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Abstract

Word Sense Disambiguation aims to label the

sense of a word that best applies in a given

context. Graded word sense disambiguation

relaxes the single label assumption, allow-

ing for multiple sense labels with varying de-

grees of applicability. Training multi-label

classifiers for such a task requires substan-

tial amounts of annotated data, which is cur-

rently not available. We consider an alter-

nate method of annotating graded senses using

Word Sense Induction, which automatically

learns the senses and their features from cor-

pus properties. Our work proposes three ob-

jective to evaluate performance on the graded

sense annotation task, and two new methods

for mapping between sense inventories using

parallel graded sense annotations. We demon-

strate that sense induction offers significant

promise for accurate graded sense annotation.

1 Introduction

Word Sense Disambiguation (WSD) aims to identify

the sense of a word in a given context, using a pre-

defined sense inventory containing the word’s differ-

ent meanings (Navigli, 2009). Traditionally, WSD

approaches have assumed that each occurrence of

a word is best labeled with a single sense. How-

ever, human annotators often disagree about which

sense is present (Passonneau et al., 2010), espe-

cially in cases where some of the possible senses

are closely related (Chugur et al., 2002; McCarthy,

2006; Palmer et al., 2007).

Recently, Erk et al. (2009) have shown that in

cases of sense ambiguity, a graded notion of sense

labeling may be most appropriate and help reduce

the ambiguity. Specifically, within a given context,

multiple senses of a word may be salient to the

reader, with different levels of applicability. For ex-

ample, in the sentence

• The athlete won the gold metal due to her hard

work and dedication.

multiple senses could be considered applicable for

“won” according to the WordNet 3.0 sense inventory

(Fellbaum, 1998):

1. win (be the winner in a contest or competition; be victo-

rious)

2. acquire, win, gain (win something through one’s efforts)

3. gain, advance, win, pull ahead, make headway, get ahead,

gain ground (obtain advantages, such as points, etc.)

4. succeed, win, come through, bring home the bacon, de-

liver the goods (attain success or reach a desired goal)

In this context, many annotators would agree that the

athlete has both won an object (the gold metal itself)

and won a competition (signified by the gold medal).

Although contexts can be constructed to elicit only

one of these senses, in the example above, a graded

annotation best matches human perception.

Graded word sense (GWS) annotation offers sig-

nificant advantages for sense annotation with a fine-

grained sense inventory. However, creating a suf-

ficiently large annotated corpus for training super-

vised GWS disambiguation models presents a sig-

nificant challenge, i.e., the laborious task of gath-

ering annotations for all combinations of a word’s

senses, along with variation in those senses appli-

cabilities. To our knowledge, Erk et al. (2009) have

provided the only data set with GWS annotations for

11 terms.
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Therefore, we consider the use of Word Sense In-

duction (WSI) for GWS annotation. WSI removes

the need for substantial training data by automati-

cally deriving a word’s senses and associated sense

features through examining its contextual uses. Fur-

thermore, the data-driven sense discovery defines

senses as they are present in the corpus, which may

identify usages not present in traditional sense in-

ventories (Lau et al., 2012). Last, many WSI models

represent senses loosely as abstractions over usages,

which potentially may transfer well to expressing

GWS annotations as a blend of their sense usages.

In this paper, we consider the performance of WSI

models on a GWS task. The contributions of this

paper are as follows. First, in Sec. 2, we motivate

three GWS annotation objectives and propose corre-

sponding measures that provide fine-grained analy-

sis of the capabilities of different WSI models. Sec-

ond, in Sec. 4, we propose two new sense mapping

procedures for converting an induced sense inven-

tory to a reference sense inventory when GWS an-

notations are present, and demonstrate significant

performance improvement using these procedures

on GWS annotation. Last, in Sec. 5, we demon-

strate a complete evaluation framework using three

graph-based WSI models as examples, generating

several insights for how to better evaluate GWS dis-

ambiguation systems.

2 Evaluating GWS Annotations

Graded word sense annotation conveys multiple lev-

els of information, both in which senses are present

and their relative levels of applicability; and so, no

single evaluation measure alone is appropriate for

assessing GWS annotation capability. Therefore, we

propose three objectives for the evaluating the sense

labeling: (1) Detection of which senses are present,

(2) Ranking senses according to applicability, and

(3) Perception of the graded presence of each sense.

