each word plays. Fig-
ure 3 illuminates two examples of the dependency
structures encoded by our causal patterns. Causal
Pattern 1 captures all cases of causality indicated by
the verb causes, while Causal Pattern 2 illustrates a
more sophisticated pattern, in which the phrasal verb
brought on indicates causality.

In order to extract this information, we first parsed
the syntactic dependence structure of each sentence
using the Stanford parser (Klein and Manning, 2003).
Next, we loaded each sentence’s dependence tree

2The LDC Catalog number of the English Gigaword Fourth
Edition corpus is LDC2009T13.
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CAUSAL PATTERN 1:

"causes"

?cause

nsubj

?effect

dobj

CAUSAL PATTERN 2:

"brought"

?cause

nsubj

"on"

prep

?effect

pobj

Figure 3: The dependency structures associated with
the causal patterns: ?cause “causes” ?effect, and
?cause “brought on” ?effect.

into the RDF3X (Neumann and Weikum, 2008)
implementation of an RDF3 database. Then, we
represented our dependency structures using in the
SPARQL4query language and extracted cause and
effect pairs by issuing SPARQL queries against the
RDF3X database. We used SPARQL and RDF repre-
sentations because they allowed us to easily represent
and reason over graphical structures, such as those of
our dependency trees.

It has been shown that causality often manifests as
a temporal relation (Bethard, 2008; Bethard and Mar-
tin, 2008). The questions presented in this task are
no exception: many of the alternative-premise pairs
necessitate temporal understanding. For example,
consider question 63 provided in Figure 4.

Question 63 (Find the EFFECT)
Premise: The man removed his coat.
Alternative 1: He entered the house.
Alternative 2: He loosened his tie.

Figure 4: Example question 63, which illustrates the ne-
cessity for temporal reasoning.

3The Resource Description Framework (RDF) is is a spec-
ification from the W3C. Information on RDF is available at
http://www.w3.org/RDF/.

3The SPARQL Query Language is defined at http://www.
w3.org/TR/rdf-sparql-query/. An examples of the
WHERE clause for a SPARQL query associated with the brought
on pattern from Figure 3 is provided below:

{ ?a <nsubj> ?cause ;
<token> "brought" ;
<prep> ?b .

?b <token> "on" ;
<pobj> ?effect . }

In order to extract this temporal information, we
automatically annotated our corpus with TimeML
annotations using the TARSQI Toolkit (Verhagen
et al., 2005). Unfortunately, the events represented
in this corpus were too sparse to use directly. To
mitigate this sparsity, we clustered events using the
3,200 Brown clusters5 described in (Turian, 2010).

After all such offline processing has been com-
pleted, we incorporate the knowledge encoded by
this processing in the online components of our sys-
tem (online preprocessing, and feature extraction) as
described in the following section.

2.2 Online Processing

We cast the task of selecting the most plausible al-
ternative as a classification problem, using a support
vector machine (SVM) supervised classifier (using
a linear kernel). To this end, we pre-process each
question for lexical information. We extract parts
of speech (POS) and syntactic dependencies using
the Stanford CoreNLP parser (Klein and Manning,
2003; Toutanova et al., 2003). Stopwords are re-
moved using a manually curated list of one hundred
and one common stopwords; non-content words (de-
fined as words whose POS is not a noun, verb, or
adjective) are also discarded. Additionally, we ex-
tract multi-word expressions (noun collocations6 and
phrasal verbs7). Finally, in order to utilize our of-
fline TimeML annotations, we extract events using
POS. Examples of the retained content words are
underlined in Figures 5, 6, 7 and 8.

After preprocessing each question, we convert
it into two premise-alternative pairs (PREMISE-
ALTERNATIVE1, and PREMISE-ALTERNATIVE2).
For each of these pairs, we attempt to form a bridge
from the causal sentence to the effect sentence, with-
out distinction over whether the cause or effect origi-
nated from the premise or the alternative. This bridge
is provided by four measures, or features, described
in the following section.

5These clusters are available at http://metaoptimize.
com/projects/wordreprs/.

6These were detected using a list of English Wikipedia ar-
ticle titles available at http://dumps.wikimedia.org/
backup-index.html.

