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Abstract

We present a joint approach for recognizing
spatial roles in SemEval-2012 Task 3. Can-
didate spatial relations, in the form of triples,
are heuristically extracted from sentences with
high recall. The joint classification of spatial
roles is then cast as a binary classification over
the candidates. This joint approach allows for
a rich feature set based on the complete rela-
tion instead of individual relation arguments.
Our best official submission achieves an F1-
measure of 0.573 on relation recognition, best
in the task and outperforming the previous
best result on the same data set (0.500).

1 Introduction

A significant amount of spatial information in natu-
ral language is encoded in spatial relationships be-
tween objects. In this paper, we present our ap-
proach for detecting the special case of spatial re-
lations evaluated in SemEval-2012 Task 3, Spatial
Role Labeling (SpRL) (Kordjamshidi et al., 2012).
This task considers the most common type of spa-
tial relationships between objects, namely those de-
scribed with a spatial preposition (e.g.,in, on, over)
or a spatial phrase (e.g.,in front of, on the left), re-
ferred to as the spatial INDICATOR. A spatial INDI-
CATOR connects an object of interest (the TRAJEC-
TOR) with a grounding location (the LANDMARK ).
Examples of this type of spatial relationship include:

(1) [cars]T parked [in front of]I the [house]L .
(2) [bushes]T1 and small [trees]T2 [on]I the [hill]L .
(3) a huge [column]L with a [football]T [on top]I .
(4) [trees]T [on the right]I . [∅]L

SpRL is a type ofsemantic role labeling(SRL)
(Palmer et al., 2010), where the spatial INDICA-
TOR is the predicate (or trigger) and the TRAJEC-
TOR and LANDMARK are its two arguments. Previ-
ous approaches to SpRL (Kordjamshidi et al., 2011)
have largely followed the commonly employed SRL
pipeline: (1) find predicates (i.e., the INDICATOR),
(2) recognize the predicate’s syntactic constituents,
and (3) classify the constituent’s role (i.e., TRA-
JECTOR, LANDMARK , or neither). The problem
with this approach is that arguments are considered
largely in isolation. Consider the following:

(5) there is a picture on the wall above the bed.

This sentence contains three objects (picture, wall,
and bed) and two INDICATORs (on and above).
Since the most common spatial relation pattern is
simply trajector-indicator-landmark (as in Examples
(1) and (2)), the triplewall-above-bedis a likely can-
didate relation. However, the semantics of these ob-
jects invalidates the relation (i.e., walls are beside
beds, ceilings are above them). Instead the correct
relation is picture-above-bed because the preposi-
tion abovesyntactically attaches topicture instead
of wall. Prepositional attachment, however, is a dif-
ficult syntactic problem solved largely through the
use of semantics, so an understanding of the con-
sistency of spatial relationships plays an important
role in their recognition. Consistency checking is
not possible under a pipeline approach that classifies
whetherwall as the TRAJECTORwithout any knowl-
edge of its LANDMARK .

We therefore propose an alternative to this
pipeline approach that jointly decides whether a
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given TRAJECTOR-INDICATOR-LANDMARK triple
expresses a spatial relation. We utilize a high re-
call heuristic for recognizing objects capable of par-
ticipating in a spatial relation as well as a lexicon
of INDICATORs. All possible combinations of these
arguments (including undefined LANDMARK s) are
considered by a binary classifier in order to make a
joint decision. This allows us to incorporate features
based on all three relation elements such as the rela-
tion’s semantic consistency.

2 Joint Classification

2.1 Relation Candidate Selection

Previous joint approaches to SpRL have performed
poorly relative to the pipeline approach (Kord-
jamshidi et al., 2011). However, these approaches
have issues with data imbalance: if every token
could be a TRAJECTOR, LANDMARK , or INDICA-
TOR, then even short sentences may contain thou-
sands of negative relation candidates. Such unbal-
anced data sets are difficult for classifiers to reason
over (Japkowicz and Stephen, 2002). To reduce this
imbalance, we propose high recall heuristics to rec-
ognize candidate elements (INDICATORs, TRAJEC-
TORs, and LANDMARK s). Since INDICATORs are
taken from a closed set of prepositions and a small
set of spatial phrases, we simply use a lexicon con-
structed from the indicators in the training data (e.g.,
on, in front of). Thus, our approach is not capable of
detecting INDICATORs that were unseen in the train-
ing data. The effectiveness of this indicator lexicon
is evaluated in Section 3.2. For TRAJECTORs and
LANDMARK s, we observe that both may be consid-
ered spatial objects, which unlike INDICATORs are
not a closed class of words. Instead, we consider
noun phrase (NP) heads to be spatial objects. To
overcome part-of-speech errors and increase recall,
we incorporate three sources: (1) the NP heads from
a syntactic parse tree (Klein and Manning, 2003),
(2) the NP heads from a chunk parse1, and (3) words
that are marked as nouns in at least 66% of instances
in Treebank (Marcus et al., 1993). This approach
identifies all nouns, not just spatial nouns. But for
the SemEval-2012 Task 3 data, which is composed
of image descriptions, most nouns are spatial ob-
jects and no further refinements are necessary. Fur-