We separate the three objectives as a way to evaluate

how well different techniques perform on each as-

pect individually, which may encourage future work

in ensemble WSD methods that use combinations of

the techniques. Figure 1 illustrates each evaluation

on example annotations. We note that Erk and Mc-

Carthy (2009) have also proposed an alternate set of

evaluation measures for GWS annotations. Where

applicable, we describe and compare their measures

to ours for the three objectives.

In the following definitions, let Si
G refer to the set

of senses {s1, . . . , sn} present in context i according

to the gold standard, and similarly, let Si
L refer to

the set of senses for context i as labeled by a WSD

system using the same sense inventory. Let peri(sj)
refer to the perceived numeric applicability rating of

sense sj in context i.

Detection measures the ability to accurately iden-

tify which senses are applicable in a given context,

independent of their applicability. While the most

basic of the evaluations, systems that are highly ac-

curate at multi-sense detection could be used for rec-

ognizing ambiguous contexts where multiple senses

are applicable or for evaluating the granularity of

sense ontologies by testing for correlations between

senses in a multi-sense labeling. Detection is mea-

sured using the Jaccard Index between Si
G and Si

L

for a given context i:
Si
G∩S

i
L

Si
G
∪Si

L

Ranking measures the ability to order the senses

present in context i according to their applicabil-

ity but independent of their quantitative applicabil-

ity scores. Even though multiple senses are present,

a context may have a clear primary senses. By pro-

viding a ranking in agreement with human judge-

ments, systems create a primary sense label for each

context. When the induced senses are mapped to a

sense inventory, selecting the primary sense is analo-

gous to non-graded WSD where a context is labeled

with its most applicable sense.

To compare sense rankings, we use Goodman and

Kruskal’s γ, which is related to Kendall’s τ rank cor-

relation. When the data has many tied ranks, γ is

preferable to both Kendall’s τ as well as Spearman’s

ρ rank correlation (Siegel and Castellan Jr., 1988),

the latter of which is used by Erk and McCarthy

(2009) for evaluating sense rankings. The use of γ

was motivated by our observation that in the GWS

dataset (described later in Section 5.1), roughly 65%

of the instances contained at least one tied ranking

between senses.

To compute γ, we examine all pair-wise combi-

nations of senses (si, sj) of the target word. Let

rG(si) and rL(si) denote the ranks of sense si in

the gold standard and provided annotations. In the

event that a ranking does not include senses, all

of the inapplicable senses are assigned a tied rank
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Instance Gold Standard Annotation

The athlete won the gold metal due to her

hard work and dedication.

win.v.1: 0.6, win.v.2: 0.4

(not applicable: win.v.3, win.v.4)

Test Annotation Detection Ranking Perception

win.v.1: 0.7, win.v.2: 0.3 1.0 1.0 0.983

win.v.1: 1.0 0.5 1.0 0.832

win.v.2: 1.0 0.5 0.333 0.554

win.v.3: 0.5, win.v.1: 0.3, win.v.4: 0.2 0.25 -0.2 0.405

Figure 1: Example annotations of the same context compared with the gold standard according to Detection,

Ranking, and Perception.

lower than the least applicable sense; i.e., for m

applicable senses, all inapplicable senses have rank

m+1. A pair of senses, (si, sj) is said to be con-

cordant if rG(si) < rG(sj) and rL(si) < rL(sj) or

rG(si) > rG(sj) and rL(si) > rL(sj), and discor-

dant otherwise. γ is defined as c−d
c+d

where c is the

number of concordant pairs and d is the number of

discordant.

Perception measures the ability to equal human

judgements on the levels of applicability for each

sense in a context. Unlike ranking, this evaluation

quantifies the difference in sense applicability. As a

potential application, these differences can be used

to quantify the contextual ambiguity. For example,

the relative applicability differences can be used to

distinguish between ambiguous contexts where mul-

tiple highly-applicable senses exist and unambigu-

ous contexts where a single main sense exists but

other senses are still minimally applicable.

To quantify Perception, we compare sense label-

ings using the cosine similarity. Each labeling is rep-

resented as a vector with a separate component for

each sense, whose value is the applicability of that

sense. The Perception for two annotations of con-

text j is then calculated as

∑

i perj(s
G
i )× perj(s

L
i )

√

∑

i perj(sGi )
2 ×

√

∑

i perj(sLi )
2
.

