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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

UWashington: Negation Resolution using Machine Learning Methods

James Paul White
University of Washington

Department of Linguistics, Box 354340
Seattle, WA 98195, USA
jimwhite@uw.edu

Abstract

This  paper  reports  on  a  simple  system  for 
resolving the scope of negation in the closed 
track of  the *SEM 2012 Shared Task.   Cue 
detection  is  performed  using  regular 
expression  rules  extracted  from  the  training 
data.  Both  scope  tokens  and  negated  event 
tokens  are  resolved  using  a  Conditional 
Random  Field  (CRF)  sequence  tagger  – 
namely  the  SimpleTagger  library  in  the 
MALLET machine learning toolkit.  The full 
negation  F1 score  obtained  for  the  task 
evaluation is 48.09% (P=74.02%, R=35.61%) 
which ranks this system fourth among the six 
submitted for the closed track.

1 Introduction

Resolving the scope of negation is an interesting 
area of research for Natural Language Processing 
(NLP) systems because many such systems have 
used methods that are insensitive to polarity.  As a 
result  it  is  fairly  common to have  a system that 
treats “X does Y” and “X does not Y” as having 
the same, or very nearly the same, meaning1.   A 
few  application  areas  that  have  been  addressing 
this issue recently are in sentiment analysis,  bio­
medical  NLP,  and  recognition  of  textual  entail­
ment.   Sentiment analysis systems are frequently 
used in corporate and product marketing, call cen­
ter quality control, and within “recommender” sys­
tems which are all contexts where it is important to 
recognize that “X does like Y” is contrary to “X 
does not like Y”.  Similarly in biomedical text such 

1A one token difference between the strings surely indicating 
at least an inexact match.

as research papers and abstracts, diagnostic proce­
dure reports, and medical records it is important to 
differentiate between statements about what is the 
case and what is not the case.

The *SEM 2012 Shared Task is actually two re­
lated tasks run in parallel.  The one this system was 
developed for is the identification of three features 
of  negation:  the  cue,  the  scope,  and  the  factual 
negated event (if any).  The other task is concerned 
with the focus of negation.  Detailed description of 
both subtasks, including definition of the relevant 
concepts  and  terminology  (negation,  cue,  scope, 
event, and focus) appears in this volume (Morante 
and Blanco, 2012).  Roser Morante  and Eduardo 
Blanco  describe  the  corpora  provided  to  partici­
pants with numbers and examples,  methods used 
used to process the data, and briefly describes each 
participant and analyzes the overall results.

Annotation of the corpus was undertaken at the 
University of Antwerp and was performed on sev­
eral Sherlock Holmes works of fiction written by 
Sir Arthur Conan Doyle.  The corpus includes all 
sentences from the original text, not just those em­
ploying  negation.   Roser  Morante  and  Walter 
Daelemans  provide  a  thorough  explanation  of 
those gold annotations of negation cue, scope, and 
negated  event  (if  any)  (Morante  and Daelemans, 
2012).  Their paper explains the motivations for the 
particular annotation decisions and describes in de­
tail the guidelines, including many examples.

2 Related Work

Recognition of phrases containing negation, partic­
ularly in the medical domain, using regular expres­
sions has been described using several different ap­
proaches. Systems such as Negfinder  (Mutalik et 
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al,  2001) and NegEx  (Chapman et  al,  2001) use 
manually constructed rules to extract phrases from 
text and classify them as to whether they contain 
an expression of negation.  Rokach et al evaluate 
several  methods  and  show their  highest  level  of 
performance (an F1 of 95.9 ± 1.9%) by using cas­
caded decision trees of regular expressions learned 
from labelled narrative medical reports (Rokach et 
al, 2008).  

Those systems perform a different function than 
that  required for this task though.  They classify 
phrases  extracted  from  plain  text  as  to  whether 
they contain negation or not, while the requirement 
of this shared task for negation cue detection is to 
identify the particular token(s) or part of a token 
that signals the presence of negation.  Furthermore, 
those systems only identify the scope of negation 
at the level of phrasal constituents, which is differ­
ent than what is required for this task in which the 
scopes are not necessarily contiguous.