1http://www.surdeanu.name/mihai/bios/

ther heuristics (such as using WordNet (Fellbaum,
1998)) could be used to refine the set of spatial ob-
jects if other domains (such as newswire) were to
be used. Our main emphasis in this step, however,
is recall: by utilizing these heuristics we greatly re-
duce the number of negative instances while remov-
ing very few positive spatial relations. The effective-
ness of our heuristics are evaluated in Section 3.2.

Once all possible spatial INDICATORs and spa-
tial objects are marked, all possible combinations of
these are formed as candidate relations. Addition-
ally, for each spatial object and spatial INDICATOR

pair, an additional candidate relation is formed with
an undefined LANDMARK (such as in Example (4)).

2.2 Classification Framework

Given candidate spatial relations, we utilize a binary
support vector machine (SVM) classifier to indicate
which relation candidates are spatial relations. We
use the LibLINEAR (Fan et al., 2008) SVM imple-
mentation, adjusting the negative outcome weight
from 1.0 to 0.8 (tuned via cross-validation on the
training data). This adjustment sacrifices preci-
sion for recall, but raises the overall F1 score. For
type classification (REGION, DIRECTION, and DIS-
TANCE), we use LibLINEAR as a multi-class SVM
with no weight adjustment in order to maximize ac-
curacy. The features used in both classifiers are dis-
cussed in Sections 2.3 and 2.4.

2.3 Relation Detection Features

The difference between our two official submissions
(supervised1 and supervised2) is that different sets
of features were used to detect spatial relations. The
features for general type classification, discussed in
Section 2.4, were consistent across both submis-
sions. Based on previous approaches to spatial role
labeling, our own initial intuitions, and error analy-
sis, we created over 100 different features, choosing
the best feature set with a greedy forward/backward
automated feature selection technique (Pudil et al.,
1994). This greedy method iteratively chooses the
best un-used feature to add to the feature set. At the
end of each iteration, there is a pruning step to re-
move any features made redundant by the addition
of the latest feature.

Before describing the individual features used in
our submission, we first enumerate some basic fea-
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tures that form the building blocks of many of the
features in our submissions (with sample feature val-
ues from Example (1)):

(BF.1) The TRAJECTOR’s raw string (e.g.,cars).
(BF.2) The LANDMARK ’s raw string (house).
(BF.3) The INDICATOR’s raw string (in front of).
(BF.4) The TRAJECTOR’s lemma (car).
(BF.5) The LANDMARK ’s lemma (house).
(BF.6) The dependency path from the TRAJECTORto the

INDICATOR (↑NSUBJ↓PREP). Uses the Stanford
Dependency Parser (de Marneffe et al., 2006).

(BF.7) The dependency path from the INDICATOR to the
LANDMARK (↓POBJ).

For BF.2, BF.5, and BF.7, if the relation’s
LANDMARK is undefined, the feature value is sim-
ply undefined. The features for our first submission
(supervised1), in the order they were chosen by the
feature selector, are as follows:

(JF1.1) The concatenation of BF.6, BF.3, and BF.7 (i.e.,
the dependency path from the TRAJECTORto the
LANDMARK including the INDICATOR’s raw string),
for all spatial objects related to the TRAJECTORunder
consideration via a conjunction dependency relation
(including the TRAJECTORitself). For instance,
TRAJECTOR1 in Example (2) would have two feature
values:↓CONJ↓PREP↓POBJand↓PREP↓POBJ.
Since objects connected via a conjunction should
participate in the same relation, this allows the
classifier to overcome the sparsity related to the low
number of training instances containing a conjunction.

(JF1.2) The concatenation of BF.1, BF.3, and BF.2
(cars::in front of::house).

