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Abstract SpRL is a type ofsemantic role labeling(SRL)

We present a joint approach for recognizing ~ (Palmer et al., 2010), where the spatialDICA-
spatial roles in SemEval-2012 Task 3. Can- TOR is the predicate (or trigger) and theRAJEC
didate spatial relations, in the form of triples, TOR and LANDMARK are its two arguments. Previ-
are heuristically extracted from sentences with ous approaches to SpRL (Kordjamshidi et al., 2011)
high recall. The joint classification of spatial have largely followed the commonly employed SRL

roles is then cast as a binary classification over . . . .
the candidates. This joint a};l)proach allows for pipeline: (1) find predicates (i.e., theIBICATOR),

a rich feature set based on the complete rela- (2) recognize the predicate’s syntactic constituents,

tion instead of individual relation arguments. and (3) classify the constituent's role (i.e.RA-

Our best official submission achieves an F JECTOR LANDMARK, or neither). The problem
measure of 0.573 on relation recognition, best  with this approach is that arguments are considered
in the task and outperforming the previous |argely in isolation. Consider the following:

best result on the same data set (0.500). _ _
(5) there is a picture on the wall above the bed.

1 Introduction This sentence contains three objegigtire, wall,
and bed and two NDICATORS (on and abové.

A significant a_lmount of spatlal mformangn n .natu'Since the most common spatial relation pattern is
ral language is encoded in spatial relationships be-

. ) simply trajector-indicator-landmark (as in Examples
tween objects. In this paper, we present our a ply tral ( P

. ! . Z'l) and (2)), the triplevall-abovebedis a likely can-
proach for detecting the special case of spatial r [idate relation. However, the semantics of these ob-
lations evaluated in SemEval-2012 Task 3, Spatia(d : '

. . L ects invalidates the relation (i.e., walls are beside

Role Labeling (SpRL) (Kordjamshidi et al., 2012).J - (
. . beds, ceilings are above them). Instead the correct
This task considers the most common type of spa-, ... . ° .
. . . . relation is picture-abovebed because the preposi-
tial relationships between objects, namely those de-

. . . " ; jon abovesyntactically attaches tpicture instead
scribed with a spatial preposition (e.m, on, ove) " . .
: . of wall. Prepositional attachment, however, is a dif-
or a spatial phrase (e.dn front of, on the lef}, re-

ferred to as the spatiaNbICATOR. A spatial NDI- ficult syntactic problem solved largely through the

CATOR connects an obiect of interest (the@AIEG use of semantics, so an understanding of the con-
CONNECIS an object ot INteres ( sistency of spatial relationships plays an important
TOR) with a grounding location (the ANDMARK).

Examples of this tvoe of spatial relationship incl Ole_roIe in their recognition. Consistency checking is
xamp IS typ patl ! P INCIUAEH ¢ possible under a pipeline approach that classifies

(1) [cars} parked [in front of] the [housg]. whethermwall as the RAJECTORwWithout any knowl-

(2) [bushest; and small [trees} [on], the [hill]..  edge of its LANDMARK .

(3) a huge [column] with a [football}y [on top]. We therefore propose an alternative to this

(4) [trees} [on the right]. [0]. pipeline approach that jointly decides whether a
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First Joint Conference on Lexical and Computational Semantics (*SEM), pages 419-424,
Montréal, Canada, June 7-8, 2012. (©)2012 Association for Computational Linguistics



given TRAJECTORINDICATOR-LANDMARK triple ther heuristics (such as using WordNet (Fellbaum,
expresses a spatial relation. We utilize a high ret998)) could be used to refine the set of spatial ob-
call heuristic for recognizing objects capable of parjects if other domains (such as newswire) were to
ticipating in a spatial relation as well as a lexicorbe used. Our main emphasis in this step, however,
of INDICATORS. All possible combinations of theseis recall: by utilizing these heuristics we greatly re-
arguments (including undefinedahDMARK S) are duce the number of negative instances while remov-
considered by a binary classifier in order to make eng very few positive spatial relations. The effective-
joint decision. This allows us to incorporate featuresess of our heuristics are evaluated in Section 3.2.
based on all three relation elements such as the rela-Once all possible spatialNbiICATORS and spa-

tion’s semantic consistency. tial objects are marked, all possible combinations of
] o these are formed as candidate relations. Addition-