7Phrasal verbs were determined using a list avail-
able at http://www.learn-english-today.com/
phrasal-verbs/phrasal-verb-list.htm.
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3 The Features of the COPACETIC
System

In determining the causal relatedness between a cause
and an effect sentence, we utilize four features. Each
feature calculates a value indicating the perceived
strength of the causal relationship between a cause
and an effect using a different measure of causality.
The four features used by our COPACETIC system
are described in the following subsections.

3.1 Bigram Relatedness

Our first feature measures the degree of relatedness
between all pairs of bigrams (at the token level) in the
cause and effect pair. We do this by calculating the
point-wise mutual Information (PMI) (Fano, 1961)
for all bigram combinations between the candidate
alternative and its premise in the English Gigaword
corpus (Parker et al., 2009) as shown in Equation 1.

PMI(x; y) ≡ log
p(x, y)

p(x)p(y)
(1)

Under the assumption that distance words are un-
likely to causally influence each other, we only con-
sider co-occurrences within a window of one hundred
tokens when calculating the joint probability of the
PMI. Additionally, we allow for up to two tokens
to occur within a single bigram’s occurrence (e.g.
the phrase pierced her ears would be considered a
match for the bigram pierced ears ). Although these
relaxations skew the values of our calculated PMIs
by artificially lowering the joint probability, we are
only concerned with how the values compare to each
other. Note that because we employ no smoothing,
the PMI of an unseen bigram is set to zero. The max-
imum PMI over all pairs of bigrams is retained as the
value for this feature. Figure 5 illustrates this feature
for Question 495.

3.2 Temporal Relatedness

Although most of the questions in this task focus on
causal relationships, for many questions, the nature
of this causal relationship manifests instead as a tem-
poral one (Bethard and Martin, 2008; Bethard, 2008).
We use temporal link information from TimeML
(Pustejovsky et al., 2005; Pustejovsky et al., 2003)
annotations on our corpus to determine how tempo-
rally related a given cause and effect sentence are.

Question 495 (Find the EFFECT)
Premise: The girl wanted to wear earrings.
Alternative 1: She got her ears pierced.
Alternative 2: She got a tattoo.

Alternative 1 Alternative 2
PMI(wear earrings, pierced ears) = -10.928 PMI(wear earrings, tattoo) = -12.77
PMI(wanted wear, pierced ears) = -13.284 PMI(wanted wear, tattoo) = -14.284
PMI(girl wanted, pierced ears) = -13.437 PMI(girl wanted, tattoo) = -14.762
PMI(girl, pierced ears) = -15.711 PMI(girl, tattoo) = -14.859
Maximum PMI = -10.928 Maximum PMI = -12.77

Figure 5: Example PMI values for bigrams and unigrams
(with content words underlined). Alternative 1 is correctly
chosen as it has largest maxi mum PMI.

This is accomplished by using the point-wise mutual
information (PMI) between all pairs of events from
the cause to the effect (see Equation 1). We define
the relevant probabilities as follows:

• The joint probability (P (x, y)) of a cause and
effect event is defined as the number of times
the cause event participates in a temporal link
ending with the effect event.
• The probability of a cause event (P (x)) is de-

fined as the number of times the cause event
precipitates a temporal link to any event.
• The probability of an effect event (P (y)) is de-

fined as the number of times the effect event
ends a temporal link begun by any event.

We define the PMI to be zero for any unseen pair of
events (and for any pairs involving an unseen event).
The summation of all pairs of PMIs is used as the
value of this feature. Figure 6 shows how this feature
behaves.

Question 468 (Find the CAUSE)
Premise: The dog barked.
Alternative 1: The cat lounged on the couch.
Alternative 2: A knock sounded at the door.

Alternative 1 Alternative 2
PMI(lounge, bark) = 5.60436 PMI(knock, bark) = 5.77867

PMI(sound, bark) = 5.26971

Figure 6: Example temporal PMI values (with content
words underlined). Alternative 2 is correctly chosen as it
has the highest summation.

3.3 Causal Dependency Structures
We attempted to capture the degree of direct causal re-
latedness between a cause sentence and an effect sen-
tence. To determine the strength of this relationship,
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we considered how often phrases from the cause and
effect sentences occur within a causal dependency
structure. We detect this through the use of twenty-
four8 manually crafted causal patterns (described in
Section 2.1). The alternative that has the maximum
number of matched dependency structures with the
premise is retained as the correct choice. Figure 7
illustrates this feature.