Note that because all sense perceptibilities are non-

negative, the cosine similarity is bounded to [0, 1].

Erk and McCarthy (2009) propose an alternate

measure for comparing the applicability values us-

ing the Jensen-Shannon divergence. The sense an-

notations are normalized to probability distributions,

denoted G and L, and the divergence is computed as:

JSD(G||L) =
1

2
DKL(G||M) +

1

2
DKL(L||M)

where M is the average of the distributions G and L

and DKL denotes the Kullback-Leibler divergence.

While both approaches are similar in intent, we find

that the cosine similarity better matches the expected

difference in Perception for cases where two anno-

tations use different numbers of senses. For exam-

ple, the fourth test annotation in Fig. 1 has a JSS1

of 0.593, despite its significant differences in order-

ing and the omission of a sense. Indeed, in cases

where the set of senses in a test annotation is com-

pletely disjoint from the set of gold standard senses,

the JSS will be positive due to comparing the two

distributions against their average; In contrast, the

cosine similarity in such cases will be zero, which

we argue better matches the expectation that such an

annotation does not meet the Perception objective.

3 WSI Models

For evaluation we adapt three recent graph-based

WSI methods for the task of graded-sense annota-

tion: Navigli and Crisafulli (2010), referred to as

Squares, Jurgens (2011), referred to as Link, and

UoY (Korkontzelos and Manandhar, 2010). At an

abstract level, these methods operate in two stages.

First, a graph is built, using either words or word

pairs as vertices, and edges are added denoting some

form of association between the vertices. Second,

senses are derived by clustering or partitioning the

graph. We selected these methods based on their su-

perior performance on recent benchmarks and also

1The JSD is a distance measure in [0, 1], which we convert

to a similarity JSS = 1− JSD for easier comparison.
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for their significant differences in approach. Follow-

ing, we briefly summarize each method to highlight

its key parameters and then describe its adaptation

to GWS annotation.

Squares Navigli and Crisafulli (2010) propose a

method that builds a separate graph for each term

for sense induction. First, a large corpus is used to

identify associated terms using the Dice coefficient:

For two terms w1, w2, Dice(w1, w2) =
2c(w1,w2)

c(w1)+c(w2)

where c(w) is the frequency of occurrence. Next,

for a given term w the initial graph, G, is con-

structed by adding edges to every term w2 where

Dice(w,w2) ≥ δ, and then the step is repeated for

the neighbors of each term w2 that was added.

Once the initial graph is constructed, edges are

pruned to separate the graph into components. Nav-

igli and Crisafulli (2010) found improved perfor-

mance on their target application using a pruning

method based on the number of squares (closed

paths of length 4) in which an edge participates. Let

s denote the number of squares that an edge e par-

ticipates in and p denote the number of squares that

would be possible from the set of neighbors of e.

Edges with s
p

< σ are removed. The remaining con-

nected components in G denote the senses of w.

Sense disambiguation on a context of w is per-

formed by computing the intersection of the con-

text’s terms with the terms in each of the connected

components. As originally specified, the component

with the largest overlap is labeled as the sense of w.

We adapt this to graded senses by returning all inter-

secting components with applicability proportional

to their overlap. Furthermore, for efficiency, we use

only noun, verb, and adjective lemmas in the graphs.

Link Jurgens (2011) use an all-words method

where a single graph is built in order to derive the

senses of all words in it. Here, the graph’s clus-

ters do not correspond to a specific word’s senses

but rather to contextual features that can be used to

disambiguate any of the words in the cluster.

In its original specification, the graph is built with

edges between co-occurring words and edge weights

corresponding to co-occurrence frequency. Edges

below a specified threshold τ are removed, and then

link community detection (Ahn et al., 2010) is ap-

plied to discover sense-disambiguating word com-

munities, which are overlapping cluster of vertices

in the graph, rather than hard partitions. Once the set

of communities is produced, communities with three

or fewer vertices are removed, under the assumption

that these communities contain too few features to

reliably disambiguate.

Senses are disambiguated by finding the commu-

nity with the largest overlap score, computed as the

weighted Jaccard Index. For a context with the set

of features Fi and a community with features Fj , the

overlap is measured as |Fj | ·
|Fi∩Fj |
|Fi∪Fj |

.