2 Joint Classification ally, for each spatial object and spatiaidiCATOR

2.1 Relation Candidate Selection pair, an additional candidate relation is formed with

. - n undefined BNDMARK (such as in Example (4)).
Previous joint approaches to SpRL have performe% ( ple (4))

poorly relative to the pipeline approach (Kord-2.2 (Classification Framework
jamshidi et al., 2011). However, these approache

have issues with data imbalance: if every toke§'ven candidate spatial relations, we utilize a binary

could be a RAJECTOR LANDMARK , Of INDICA- support vector machine (SVM) classifier to indicate

TOR. then even short sentences mav contain thoMVh'Ch relation candidates are spatial relations. We
' . . . y se the LIbLINEAR (Fan et al., 2008) SVM imple-

sands of negative relation candidates. Such unbal- : L . .
o o mentation, adjusting the negative outcome weight

anced data sets are difficult for classifiers to reasc%n . S
. rom 1.0 to 0.8 (tuned via cross-validation on the
over (Japkowicz and Stephen, 2002). To reduce thjs”. . ) ) i )
) . - training data). This adjustment sacrifices preci-
imbalance, we propose high recall heuristics to rec-.

) . sion for recall, but raises the overal| Bcore. For
ognize candidate elementsN@ICATORS, TRAJEG .
| type classification (RGION, DIRECTION, and Ds-
TORS, and LANDMARKS). Since NDICATORS are

taken from a closed set of prepositions and a smaWNCE)’ we use LIbLINEAR as a multi-class SVM

) . ) with no weight adjustment in order to maximize ac-
set of spatial phrases, we simply use a lexicon con-

structed from the indicators in the training data (e.g'curacy. The fegtures used in both classifiers are dis-
) : ussed in Sections 2.3 and 2.4.

on, in front of). Thus, our approach is not capable o

detecting NDICATORS that were unseen inthe train-5 3 Relation Detection Features

ing data. The effectiveness of this indicator lexicon . . o
is evaluated in Section 3.2. FORRJECTOR and The difference between our two official submissions

L ANDMARK S, we observe that both may be Cons‘id(supervisedl and supervised?) is that different sets
ered spatial c’)bjects which unlikeibICATORS are of features were used to detect spatial relations. The

not a closed class of words. Instead, we considé?atu_res for general type_ classification, discussed_in
noun phrase (NP) heads to be spatial objects. 1%ectlon 2.4, were co_n5|stent across both sgbmls-
overcome part-of-speech errors and increase recallo"S: Based on previous a_p_proaches to spatial role
we incorporate three sources: (1) the NP heads frolﬂbe“ng’ our own initial '”W'“O”S' and error analy—

a syntactic parse tree (Klein and Manning, 2003)35, we created over 1_00 different features, choosing
(2) the NP heads from a chunk paksand (3) words the best feature set with a greedy forward/backward

that are marked as nouns in at least 66% of instanc@gtomated_ feature selection _techr?ique (Pudil et al.,
in Treebank (Marcus et al., 1993). This approacI]r994)' This greedy method iteratively chooses the
identifies all nouns, not just spatial nouns. But foPeSt un-used feature to add to the feature set. At the

&nd of each iteration, there is a pruning step to re-

the SemEval-2012 Task 3 data, which is compos n
of image descriptions, most nouns are spatial ofnove any features made redundant by the addition

iects and no further refinements are necessary. FLthe latest feature. o .
J y Before describing the individual features used in

http:/iwww.surdeanu.name/mihai/bios/ our submission, we first enumerate some basic fea-
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tures that form the building blocks of many of the (car::in_front.of::housg.

features in our submissions (with sample feature va{dF1.12) The dependency path from thRATECTOR

ues from Example (1)): to the LANDMARK . Differs from JF1.1 because it
does not consider conjunctions or differentiate
between NDICATORS.

(JF1.13) The concatenation of BF.3 and BF.7.

(JF1.14) Whether or not the relation under consideration
has an undefinedANDMARK andthe sentence
contains no spatial objects other than ttrATECTOR
under consideration. This helps to indicate relations

(BF.1) The TRAJECTORSs raw string (e.g.cars).