(JF1.3) Whether or not the LANDMARK is part of a term
from the INDICATOR lexicon. Words likefront and
sideare common LANDMARK s but may also be part
of an INDICATOR as well.

(JF1.4) All the words between the left-most argument in
the relation and the right-most argument (parked, the).
Does not include any word in the arguments.

(JF1.5) The value of BF.7.
(JF1.6) The first word in the INDICATOR.
(JF1.7) The LANDMARK ’s WordNet hypernyms.
(JF1.8) The TRAJECTOR’s WordNet hypernyms.
(JF1.9) Whether or not the relative order of the relation

arguments in the text is INDICATOR, LANDMARK ,
TRAJECTOR. This order is rare and thus this feature
acts as a negative indicator.

(JF1.10) Whether or not the TRAJECTORis a
prepositional object (POBJfrom the dependency tree)
of a preposition that isnot the relation’s INDICATOR

but is in the INDICATOR lexicon. Again, this is a
negative indicator.

(JF1.11) The concatenation of BF.4, BF.3, and BF.5

(car::in front of::house).
(JF1.12) The dependency path from the TRAJECTOR

to the LANDMARK . Differs from JF1.1 because it
does not consider conjunctions or differentiate
between INDICATORs.

(JF1.13) The concatenation of BF.3 and BF.7.
(JF1.14) Whether or not the relation under consideration

has an undefined LANDMARK andthe sentence
contains no spatial objects other than the TRAJECTOR

under consideration. This helps to indicate relations
with undefined LANDMARK s in short sentences.

The first feature selected by the automated feature
selector (JF1.1) utilizes conjunctions (e.g.,and, or,
either). However, conjunctions are difficult to detect
with high precision, so we decided to perform an-
other round of feature selection without this particu-
lar feature. The chosen features were then submitted
separately (supervised2):

(JF2.1) The same as JF1.2.
(JF2.2) The same as JF1.3.
(JF2.3) The same as JF1.4.
(JF2.4) The same as JF1.13.
(JF2.5) The value of BF.1.
(JF2.6) The same as JF1.5.
(JF2.7) Similar to JF1.1, but only using the concatenation

of BF.6 and BF.3 (i.e., leaving out the dependency
path from the INDICATOR to the LANDMARK ).

(JF2.8) The same as JF1.7.
(JF2.9) The same as JF1.8.
(JF2.10) The lexical pattern from the left-most

argument to the right-most argument
(TRAJECTORparked INDICATOR the LANDMARK ).

(JF2.11) The raw string of the preposition in aPREP

dependency relation with the TRAJECTORif that
preposition is not the relation’s INDICATOR.

(JF2.12) The PropBank role types for each argument in
the relation (TRAJECTOR=A1;INDICATOR=
AM LOC;LANDMARK =AM LOC). Uses SENNA
(Collobert and Weston, 2009) for the PropBank parse.

(JF2.13) The same as JF1.14.
(JF2.14) The concatenation of BF.4, BF.3, and BF.5.
(JF2.15) The same as JF1.10, but with no requirement to

be in the INDICATOR lexicon.

2.4 Type Classification Features

After joint detection of a relation’s arguments, a
separate classifier determines the relation’s general
type. The features used to classify a relation’s gen-
eral type (REGION, DIRECTION, and DISTANCE)
were also selected using an automated feature se-
lector from the same set of features. Both submis-
sions (supervised1 and supervised2) utilized these
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supervised1 supervised2
Label Precision Recall F1 Precision Recall F1

TRAJECTOR 0.731 0.621 0.672 0.782 0.646 0.707
LANDMARK 0.871 0.645 0.741 0.894 0.680 0.772
INDICATOR 0.928 0.712 0.806 0.940 0.732 0.823

Relation 0.567 0.500 0.531 0.610 0.540 0.573
Relation + Type 0.561 0.494 0.526 0.603 0.534 0.566

Table 1: Official results for submissions.

features. The following features were used for clas-
sifying a spatial relation’s general type:

(TF.1) The last word of the INDICATOR.
(TF.2) The value of BF.3.
(TF.3) The value of BF.5.
(TF.4) The same as JF1.3.
(TF.5) The same as JF2.10.