Conditional Random Field (CRF) sequence tag­
gers have been successfully applied to many scope 
resolution problems,  including those of negation. 
The  NegScope  system  (Agarwal  and  Yu,  2010) 
trains a CRF sequence tagger on labelled data to 
identify both the cue and scope of negation.  How­
ever, that system only recognizes a whole word as 
a cue and does not recognize nor generalize nega­
tion cues which are affixes.  There are also systems 
that  use  CRF  sequence  taggers  for  detection  of 
hedge scopes (Tang et al, 2010, Zhao et al, 2010). 
Morante and Daelemans describe a method for im­
proving  resolution  of  the  scope  of  negation  by 
combining IGTREE, CRF, and Support Vector Ma­
chines (SVM) (Morante and Daelemans, 2009).  

3 System Description

This system is implemented as a three stage cas­
cade  with  the  output  from each  of  the  first  two 
stages  included as  input  to the subsequent  stage. 
The stages are ordered as cue detection, scope de­
tection,  and  finally  negated  event  detection.  The 
format of the inputs and outputs for each stage use 
the shared task’s  CoNLL­style file  format.   That 
simplifies  the  use  of  the  supplied  gold­standard 
data for training of each stage separately.

 Because  this  system  was  designed  for  the 
closed track of the shared task, it makes minimal 
language­specific assumptions and learns (nearly) 
all  language­specific  rules from the gold­labelled 

training data (which includes the development set 
for the final system).

The CRF sequence tagger used by the system is 
that implemented in the SimpleTagger class of the 
MALLET toolkit, which is a Java library distrib­
uted under the Common Public License2.

The system is implemented in the Groovy pro­
gramming  language,  an  agile  and  dynamic  lan­
guage for the Java Virtual Machine3.  The source 
code is available under the GNU Public License on 
GitHub4.

3.1 Cue Detection

Cues are recognized by four different regular ex­
pression rule patterns: affixes (partial token), single 
(whole)  token,  contiguous  multiple  token,  and 
gappy  (discontiguous)  multiple  token.  The  rules 
are learned by a two pass process.  In the first pass, 
for each positive example of a negation cue in the 
training data, a rule that matches that example is 
added to the prospective rule set.  Then, in the sec­
ond pass, the rules are applied to the training data 
and the counts of correct and incorrect matches are 
accumulated. Rules that are wrong more often than 
they are right are removed from the set used by the 
system.

A further  filtering  of  the  prospective  rules  is 
done  in  which  gappy  multiple  token  rules  that 
match the same word type more than once are re­
moved.   Those  prospective  rules  are  created  to 
match cases in the supplied training data where the 
a repetition has occurred and then encoded by the 
annotators as a single cue (and thus scope) of nega­
tion5.  

The single token and multiple token rules match 
both the word string feature (ignoring case) and the 
part­of­speech (POS) feature of each token.  And 
because a single token rule might also match a cue 
that belongs to a multiple token rule, multiple to­
ken rules are checked first.

  Affix rules are of two types: prefix cues and 
non­prefix cues.  The distinction is that while pre­
fix cues must match starting at the beginning of the 
word string, the non­prefix cues may have a suffix 
following them in the word string that is not part of 
the cue.  Affix rules only match against the word 

2http://mallet.cs.umass.edu/  
3http://groovy.codehaus.org/   
4https://github.com/jimwhite/SEMST2012   
5Such as baskervilles12 174: “Not a whisper, not a rustle, 
rose...” which has a cue annotation of “Not” gap “not”.
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string feature of the tokens and are insensitive to 
the POS feature.

In order to generalize the affix rules, sets are ac­
cumulated of both base word strings (the substring 
following  a  prefix  cue  or  substring  preceding  a 
non­prefix cue) and suffixes (the substring follow­
ing non­prefix cues, if any).  In addition, all other 
word strings and lemma strings in the training cor­
pus that are at least four characters long are added 
to the set of possible base word strings6.  A set of 
negative word  strings is  also  accumulated  in the 
second pass of the rule training to condition against 
false positive matches for each affix rule.

A prefix  cue  rule  will  match  a  token  with  a 
word string that  starts  with the cue string and is 
followed by any of the strings in the base word set. 
Similarly  a  suffix  cue  rule  will  match  a  token 
whose word string contains the cue string preceded 
by a string in the base word set and is either at the 
end  of  the  string  or  is  followed  by  one  of  the 
strings in the suffix string set.  Affix rules, unlike 
the other cue­matching rules, also output the string 
for matched base word as the value of the scope for 
the matched token.  In any case, if the token’s word 
string is in the negative word string set for the rule 
then it will not be matched.