We adapt this algorithm in three ways. First,

rather than use co-occurrence frequency to weight

edges between terms, we weight edges accord to

their statistical association with the G-test (Dunning,

1993). The G-test weighting helps remove edges

whose large edge weights are due to high corpus fre-

quency but provide no disambiguating information,

and the weighting also allows the τ parameter to

be more consistently set across corpora of different

sizes. Second, while Jurgens (2011) used only nouns

as vertices in the graph, we include both verbs and

adjectives due to needing to identify senses for both.

Third, for graded senses, we disambiguate a context

by reporting all overlapping communities, weighted

by their overlap score.

UoY Korkontzelos and Manandhar (2010) pro-

pose a WSI model that builds a graph for each term

for disambiguation. The graph is built in four stages,

with four main tuning parameters, summarized next.

First, using a reference corpus, all contexts of the

target word w are selected to build a list of co-

occurring noun lemmas, retaining all those with fre-

quency above P1. Second, the Log-Likelihood ratio

(Dunning, 1993) is computed between all selected

nouns and w, retaining only those with an associa-

tion above P2. Third, all remaining nouns are used

to create all
(

n
2

)

noun pairs. Next, each term and

pair is mapped to the set of contexts in the reference

corpus in which it is present. A pair (wi, wj) is re-

tained only if its set of contexts is dissimilar to the

sets of contexts of both its member terms, using the

Dice coefficient to measure the similarity of the sets.

Pairs with a Dice coefficient above P4 with either of

its constituent terms are removed. Last, edges are

added between nouns and noun pairs according to

their conditional probabilities of occurring with each

other. Edges with a conditional probability less than
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P3 are not included.

Once the graph has been constructed, the Chi-

nese Whispers graph partitioning algorithm (Bie-

mann, 2006) is used to identify word senses. Each

graph partition is assigned a separate sense of w.

Next, each partition is mapped to the set of contexts

in the reference corpus in which at least one of its

vertices occurs. Partitions whose context sets are a

strict subset of another are merged with the subsum-

ing partition.

Word sense disambiguation occurs by counting

the number of overlapping vertices for each parti-

tion and selecting the partition with the highest over-

lap as the sense of w. We extend this to graded an-

notation by selecting all partitions with at least one

vertex present and set the applicability equal to the

degree of overlap.

4 Evaluation Across Sense Inventories

Directly comparing GWS annotations from the in-

duced and gold standard sense inventories requires

first creating a mapping from the induced senses to

the gold standard inventory. Agirre et al. (2006) pro-

pose a sense-mapping procedure, which was used in

the previous two SemEval WSI Tasks (Agirre and

Soroa, 2007; Manandhar et al., 2010). We consider

this procedure and two extensions of it to support

learning a mapping from graded sense annotations.

The procedure of Agirre et al. (2006) uses three

corpora: (1) a base corpus from which the senses

are derived, (2) a mapping corpus annotated with

both gold standard senses, denoted gs, and induced

senses, denoted is, and (3) a test corpus annotated

with is senses that will be converted to gs senses.

Once the senses are induced from the base cor-

pus, the mapping corpus is annotated with is senses

and a matrix M is built where cell i, j initially con-

tains the counts of each time gsj and isi were used

to label the same instance. The rows of this matrix

are then normalized such that each cell now repre-

sents p(gsj|isi). The final mapping selects the most

probable gs sense for each is sense.

To label the test corpus, each instance that is

labeled with isi is relabeled with the gs sense

with the highest conditional probability given isi.

When a context c is annotated by a set of labels

L = {isi, . . . , isj}, the final sense labeling con-

tains the set of all gs to which the is senses were

mapped, weighted by their mapping frequencies:

perc(gsj) =
1
|L|

∑

isi∈L
δ(isi, gsj) where δ returns

1 if isi is mapped to gsj and 0 otherwise.

The original algorithm of Agirre et al. (2006) does

not consider the role of applicability in evaluating

whether an is sense should be mapped to a gs sense;

is senses with different levels of applicability in the

same context are treated equivalently in updating

M . Therefore, as a first extension, referred to as

Graded, we revise the update rule for constructing

M where for the set of contexts C labeled by both

isi and gsj , Mi,j =
∑

c∈C perc(isi)×perc(gsj). As

in (Agirre et al., 2006), M is normalized and each is

sense is mapped to its most probable gs sense.

