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Abstract 

This paper presents our system participated on 
SemEval-2012 task: Chinese Semantic De-
pendency Parsing. Our system extends the 
second-order MST model by adding two 
third-order features. The two third-order fea-
tures are grand-sibling and tri-sibling. In the 
decoding phase, we keep the k best results for 
each span. After using the selected third-order 
features, our system presently achieves LAS 
of 61.58% ignoring punctuation tokens which 
is 0.15% higher than the result of purely 
second-order model on the test dataset. 

1 Introduction 

Recently, semantic role labeling (SRL) has been a 
hot research topic. CoNLL shared tasks for joint 
parsing for syntactic and semantic dependencies 
both in the year 2008 and 2009, cf. (Surdeanu et al., 
2008; Hajič et al., 2009; Bohnet, 2009). Same 
shared tasks in SemEval-2007 (Sameer S., 2007). 
The SRL is traditionally implemented as two sub-
tasks, argument identification and classification. 
However, there are some problems for the seman-
tic representation method used by the semantic role 
labeling. For example, the SRL only considers the 
predicate-argument relations and ignores the rela-
tions between a noun and its modifier, the meaning 
of semantic roles is related with special predicates. 

In order to overcome those problems, semantic 
dependency parsing (SDP) is introduced. Semantic 
dependencies express semantic links between pre-
dicates and arguments and represent relations be-
tween entities and events in text. The SDP is a kind 
of dependency parsing, and its task is to build a 
dependency structure for an input sentence and to 
label the semantic relation between a word and its 
head. However, semantic relations are different 
from syntactic relations, such as position indepen-
dent. Table 1 shows the position independent of 
semantic relations for the sentence XiaoMing hit 
XiaoBai with a book today.  

Today, XiaoMing hit XiaoBai with a book. 
XiaoBai was hit by XiaoMing today with a book. 
With a book, XiaoMing hit XiaoBai today. 
XiaoMing hit XiaoBai with a book today. 

Table 1: An example position dependency 

   Although semantic relations are different from 
syntactic relations, yet they are identical in the de-
pendency tree. That means the methods used in 
syntactic dependency parsing can also be applied 
in SDP. 
    Two main approaches to syntactic dependency 
paring are Maximum Spanning Tree (MST) based 
dependency parsing and Transition based depen-
dency parsing (Eisner, 1996; Nivre et al., 2004; 
McDonald and Pereira, 2006). The main idea of 
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MSTParser is to take dependency parsing as a 
problem of searching a maximum spanning tree 
(MST) in a directed graph (Dependency Tree). We 
see MSTParser a better chance to improve the 
parsing speed and MSTParser provides the state-
of-the-art performance for both projective and non-
projective tree banks. For the reasons above, we 
choose MSTParser as our SemEval-2012 shared 
task participating system basic framework. 

2 System Architecture  

Our parser is based on the projective MSTParser 
using all the features described by (McDonald et 
al., 2006) as well as some third-order features de-
scribed in the following sections. Semantic depen-
dency paring is introduced in Section 3. We 
explain the reasons why we choose projective 
MSTParser in Section 4 which also contains the 
experiment result analysis in various conditions. 
Section 5 gives our conclusion and future work. 

3 Semantic Dependency parsers 

3.1 First-Order Model 

Dependency tree parsing as the search for the max-
imum spanning tree in a directed graph was pro-
posed by McDonald et al. (2005c). This 
formulation leads to efficient parsing algorithms 
for both projective and non-projective dependency 
trees with the Eisner algorithm (Eisner, 1996) and 
the Chu-Liu-Edmonds algorithm (Chu and Liu, 
1965; Edmonds, 1967) respectively. The formula-
tion works by defining in McDonald et al (2005a). 
The score of a dependency tree y for sentence x is 
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f(i, j) is a multidimensional feature vector repre-
sentation of the edge from node i to node j. We set 
the value of f(i, j) as 1 if there an edge from node i 
to node j. w is the corresponding weight vector 
between the two nodes that will be learned during 
training. Hence, finding a dependency tree with 
highest score is equivalent to finding a maximum 
spanning tree. Obviously, the scores are restricted 
to a single edge in the dependency tree, thus we 
call this first-order dependency parsing. This is a 
standard linear classifier. The features used in the 
first-order dependency parser are based on those 