(BF.2) The LANDMARK s raw string hous8.

(BF.3) The NDICATOR's raw string (n_front_of).

(BF.4) The TRAJECTORSs lemma €ar).

(BF.5) The LANDMARK's lemma fious@.

(BF.6) The dependency path from the AJECTORtO the
INDICATOR (TNSUBJ| PREP. Uses the Stanford

Dependency Parser (de Marneffe et al., 2006). with undefined IANDMARK s in short sentences.
(BF.7) The dependency path from thedicaTor tothe ~ The first feature selected by the automated feature
LANDMARK (|/POB). selector (JF1.1) utilizes conjunctions (e.gnd or,

For BE2. BF5 and BE7. if the relation's €ithen. However, conjunctions are difficult to detect
LANDMARK is undefined, the feature value is sim-W/th Nigh precision, so we decided to perform an-
ply undefined The features for our first submission®ther round of feature selection without this particu-
(supervisedl), in the order they were chosen by tHar feature. The chosen features were then submitted
feature selector, are as follows: separately (supervised2):

(JF1.1) The concatenation of BF.6, BF.3, and BF.7 (i.e.,(‘JFZ'l) The same as JF1.2.
the dependency path from th&AJECTORtO the (JF2.2) The same as JF1.3.
LANDMARK including the NDICATOR’s raw string), (JF2.3) The same as JF1.4.
for all spatial objects related to thexRiecTorunder (JF2-4) The same as JF1.13.
consideration via a conjunction dependency relation (JF2-9) The value of BF.1.

(including the TRAJECTORitself). For instance, (JF2.6) The same as JF1.5. , _
TRAJECTOR in Example (2) would have two feature (JF2.7) Similar to JF1.1, but only using the concatenation

values: | CONJ|PREF,POBJaNd | PREP, POBI of BF.6 and BF.3 (i.e., leaving out the dependency
Since objects connected via a conjunction should path from the NDICATOR to the LANDMARK).
participate in the same relation, this allows the (JF2.8) The same as JF1.7.

classifier to overcome the sparsity related to the low (JF2-9) The same as JF1.8.

number of training instances containing a conjunctiord2-10) The lexical pattern from the left-most

(JF1.2) The concatenation of BF.1, BF.3, and BF.2 argument to the right-most argument

(cars::in_front of::housa. (TRAJECTORparkedINDICATOR_the LANDMARK).
(JF1.3) Whether or not theANDMARK is part of a term  (JF2.11) The raw string of the preposition iPREP

from the INDICATOR lexicon. Words likefront and dependency relation with t_heFfﬁJECTOR'f that

sideare common BNDMARK S but may also be part _ Preposition is not the relation'sibICATOR. _

of an INDICATOR as well. (JF2.12) The PropBank role types for each argument in
(JF1.4) All the words between the left-most argumentin € relat.lon (-RAJECT_OF‘:AL INDICATOR=

the relation and the right-most argumepéatked the). AM_LOC;LANDMARK =AM_LOC). Uses SENNA

Does not include any word in the arguments. (Collobert and Weston, 2009) for the PropBank parse.
(JF1.5) The value of BF.7. (JF2.13) The same as JF1.14.
(JF1.6) The first word in thenDICATOR. (JF2.14) The concatenation of BF.4, BF.3, and BF.5.
(JF1.7) The laNDMARK 's WordNet hypernyms. (JF2.15) The same as JF1.10, but with no requirement to
(JF1.8) The RAJECTORs WordNet hypernyms. be in the NDICATOR lexicon.
(JF1.9) Whether or not the relative order of the relation o

arguments in the text isNDICATOR, LANDMARK, 2.4 Type Classification Features

acts as a negative indicator. separate classifier determines the relation’s general