To label the test corpus using the Graded method,

the applicability of the is sense is also included.

For a context c is annotated with senses L =
{isi, . . . , isj}, the final sense labeling contains the

set of all gs senses to which the is senses were

mapped, weighted by their mapping frequencies:

perc(gsj) =
∑

isi∈L
[δ(isi, gsj)× perc(isi)] . The

applicabilities are then normalized to sum to 1.

The prior two methods restrict an is sense to map-

ping to only a single gs sense. However, an is sense

may potentially correspond to multiple gs senses,

each with different levels of applicability. There-

fore, we consider a second extension, referred to as

Distribution, that uses the same matrix construc-

tion as the Graded procedure, but rather than map-

ping each is to a single sense, maps it to a distribu-

tion over all gs senses for which it was co-annotated,

which is the normalized row vector in M for an is

sense. Labeling in the test corpus is then done by

summing the distributions of the is senses annotated

in the context and normalizing to create a probability

distribution over the union of their gs senses.

5 Experiments

We adapt the supervised WSD setting used in prior

SemEval WSI Tasks (Agirre and Soroa, 2007; Man-

andhar et al., 2010) to evaluation the models accord-

ing to the three proposed objectives. In the super-

vised setting, WSI systems provide GWS annotation

of their induced senses for the test corpus, which

is already labeled with the gold-standard GWS an-

notations. Then, a portion of the test corpus with

gold standard annotations is used to build a mapping

from induced senses to the reference sense inven-
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Term PoS # senses Avg. # Senses

per Instance

add verb 6 4.18

ask verb 7 5.98

win verb 4 3.98

argument noun 7 5.18

interest noun 7 5.12

paper noun 7 5.54

different adj. 5 4.98

important adj. 5 4.82

Table 1: The terms from the GWS dataset (Erk et

al., 2009) used in this evaluation

tory using one of the three algorithms described in

Section 4. The remaining, held-out test corpus in-

stances have their induced senses converted to the

gold standard sense inventory and the sense label-

ings are evaluated for the three objectives from Sec-

tion 2. In our experiments we divide the reference

corpus into five evenly-sized segments and then use

four segments (80% of the test corpus) for construct-

ing the mapping and then evaluate the converted

GWS annotations of the remaining segment.

5.1 Graded Annotation Data

The gold standard GWS annotations are derived

from a subset of the GWS data provided by Erk et

al. (2009). Here, three annotators rated the applica-

bility of all WordNet 3.0 senses of a word in a single

sentence context. Ratings were done using a 5-point

ordinal ranking according to the judgements from 1

– this sense is not applicable to 5 – this usage exactly

reflects this sense. Annotators used a wide-range of

responses, leading to many applicable senses per in-

stance. We selected the subset of the GWS dataset

where each term has 50 annotated contexts, which

were distributed evenly between SemCor (Miller et

al., 1993) and the SENSEVAL-3 lexical substitution

corpus (Mihalcea et al., 2004). Table 1 summarizes

the target terms in this context.

To prepare the data for evaluation, we constructed

the gold standard GWS annotations using the mean

applicability ratings of all three annotators for each

context. Senses that received a mean rating of 1 (not

applicable) were not listed in gold standard labeling

for that instance. All remaining responses were nor-

malized to sum to 1.

5.2 Model Configuration

For consistency, all three WSI models were trained

using the same reference corpus. We used a 2009

snapshot of Wikipedia,2 which was PoS tagged and

lemmatized using the TreeTagger (Schmid, 1994).

All of target terms occurred over 12,000 times. The

G-test between terms was computed using a three-

sentence sliding window within each article in the

corpus. The Dice coefficient was calculated using a

single sentence as context.

For all three models, we performed a limited grid

search to find the best performing system param-

eters, within reasonable computational limits. We

summarize the parameters and models, selecting the

configuration with the highest average Perception

score. For all models, the applicability ratings for

each instance are normalized to sum to 1.