listed in (Johansson, 2008). Table 2 shows the fea-
tures we choose in the first-order parsing. We use 
some shorthand notations in order to simplify the 
feature representations: h is the abbreviation for 
head, d for dependent, s for nearby nodes (may not 
be siblings), f for form, le for the lemmas, pos for 
part-of-speech tags, dir for direction, dis for dis-
tance, ‘+1’ and ‘-1’ for right and left position re-
spectively. Additional features are built by adding 
the direction and the distance plus the direction. 
The direction is left if the dependent is left to its 
head otherwise right. The distance is the number of 
words minus one between the head and the depen-
dent in a certain sentence, if ≤ 5, 5 if > 5, 10 if > 
10. ◎ means  that previous part is built once and 
the additional part follow ◎ together with the pre-
vious part is built again.  

Head and Dependent 
h-f, h-l, d-pos ◎dir(h, d) ◎dis(h, d) 
h-l, h-pos, d-f ◎dir(h, d) ◎dis(h, d) 
h-pos, h-f, d-l ◎dir(h, d) ◎dis(h, d) 
h-f, d-l, d-pos ◎dir(h, d)  ◎dis(h, d) 
h-f, d-f, d-l  ◎dir(h, d) ◎dis(h, d) 
h-f, h-l, d-f, d-l  ◎dir(h, d) ◎dis(h, d) 
h-f, h-l, d-f, d-pos ◎dir(h, d) ◎dis(h, d) 
h-f, h-pos, d-f, d-pos ◎dir(h, d) ◎dis(h, d) 
h-l, h-pos, d-l, d-pos ◎dir(h, d) ◎dis(h, d) 
Dependent and Nearby 
d-pos-1, d-pos, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos-1, s-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos, s-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos, d-pos+1, s-pos-1 ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos-1 ◎dir(d, s) ◎dis(d, s) 
d-pos, d-pos+1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos, s-pos-1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos+1, s-pos-1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos-1, s-pos ◎ dir(d, s) ◎
dis(d, s) 
d-pos, d-pos+1, s-pos-1, s-pos ◎dir(d, s) ◎
dis(d, s) 
d-pos-1, d-pos, s-pos, s-pos+1 ◎dir(d, s) ◎
dis(d, s) 

Table 2: Selected features in first order parsing 
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3.2 Second-Order Model 

A second order model proposed by McDonald 
(McDonald and Pereira, 2006) alleviates some of 
the first order factorization limitations. Because the 
first order parsing restricts scores to a single edge 
in a dependency tree, the procedure is sufficient. 
However, in the second order parsing scenario 
where more than one edge are considered by the 
parsing algorithm, combinations of two edges 
might be more accurate which will be described in 
the Section 4. The second-order parsing can be 
defined as below: 

( )
( , )

, ( , , )
i j y

s x y s i k j
∈

= ∑  

where k and j are adjacent,  same-side children of i 
in the tree y. The shortcoming of this definition is 
that it restricts i on the same side of its sibling. In 
our system, we extend this restriction by adding 
the feature that as long as i is another child of k or j. 
In that case, i may be the child or grandchild of k 
or j which is shown in Figure 1. 

k  i  j ， k  i j
 

Figure 1: Sibling and grand-child relations. 

Siblings 
c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
c1-f, c2-f◎dir(c1, c2) 
c1-f, c2-pos◎dir(c1, c2) 
c1-pos, c2-f◎dir(c1, c2) 
Parent and Two Children 
p-pos, c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
p-f, c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
p-f, c1-f, c2-pos◎dir(c1, c2) ◎dis(c1, c2) 
p-f, c1-f, c2-f ◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-f, c2-f◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-f, c2-pos◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-pos, c2-f◎dir(c1, c2) ◎dis(c1, c2) 

Table 3: Selected features in second-order parsing 

   Shorthand notations are almost the same with the 
Section 3.1 except for that we use c1 and c2 to 
represent the two children and p for parent. In 

second-order parsing， the features selected are 
shown in Table 3. We divide the dependency dis-
tance into six parts which are 1 if > 1, 2 if > 2, … , 
5 if  > 5, 10 if > 10. 