(JFL.10) Whether or not theRRJECTORIS type. The features used to classify a relation’s gen-
prepositional objectf{osJfrom the dependency tree) YPE. 9

of a preposition that isotthe relation’s koicator  €ral type (FEGION, DIRECTION, and DSTANCE)

but is in the NDICATOR lexicon. Again, this is a were also selected using an automated feature se-

negative indicator. lector from the same set of features. Both submis-
(JF1.11) The concatenation of BF.4, BF.3, and BE5  sions (supervisedl and supervised2) utilized these
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supervisedl supervised2
Label Precision| Recall Fi Precision| Recall Fi
TRAJECTOR 0.731 0.621 | 0.672 0.782 0.646 | 0.707
LANDMARK 0.871 0.645 | 0.741 0.894 0.680 | 0.772
INDICATOR 0.928 0.712 | 0.806 0.940 0.732 | 0.823
Relation 0.567 0.500 | 0.531 0.610 0.540 | 0.573
Relation + Type 0.561 0.494 | 0.526 0.603 0.534 | 0.566

Table 1: Official results for submissions.

features. The following features were used for clas- Table 2 shows the performance of our heuristics

sifying a spatial relation’s general type: on the training and test data. The spatiabiCA-
(TF.1) The last word of theNDICATOR. TOR lexicon has perfect recall on the training data
(TF.2) The value of BF.3. because it was built from this data set. However, it
(TF.3) The value of BF.5. performs at only 0.951 recall on the test data, as al-
(TF.4) The same as JF1.3. most 5% of the NDICATORS in the test data were not
(TF.5) The same as JF2.10. seen in the training data. Most of these are phrasal
verbs (e.g.sailing ove) or include the modifievery
3 Evaluation (e.g.,to the very left Our spatial object recognizer

. o performed better, only dropping from 0.998 (2 er-
3.1 Official Submission rors) to 0.989 (16 errors). Some of these errors re-
The official results for both of our submissions issulted from mis-spellings (e.ghousedinstead of
shown in Table 1. The argument-specific resultousey non-head spatial objectsnpuntainfrom
for TRAJECTORS, LANDMARKS, and NDIcATORs the NPmountain landscape NPs containing con-
are difficult to interpret in the joint approach. In ajunctions {reesin two palm trees, lamps and flags
pipeline method, these usually indicate the perfowhich gets marked as one simple NP), as well as
mance of individual classifiers, but in our approactparser errors. The significant drop in precision for
these results are simply a derivative of our joint clageoth spatial indicators and objects is an additional
sification output. The first submission (supervised1goncern. This does not indicate the extracted items
achieved a triple Fof 0.531 for relation detection were not valid as potential indicators or objects, but
and 0.526 when the general type is included. Oumther that no gold relation contained them. As ex-
second submission (supervised2) performed bettglained in Section 4, this is likely caused by the dis-
with an | of 0.573 for relation detection and 0.566parity in sentence length: longer sentences result in
when the general type is included. This suggests thatore matches, but not necessarily more relations.
the feature JF1.1, even though it is the best individAs evidence of this, despite the training and test data
ual feature, introduces a significant amount of nois€ontaining almost the same number of sentences,
The only result to compare our official submis-there are 36% more spatial indicators and 20% more
sions to is that of Kordjamshidi et al. (2011), whospatial objects in the test set.
utilize a pipeline approach. Their method has arela-
tion detection It of 0.500 (they do not report a score3.3  Further Experiments

with general type). We further compare our methoQier the evaluation deadline, the task organizers
with theirs in Section 4. provided the gold test data, allowing us to perform
additional experiments. In this process we found
several annotation errors which we needed to fix in
The heuristics described in Section 2.1 that enabl@rder to process our gold results. These errors were
joint classification were tuned for the training datalargely annotations that were given an incorrect to-
but their recall on the test data places a strict uppdeen index, resulting in the annotation text not match-
bound on the recall to our overall approach. It isng the referenced text. These fixes increased our
therefore important to understand the performangeerformance, shown on Table 3, improving relation
loss that occurs at this step. detection for the supervised?2 feature set from 0.573

3.2 Relation Candidate Evaluation
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# Precision| Recall F Feature | Precision| Recall F1
Spatial Train | 1,488 0.448 1.000 | 0.619 JF2.1 0.333 0.156 | 0.212
Indicators | Test | 2,335 0.328 0.951 | 0.487 +JF2.2 0.347 0.126 | 0.185
Spatial Train | 2,974 0.448 0.998 | 0.618 +JF2.3 0.708 0.115 | 0.197
Objects Test | 3,704 0.387 0.989 | 0.556 +JF2.4 0.555 0.294 | 0.384