Following submission of the system outputs for 
the shared tasked I discovered that a hand written 
regular expression rule that filters out the (poten­
tial)  cues  detected  for  “(be|have)  no  doubt”  and 
“none the (worse|less)” was inadvertently included 
in  the  system.   Although  those  rules  could  be 
learned automatically from the training data (and 
such  was  my  intention),  the  system  as  reported 
here does not currently do so.

3.2 Negation Scope Resolution

For  each  cue  detected,  scope  resolution  is  per­
formed as a ternary classification of each token in 
the sentence as to whether it is part of a cue, part of 
a scope, or neither.  The classifier is the CRF se­
quence  tagger  implemented  in  the  SimpleTagger 
class of the MALLET toolkit  (McCallum, 2002). 
Training is performed using the gold­standard data 
including the gold cues.  The output of the tagger is 
not used to determine the scope value of a token in 

6This “longer than four character” rule was manually created 
to correct for over­generalization observed in the training data.  
If the affix rule learner selected this value using the correct/in­
correct counts as it does with the other rule parameters then 
this bit of language­specific tweaking would be unnecessary.

those cases where an affix rule in the cue detector 
has matched a token and therefore has supplied the 
matched base word string as the value of the scope 
for the token.

For features that are computed in terms of the 
cue  token,  the  first  (lowest  numbered)  token 
marked as a cue is used when there is more than 
one cue token for the scope.  

Features used by the scope CRF sequence tag­
ger are:

• Of the per­token data: word string in low­
ercase, lemma string in lowercase, part­of­
speech  (POS)  tag,  binary  flag  indicating 
whether the token is a cue, a binary flag in­
dicating whether the token is at the edge of 
its parent non­terminal node or an internal 
sibling,  a  binary  flag  indicating  whether 
the token is a cue token, and relative posi­
tion to the cue token in number of tokens.

• Of the cue token data:  word string in low­
ercase,  lemma  string  in  lowercase,   and 
POS tag.

• Of the path through the syntax tree from 
the cue token: an ordered list of the non­
terminal labels of each node up the tree to 
the lowest common parent, an ordered list 
of  the  non­terminal  labels  of  each  node 
down the tree  from that  lowest  common 
parent, a path relation value consisting of 
the  label  of  the  lowest  common  parent 
node  concatenated  with  an  indication  of 
the relative position of the paths to the cue 
and token in terms of sibling order.

3.3 Negated Event Resolution

Detection of the negated event or property is per­
formed using the same CRF sequence tagger and 
features used for scope detection.  The only differ­
ence is that the token classification is in terms of 
whether each token in the sentence is part of a fac­
tual negated event for each negation cue.

3.4 Feature Set Selection

A comparison  of  the  end­to­end  performance  of 
this system using several different sets of per token 
feature  choices  for  the  scope  and  negated  event 
classifiers is shown in Table 1.  In each case the 
training data is the entire training data and the dev 
data is the entire dev data supplied by the organiz­
ers for this shared task.  The scores are computed 
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by the evaluation program also supplied by the or­
ganizers.  The baseline features are those provided 
in the data, with the exception of the syntactic tree 
fragment: word string in lowercase, lemma in low­
ercase, and POS tag.  The “set 1” features are the 
remainder of the features described in section 3.2, 
with the exception of those of the path through the 
syntax tree from the cue token.  The “set 2” fea­
tures are the three baseline features plus the three 
features of the path through the syntax tree from 
the cue token: list of non­terminal labels from cue 
up to the lowest common parent, lowest common 
parent label concatenated with the relative distance 
in nodes between the siblings, list of non­terminals 
from the lowest common parent down to the token. 
The “system” feature set is the union of set 1 and 
set 2, and is the one used by the submitted system.