Question 490 (Find the EFFECT)
Premise: The man won the lottery.
Alternative 1: He became rich.
Alternative 2: He owed money.

Alternative 1 Alternative 2
won→ rich = 15 won→ owed = 5

Figure 7: Example casual dependency matches (with con-
tent words underlined). Alternative 1 is correctly selected
because more patterns extracted “won” causing “rich” than
“won” causing “owed”.

3.4 Polarity Comparison
We observed that many of the questions involve the
dilemma of determining whether a positive premise
is more related to a positive or negative alternative
(and vice-versa). This differs from sentiment analysis
in that rather than determining if a sentence expresses
a negative statement or view, we instead desire the
overall sentimental connotation of a sentence (and
thus of each word). For example, the premise from
Question 494 (Figure 8) is “the woman became fa-
mous.” Although this sentence makes no positive or
negative claims about the woman, the word “famous”
– when considered on its own – implies positive con-
notations.

We capture this information using the Harvard
General Inquirer (Stone et al., 1966). Originally de-
veloped in 1966, the Harvard General Inquirer pro-
vides a mapping from English words to their polarity
(POSITIVE, or NEGATIVE). For example, it de-
notes the word “abandon” as NEGATIVE, and the
word “abound” as POSITIVE. We use this informa-
tion by summing the score for all words in a sen-
tence (assigning POSITIVE words a score of 1.0,
NEGATIVE words a score of -1.0, and NEUTRAL or
unseen words a score of 0.0). The difference between

8Twenty-four patterns was deemed sufficient due to time
constraints.

these scores between the cause sentence and the ef-
fect sentence is used as the value of this feature. This
feature is illustrated in Figure 8.

Question 494 (Find the CAUSE)
Premise: The woman became famous.
Alternative 1: Photographers followed her.
Alternative 2: Her family avoided her.

Premise Alternative 1 Alternative 2
famous POSITIVE 1.0 follow NEUTRAL 0.0 avoid NEGATIVE−1.0

photographer NEUTRAL 0.0 family NEUTRAL 0.0
Sum 1.0 Sum 0.0 Sum −1.0

Figure 8: Example polarity comparison (with content
words underlined). Alternative 1 is correctly chosen as it
has the least difference from the score of the premise.

4 Results

The COPA task of SemEval-2012 provided partici-
pants with 1,000 causal questions, divided into 500
questions for development or training, and 500 ques-
tions for testing. We submitted two systems to the
COPA Evaluation for SemEval-2012, both of which
are trained on the 500 development questions. Our
first system uses only the bigram PMI feature and is
denoted as bigram pmi. Our second system uses
all four features and is denoted as svm combined.
The accuracy of our two systems on the 500 provided
test questions is provided in Table 1 (Gordon et al.,
2012). On this task, accuracy is defined as the quo-
tient of dividing the number of questions for which
the correct alternative was chosen by the number of
questions. Although multiple groups registered, ours
were the only submitted results. Note that the differ-
ence in performance between our two systems is not
statistically significant (p = 0.411) (Gordon et al.,
2012).

Team ID System ID Score
UTDHLT bigram pmi 0.618
UTDHLT svm combined 0.634

Table 1: Accuracy of submitted systems

The primary hindrance to our approach is in com-
bining each feature – that is, determining the con-
fidence of each feature’s judgement. Because the
questions vary significantly in their subject matter
and the nature of the causal relationship between
given causes and effects, a single approach is unlikely
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to satisfy all scenarios. Unfortunately, the problem
of determining which feature best applies to a give
question requires non-trivial reasoning over implicit
semantics between the premise and alternatives.

5 Conclusion

This evaluation has shown that although common-
sense causal reasoning is trivial for humans, it belies
deep semantic reasoning and necessitates a breadth of
world knowledge. Additional progress towards cap-
turing world knowledge by leveraging a large number
of cross-domain knowledge resources is necessary.
Moreover, distilling information not specific to any
domain – that is, a means of inferring basic and fun-
damental information about the world – is not only
necessary but paramount to the success of any fu-
ture system desiring to build chains of commonsense
or causal reasoning. At this point, we are merely
approximating such possible distillation.
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