+JF2.5 0.636 0.402 | 0.493
+JF2.6 0.590 0.414 | 0.486

Table 2: Results of relation candidate selection heusistic

Data Precision| Recall| Fy +JF2.7 | 0.621 | 0.553 | 0.585

Train/Test 0.644 0.556 | 0.597 +JF2.8 0.614 0.568 | 0.590
Train/Test-NSI| 0.644 0.582 | 0.611 +JF2.9 0.573 0.568 | 0.571

Train CV 0.824 0.743 | 0.781 +JF2.10| 0.612 0.547 | 0.578

TestCV 0.745 0.639 | 0.688 +JF2.11| 0.625 0.571 | 0.597
Train+Test CV 0.774 0.680 | 0.724 +JF2.12| 0.660 0.536 | 0.592

Table 3: Additional experiments on corrected test data +JF2.13| 0633 | 0.573 | 0.601

using the supervised? data set. -NSI indicates that the +JF2.14) 0642 | 0.563 | 0.600

gold spatial NDICATORSs that are not in the lexicon are +‘]F.2_'15 0.644 01'556 0.597 _
removed. CV indicates 10-fold cross validation. Table 4: Additive feature experiment results using the su-

pervised2 features. Bold indicates increases;iro¥er
to 0.597. We use this updated data set for the followhe previous feature set.

ing experiments. While the results aren’t compara- Feature| Precision| Recall| F;
ble to other methods, the goal of these experiments is .]F®2 . 8-2‘21‘71 8-2?? 8-23;
to ana]yze our system under various configurations 22 | 0629 | 0542 | 0582
by their relative performance. o JF23 | 0540 | 0.494 | 0.516
Table 3 also shows a 10-fold cross validation per- JF2.4 | 0591 | 0.412 | 0.485
formance on 3 data sets: (1) the training data, (2) JF25 | 0.631 | 0.558 | 0.592
the test data, and (3) both the training and test data. jg? 8'2:55; 8'2(113 8'223
While our fea}ture set is tuneql to the training dqta, 328 | 0641 | 0562 | 0.509
the test data is clearly more difficult. Section 4 dis- JF2.9 | 0.678 | 0.539 | 0.601
cusses the differences between the training and test JF2.10| 0.607 | 0.569 | 0.587
data that may lead to such a performance reduction. JF2.11) 0640 | 0.565 0.600
Si lexi ¢ AN JF2.12| 0.646 | 0.566 | 0.603
Since our lexicon o spatia NIDICATORS was JF213| 0646 | 0553 | 059
built from the training data, our method will not rec- JF2.14 | 0.618 | 0.572 | 0.594
ognize any relations that use unse@DICATORS. JF2.15| 0.642 | 0.563 | 0.600

To differentiate between how our method perform3able 5: Results when individual features from the super-
on the full test data and just thosedICATORS that ~Vised2 submission are removed. Bold indicates improve-
are in the lexicon, we removed the 39 gold relation§'ent when the feature is removed.
with unseen NDICATORS and re-tested the system. o .
; .. whenindividual features are removed. Here, six fea-
As can be seen in Table 3 (under -NSI), this im- . .
. tures that were useful on the training data did not
proves recall by 2.6 points.

prove useful on the test data.

3.4 Feature Experiments ] )
: G 4 Discussion
To estimate the contribution of our features, we per-

formed an additive experiment to see how each fedhe only available work against which our method
ture contributes to the overall test score. Table thay be compared is that of Kordjamshidi et al.
shows the feature contributions based on the ord€2011). They propose both a pipeline and joint ap-
they were added by the feature selector. For many pfoach to SpRL. In their case, their pipeline ap-
the features the score goes down when added. Hoproach performs better than their joint approach.
ever, without these features, the final score wouldoint approaches increase data sparsity, so their
drop to 0.578, indicating they still provide valuablegreatest value is in the ability to use a richer set of
information in the context of the other features. Tafeatures that describe the relationships between the
ble 5 shows performance on the updated test satguments. Kordjamshidi et al. (2011) furthermore
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did not employ heuristics to select relation candificial submission achieved an fneasure of 0.573
dates such as those in Section 2.1. Given this dibn relation recognition, best in the task and outper-
ference it is difficult to assert that a joint approactorming all previous work.

is better with complete certainty, but we believe the
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