The baseline score is an F1 of 31.5% (P=79.1%, 
R=19.7%) on the dev data.  Using either feature set 
1 or 2 results in substantially better performance. 
They achieve nearly the same score on the dev set 
with an F1 of 50±0.5% (P=87±0.2%, R=35±0.3%) 
in which the difference is that between one case of 
true positive  vs.  false  negative out  of  173.   The 
combination  of  those  feature  sets  is  better  still 
though with an F1 of 54.4% (P=88.3%, R=39.3%).

4 Results

Table 2 presents the scores computed for the sys­
tem output on the held­out evaluation data.  The F1 

for  full  negation  is  48.1%  (P=74%,  R=35.6%), 
which  is  noticeably  lower  than  that  seen  for  the 
dev data (54.4%).  That reduction is to be expected 
because the dev data was used for system tuning. 
There was also evidence of significant over­fitting 
to  the  training  data  because  the  F1 for  that  was 
76.5% (P=92%,  R=65.5%).   The  largest  compo­
nent of the fall off in performance is in the recall. 

The worst performing component of the system 
is the negated event detection which has an F1 of 
54.3% (P=58%,  R=51%) on  the evaluation  data. 
One contributor to low precision for the negated 
event detector is that the root word of an affix cue 
is always output as a negated event, bypassing the 
negated  event  CRF  sequence  classifier.   In  the 
combined training and dev data there is a total of 
1157 gold cues (and scopes) of which 738 (63.8%) 
are annotated as having a negated event.  Of the 
1198  cues  the  system outputs  for  that  data,  188 
(15.7%) are affix cues, each of which will also be 
output as a negated event.  Therefore it would be 
reasonable  to  expect  that  approximately  16 
(27.7%) of the false positives for the negated event 
in the evaluation (60) are due to that behavior.

Table 1: Comparison of full negation scores for various feature sets.

 Gold  System  TP FP FN Precision (%) Recall (%) F1 (%)
Baseline  (train) 984 1034 382 56 602 87.21 38.82 53.73
                (dev)  173 164 34 9 139 79.07 19.65 31.48
Set 1        (train) 984 1034 524 56 460 90.34 53.25 67.00
                (dev) 173 164 60 9 113 86.96 34.68 49.59
Set 2        (train) 984 1034 666 56 318 92.24 67.68 78.07
                (dev) 173 164 61 9 112 87.14 35.26 50.21
System    (train) 984 1034 644 56 340 92.00 65.45 76.49
                (dev) 173 164 68 9 105 88.31 39.31 54.40

Table 2: System evaluation on held­out data.

                             Gold  System  TP FP FN Precision (%) Recall (%) F1 (%)
Cues 264 285 243 33 21 88.04 92.05 90.00
Scopes (no cue match) 249 270 158 33 89 82.90 64.26 72.40
Scope tokens (no cue match) 1805 1816 1512 304 293 83.26 83.77 83.51
Negated (no cue match) 173 154 83 60 80 58.04 50.92 54.25
Full negation 264 285 94 33 170 74.02 35.61 48.09
Cues B 264 285 243 33 21 85.26 92.05 88.52
Scopes B (no cue match) 249 270 158 33 89 59.26 64.26 61.66
Negated B (no cue match) 173 154 83 60 80 53.9 50.92 52.37
Full negation B 264 285 94 33 170 32.98 35.61 34.24
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5 Conclusion

This paper describes the system I implemented for 
the closed track of the *SEM 2012 Shared Task for 
negation cue, scope, and event resolution.  The sys­
tem’s performance on the held­out evaluation data, 
an F1 of  48.09% (P=74.02%, R=35.61%) for the 
full  negation,  relative to the other entries for the 
task  is  fourth  among  the  six  teams  that  partici­
pated.  

The strongest part of this system is the scope re­
solver which performs at a level near that of the 
best­performing  systems  in  this  shared  task.   I 
think it is likely that the performance on scope res­
olution would be equivalent to them with a better 
negation cue detector.  That is supported by the “no 
cue match” version of the scope resolution evalua­
tion  for  which  this  system  has  the  highest  F1 

(72.4%).
Clearly the weakest  link is  the  negated  event 

detector.  Since one obvious source of error is that 
the root word extracted when an affix cue is de­
tected  is  always  output  as  a  negated  event,  a 
promising approach for improvement would be to 
instead  utilize  that  as  a  feature  for  the  negated 
event’s CRF sequence tagger so that they have a 
chance to be filtered out in non­factual contexts.
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