3.3 Third-Order Features 

The order of parsing is defined according to the 
number of dependencies it contains (Koo and Col-
lins, 2010). Collins classifies the third-order as two 
models, Model 1 is all grand-siblings, and Model 2 
is grand-siblings and tri-siblings. A grand-sibling 
is a 4-tuple of indices (g, h, m, s) where g is grand-
father. (h, m, s) is a sibling part and (g, h, m) is a 
grandchild part as well as (g, h, s). A tri-sibling 
part is also a 4-tuple of indices (h, m, s, t). Both (h, 
m, s) and (h, s, t) are siblings. Figure 2 clearly 
shows these relations. 

g h  s  m ，h t  s m  
Figure 2: Grand-siblings and tri-siblings dependency. 

   Collins and Koo implement an efficient third-
order dependency parsing algorithm, but still time 
consuming compared with the second-order 
(McDonald, 2006). For that reason, we only add 
third-order relation features into our system instead 
of implementing the third-order dependency pars-
ing model. These features shown in Table 4 are 
grand-sibling and tri-sibling described above. 
Shorthand notations are almost the same with the 
Section 3.1 and 3.2 except that we use c3 for the 
third sibling and g represent the grandfather. We 
attempt to add features of words form and parts-of-
speech as well as directions into our system, which 
is used both in first-order and second-order as fea-
tures, but result shows that these decrease the sys-
tem performance. 

Tri-Sibling 
c1-pos, c2-pos, c3-pos◎dir(c1, c2) 
Grandfather and Two Children 
g-pos, c1-pos, c2-pos◎dir(c1, c2) 
g-pos, p-pos, c1-pos, c2-pos◎dir(c1, c2) 

Table 4: Third-order features. 
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4 Experiment result analysis 

As we all know that projective dependency parsing 
using edge based factorization can be processed by 
the Einster algorithm (Einster, 1996). The corpus 
given by SemEval-2012 is consists of 10000 sen-
tences converting into dependency structures from 
Chinese Penn Treebank randomly. We find that 
none of non-projective sentence existing by testing 
the 8301 sentences in training data. For this reason, 
we set the MSTParser into projective parsing mode. 
    We perform a number of experiments where we 
compare the first-order, second-order and second-
order by adding third-order features proposed in 
the previous sections. We train the model on the 
full training set which contains 8301 sentences to-
tally. We use 10 training iterations and projective 
decoding in the experiments. Experimental results 
show that 10 training iterations are better than oth-
ers. After adjusting the features of third-order, our 
best result reaches the labeled attachment score of 
62.48% on the developing dataset which ignores 
punctuation. We submitted our currently best result 
to SemEval-2012 which is 61.58% on the test data-
set. The results in Table 5 show that by adding 
third-order features to second-order model, we im-
prove the dependency parsing accuracies by 1.21% 
comparing to first-order model and 0.15% compar-
ing to second-order model. 

Models LAS UAS 
First-Order 61.26 80.18 
Second-Order 62.33 81.40 
Second-Order+ 62.48 81.43 

Table 5: Experimental results. Second-Order+ means 
second-order model by adding third-order features. 
Results are tested under the developping dataset which 
contains the heads and semantic relations given by 
organizer. 

5 Conclusion and Future Work  
In this paper, we have presented the semantic de-
pendency parsing and shown it works on the first-
order model, second-order model and second-order 
model by adding third-order features. Our experi-
mental results show more significant improve-
ments than the conventional approaches of third-
order model. 

In the future, we firstly plan to implement the 
third-order model by adding higher-order features, 

such as forth-order features. We have found that 
both in the first-order and second-order model of 
MSTParser, words form and lemmas are recog-
nized as two different features. These features are 
essential in languages that have different grid, 
however, which are the same in Chinese in the giv-
en dataset. Things are the same in POS (part-of-
speech tags) and CPOS (fine-grid POS) which are 
viewed as different features. For the applications of 
syntactic and semantic parsing, the parsing time 
and memory footprint are very important. There-
fore, secondly, we decide to remove these repeated 
features in order to reduce to training time as well 
as the space if it does not lower the system perfor-
mance.  
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