Model Parameter Range Selected

Squares
δ={0.008, 0.009, . . . , 0.092} 0.037

σ={0.25, 0.30, . . . , 0.50, 0.55} 0.55

Link τ={400, 500, . . . , 900, 1000} 500

UoY

P1={10, 20} 20
P2={10, 20, 30} 20
P3={0.2, 0.3, 0.4} 0.3
P4={0.4, 0.6, 0.8} 0.4

5.3 Baselines

Prior WSI evaluations have used the Most Frequent

Sense (MFS) labeling a strong baseline in the super-

vised WSD task. For the GWS setting, we consider

five other baselines that select one, some, or all of

the sense of the target word, with different ordering

strategies. In the six baselines, each instance is la-

beled as follows:

MFS: the most frequent sense of the word

RS: a single, randomly-selected sense

ASF: all senses, ranked in order of frequency starting

with the most frequent

ASR: all senses, randomly ranked

ASE: all senses, ranked equally

RSM: a random number of senses, ranked arbitrarily

To establish applicability values from a ranking of n

senses, we set applicability to the ith ranked sense of
(n−i)+1∑n

k=1
k

, where rank 1 is the highest ranked sense.

2http://wacky.sslmit.unibo.it/
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Agirre et al. (2006) Mapping Graded Mapping Distribution Mapping

Model D R P D R P D R P Recall

Squares 0.192 -0.024 0.382 0.198 0.555 0.504 0.879 0.562 0.925 0.560

Link 0.282 0.081 0.454 0.335 0.436 0.528 0.854 0.503 0.907 0.800

UoY 0.238 0.116 0.445 0.244 0.486 0.528 0.848 0.528 0.907 0.940

Table 2: Average performance of the three WSI models according to Detection, Ranking, and Percetion

Baseline Detection Ranking Perception

MFS 0.204 0.334 0.469

RS 0.167 -0.036 0.363

ASF 0.846 0.218 0.830

ASR 0.846 0.006 0.776

ASE 0.846 0.000 0.862

RSM 0.546 0.005 0.632

Table 3: Average performance of the six baselines

5.4 Results and Discussion

Each WSI model was trained and then used to la-

bel the sense of each target term in the GWS corpus.

The three sense-mapping procedures were then ap-

plied to the induced sense labels on the held-out in-

stances to perform a comparison in the graded sense

annotations. Table 2 reports the performance for the

three evaluation measures for each model and map-

ping configuration on all instances where the sense

mapping is defined. The sense mapping is unde-

fined when (1) a WSI model cannot match an in-

stance’s features to any of its senses therefore leaves

the instance unannotated or (2) when an instance is

labeled with an is sense not seen in the training data.

Therefore, we report the additional statistic, Recall,

that indicates the percentage of instances that were

both labeled by the WSI model and mapped to gs

senses. Table 3 summarizes the baselines’ perfor-

mance.

The results show three main trends. First, intro-

ducing applicability into the sense mapping process

noticeably improves performance. For almost all

models and scores, using the Graded Mapping im-

proves performance a small amount. However, the

largest increase comes from using the Distribution

mapping where induced senses are represented as

distributions over the gold standard senses.

Second, performance was well ahead of the base-

lines across the three evaluations, when consider-

ing the models’ best performances. The Squares

and Link models were able to outperform the base-

lines that list all senses on the Detection objec-

tive, which the UoY model only improves slightly

from this baseline. For the Ranking objective, all

models substantially outperform the best baseline,

MFS; and similarly, for the Perception objective,

all models outperform the best performing baseline,

ASE. Overall, these performance suggest that in-

duce senses can be successfully used to produce

quality GWS annotations.

Third, the WSI models themselves show signif-

icant differences in their recall and multi-labeling

frequencies. The Squares model is only able to la-

bel approximately 56% of the GWS instances due to

sparseness in its sense representation. Indeed, only

12 of its 237 annotated instances received more than

one sense label, revealing that the model’s perfor-

mance is mostly based on correctly identifying the

primary sense in a context and not on identifying

the less applicable senses. The UoY model shows a

similar trend, with most instances being assigned a

median of 2 senses. However, its sense representa-

tion is sufficiently dense to have the highest recall of

any of the models. In contrast to the other two mod-

els, the Link model varies significantly in the num-

ber of induced senses assigned: “argument,” “ask,”

“different,” and “win” were assigned over 60 senses

on average to each of their instances, with “differ-

ent” having an average of 238, while the remaining

terms were assigned under two senses on average.