3 Evaluation

3.1 Official Submission

The official results for both of our submissions is
shown in Table 1. The argument-specific results
for TRAJECTORs, LANDMARK s, and INDICATORs
are difficult to interpret in the joint approach. In a
pipeline method, these usually indicate the perfor-
mance of individual classifiers, but in our approach
these results are simply a derivative of our joint clas-
sification output. The first submission (supervised1)
achieved a triple F1 of 0.531 for relation detection
and 0.526 when the general type is included. Our
second submission (supervised2) performed better,
with an F1 of 0.573 for relation detection and 0.566
when the general type is included. This suggests that
the feature JF1.1, even though it is the best individ-
ual feature, introduces a significant amount of noise.

The only result to compare our official submis-
sions to is that of Kordjamshidi et al. (2011), who
utilize a pipeline approach. Their method has a rela-
tion detection F1 of 0.500 (they do not report a score
with general type). We further compare our method
with theirs in Section 4.

3.2 Relation Candidate Evaluation

The heuristics described in Section 2.1 that enable
joint classification were tuned for the training data,
but their recall on the test data places a strict upper
bound on the recall to our overall approach. It is
therefore important to understand the performance
loss that occurs at this step.

Table 2 shows the performance of our heuristics
on the training and test data. The spatial INDICA-
TOR lexicon has perfect recall on the training data
because it was built from this data set. However, it
performs at only 0.951 recall on the test data, as al-
most 5% of the INDICATORs in the test data were not
seen in the training data. Most of these are phrasal
verbs (e.g.,sailing over) or include the modifiervery
(e.g.,to the very left). Our spatial object recognizer
performed better, only dropping from 0.998 (2 er-
rors) to 0.989 (16 errors). Some of these errors re-
sulted from mis-spellings (e.g.,housedinstead of
houses), non-head spatial objects (mountain from
the NPmountain landscape), NPs containing con-
junctions (treesin two palm trees, lamps and flags,
which gets marked as one simple NP), as well as
parser errors. The significant drop in precision for
both spatial indicators and objects is an additional
concern. This does not indicate the extracted items
were not valid as potential indicators or objects, but
rather that no gold relation contained them. As ex-
plained in Section 4, this is likely caused by the dis-
parity in sentence length: longer sentences result in
more matches, but not necessarily more relations.
As evidence of this, despite the training and test data
containing almost the same number of sentences,
there are 36% more spatial indicators and 20% more
spatial objects in the test set.

3.3 Further Experiments

After the evaluation deadline, the task organizers
provided the gold test data, allowing us to perform
additional experiments. In this process we found
several annotation errors which we needed to fix in
order to process our gold results. These errors were
largely annotations that were given an incorrect to-
ken index, resulting in the annotation text not match-
ing the referenced text. These fixes increased our
performance, shown on Table 3, improving relation
detection for the supervised2 feature set from 0.573
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# Precision Recall F1

Spatial Train 1,488 0.448 1.000 0.619
Indicators Test 2,335 0.328 0.951 0.487

Spatial Train 2,974 0.448 0.998 0.618
Objects Test 3,704 0.387 0.989 0.556

Table 2: Results of relation candidate selection heuristics.

Data Precision Recall F1

Train/Test 0.644 0.556 0.597
Train/Test -NSI 0.644 0.582 0.611

Train CV 0.824 0.743 0.781
Test CV 0.745 0.639 0.688

Train+Test CV 0.774 0.680 0.724

Table 3: Additional experiments on corrected test data
using the supervised2 data set. -NSI indicates that the
gold spatial INDICATORs that are not in the lexicon are
removed. CV indicates 10-fold cross validation.

to 0.597. We use this updated data set for the follow-
ing experiments. While the results aren’t compara-
ble to other methods, the goal of these experiments is
to analyze our system under various configurations
by their relative performance.

Table 3 also shows a 10-fold cross validation per-
formance on 3 data sets: (1) the training data, (2)
the test data, and (3) both the training and test data.
While our feature set is tuned to the training data,
the test data is clearly more difficult. Section 4 dis-
cusses the differences between the training and test
data that may lead to such a performance reduction.

Since our lexicon of spatial INDICATORs was
built from the training data, our method will not rec-
ognize any relations that use unseen INDICATORs.
To differentiate between how our method performs
on the full test data and just those INDICATORs that
are in the lexicon, we removed the 39 gold relations
with unseen INDICATORs and re-tested the system.
As can be seen in Table 3 (under -NSI), this im-
proves recall by 2.6 points.