Furthermore, the results also revealed two unex-

pected findings. First, the ASE baseline performed

unexpectedly high in Perception, despite its assign-

ment of uniform applicability to all senses. We hy-

pothesize this is due to the majority of instances in

the GWS dataset being labeled with most of a word’s

senses, as indicated by Table 1, which results in their
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perceptibilities becoming normalized to small val-

ues. Because the ASE solution has applicability rat-

ings for all senses, normalization brings the ratings

close to those of the gold standard solution, and fur-

thermore, the difference in score between applicable

and inapplicable senses become too small to signifi-

cantly affect the resulting cosine similarity. As an al-

ternate model, we reevaluated the baselines against

the gold standard using the Jensen-Shannon diver-

gence as proposed by Erk and McCarthy (2009).

Again, ASE is still the highest performing baseline

on Perception. The high performance for both eval-

uation measures suggests that an alternate measure

may be better suited for quantifying the difference

in solutions’ GWS applicabilities.

Second, performance was higher on the Percep-

tion task than on Ranking, the former of which was

anticipated being more difficult. We attribute the

lower Ranking performance to two factors. First,

the GWS data contains main tied rank senses; how-

ever, ties in sense ranks after the mapping process

are relatively rare, which reduces γ. Second, in-

stances in the GWS often have senses within close

applicability ranges. When scoring an induced an-

notation that swaps the applicability, the Perception

is less affected by the small change in applicability

magnitude, whereas Ranking is more affected due to

the change in ordering.

6 Conclusion and Future Work

GWS annotations offer great potential for reli-

ably annotating using fine-grained sense invento-

ries, where word instance may elicit several concur-

rent meanings. Given the expense of creating an-

notated training corpora with sufficient examples of

the graded senses, WSI offers significant promise for

learning senses automatically while needing only a

small amount GWS annotated data to learn the sense

mapping for a WSD task.

In this paper, we have carried out an initial study

on the performance of WSI systems on a GWS an-

notation task. Our primary contribution is an end-

to-end framework for mapping and evaluating in-

duced GWS data. We first proposed three objectives

for graded sense annotation along with correspond-

ing evaluation measures that reliably convey the ef-

fectiveness given the nature of GWS annotations.

Second, we proposed two new mapping procedures

that use graded sense applicability for converting in-

duced senses into a reference sense inventory. Using

three graph-based WSI models, we demonstrated

that incorporating graded sense applicability into the

sense mapping significantly improves GWS perfor-

mance over the commonly used method of Agirre et

al. (2006). Furthermore, our study demonstrated the

potential of WSI systems, showing that all the mod-

els were able to outperform all six of the proposed

baseline on the Ranking and Perception objectives.

Our findings raise several avenues for future

work. First, our study only considered three graph-

based WSI models; future work is needed to as-

sess the capabilities other WSI approaches, such as

vector-based or Bayesian. We are also interested in

comparing the performance of the Link model with

other recently developed all-words WSI approaches

such as Van de Cruys and Apidianaki (2011).

Second, the proposed evaluation relies on a su-

pervised mapping to the gold standard sense inven-

tory, which has potential to lose information and in-

correctly map new senses not in the gold standard.

While unsupervised clustering evaluations such as

the V-measure (Rosenberg and Hirschberg, 2007)

and paired Fscore (Artiles et al., 2009) are capable

of evaluating without such a mapping, future work

is needed to test extrinsic soft clustering evaluations

such as BCubed (Amigó et al., 2009) or develop

analogous techniques that take into account graded

class membership used in GWS annotations.

Last, we note that our setup normalized the GWS

ratings into probability distribution, which is stan-

dard in the SemEval evaluation setup. However, this

normalization incorrectly transforms GWS annota-

tions where no predominant sense was rated at the

highest value, e.g., an annotation of only two senses

rated as 3 on a scale of 1 to 5. While these percepti-

bilities may be left unnormalized, it is not clear how

to compare the induced GWS annotations with such

mid-interval values, or when the rating scale of the

WSI system is potentially unbounded. Future work

is needed both in GWS evaluation and in quantify-

ing applicability along a range in GWS-based WSI

systems to address this issue.

All models and data will be released as a part of

the S-Space Package (Jurgens and Stevens, 2010).3

3https://github.com/fozziethebeat/S-Space
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