3.4 Feature Experiments

To estimate the contribution of our features, we per-
formed an additive experiment to see how each fea-
ture contributes to the overall test score. Table 4
shows the feature contributions based on the order
they were added by the feature selector. For many of
the features the score goes down when added. How-
ever, without these features, the final score would
drop to 0.578, indicating they still provide valuable
information in the context of the other features. Ta-
ble 5 shows performance on the updated test set

Feature Precision Recall F1

JF2.1 0.333 0.156 0.212
+JF2.2 0.347 0.126 0.185
+JF2.3 0.708 0.115 0.197
+JF2.4 0.555 0.294 0.384
+JF2.5 0.636 0.402 0.493
+JF2.6 0.590 0.414 0.486
+JF2.7 0.621 0.553 0.585
+JF2.8 0.614 0.568 0.590
+JF2.9 0.573 0.568 0.571
+JF2.10 0.612 0.547 0.578
+JF2.11 0.625 0.571 0.597
+JF2.12 0.660 0.536 0.592
+JF2.13 0.633 0.573 0.601
+JF2.14 0.642 0.563 0.600
+JF2.15 0.644 0.556 0.597

Table 4: Additive feature experiment results using the su-
pervised2 features. Bold indicates increases in F1 over
the previous feature set.

Feature Precision Recall F1

∅ 0.644 0.556 0.597
JF2.1 0.627 0.571 0.598
JF2.2 0.629 0.542 0.582
JF2.3 0.540 0.494 0.516
JF2.4 0.591 0.412 0.485
JF2.5 0.631 0.558 0.592
JF2.6 0.657 0.515 0.577
JF2.7 0.636 0.547 0.589
JF2.8 0.641 0.562 0.599
JF2.9 0.678 0.539 0.601
JF2.10 0.607 0.569 0.587
JF2.11 0.640 0.565 0.600
JF2.12 0.646 0.566 0.603
JF2.13 0.646 0.553 0.596
JF2.14 0.618 0.572 0.594
JF2.15 0.642 0.563 0.600

Table 5: Results when individual features from the super-
vised2 submission are removed. Bold indicates improve-
ment when the feature is removed.

when individual features are removed. Here, six fea-
tures that were useful on the training data did not
prove useful on the test data.

4 Discussion

The only available work against which our method
may be compared is that of Kordjamshidi et al.
(2011). They propose both a pipeline and joint ap-
proach to SpRL. In their case, their pipeline ap-
proach performs better than their joint approach.
Joint approaches increase data sparsity, so their
greatest value is in the ability to use a richer set of
features that describe the relationships between the
arguments. Kordjamshidi et al. (2011) furthermore
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did not employ heuristics to select relation candi-
dates such as those in Section 2.1. Given this dif-
ference it is difficult to assert that a joint approach
is better with complete certainty, but we believe the
ability to analyze the consistency of the entire rela-
tion provides a significant advantage. Many of our
features (JF2.1, JF2.3, JF2.10, JF2.12, JF2.13, and
JF2.14) were of this joint type.

The drop in performance from the training data to
the test data is significant. The possibility that this is
entirely due to over-training is dispelled by the cross
validation results in Table 3. While different features
might work better on the test set, they are unlikely
to overcome the cross validation difference of 9.3
points (0.781 vs. 0.688). Much of this comes from
the recall limit due to the use of the spatial indicator
lexicon. The other significant cause of performance
degradation seems to be caused by sentence length
and complexity. The test sentences are longer (18 to-
kens vs. 15 tokens in the training data), and have far
more conjunctions (389and tokens vs. 256), indi-
cating greater syntactic complexity. But the largest
difference is the number of relation candidates gen-
erated by the heuristics: 60,377 relation candidates
from the training data vs. 167,925 relation candi-
dates from the test data (the data sets are roughly the
same size: 600 training and 613 test sentences). The
drop of precision in spatial objects in Table 2 reflects
this as well. Since the number of candidate relations
is quadratic in the number of spatial objects, it is
likely that just a few, long sentences result in this
dramatic increase in the number of candidates.

Since more general domains (such as newswire)
are likely to have this problem as well, one important
area of future work is the reduction of the number of
relation candidates (increasing precision) while still
maintaining near-perfect recall.

5 Conclusion

We have presented a joint approach for recogniz-
ing spatial roles in SemEval-2012 Task 3. Our ap-
proach improves over previous attempts at joint clas-
sification by extracting a more precise (but still ex-
tremely high recall) set of relation candidates, allow-
ing binary classification on a more balanced data set.
This joint approach allowed for a rich set of features
based on all the relation’s arguments. Our best of-

ficial submission achieved an F1-measure of 0.573
on relation recognition, best in the task and outper-
forming all previous work.
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