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Abstract

We compare several  state of the art dependency 
parsers  with  our  own  parser  based  on  a  linear 
classification  technique.  Our  primary  goal  is 
therefore to use syntactic information only, in or-
der to keep the comparison of the parsers as fair 
as possible. We demonstrate, that despite the in-
ferior result using the standard evaluation metrics 
for  parsers  like  UAS  or  LAS  on  standard  test 
data,  our  system  achieves  comparable  results 
when used in an application, such as the SemEv-
al-2 #12 evaluation exercise PETE. Our submis-
sion achieved the 4th position out of 19 participat-
ing systems. However, since it only uses a linear 
classifier  it  works 17-20 times faster  than other 
state of the parsers, as for instance MaltParser or 
Stanford Parser.

1 Introduction

Parsing is the process of mapping sentences to 
their syntactic representations. These representa-
tions  can be used by computers  for  performing 
many  interesting  natural  language  processing 
tasks, such as question answering or information 
extraction.  In recent years  a lot of  parsers have 
been developed for this purpose.

A very interesting and important  issue is  the 
comparison between a large number of such pars-
ing systems.  The most  widespread method is to 
evaluate the number of correctly recognized units 
according to a certain gold standard. For depend-
ency-based units unlabeled or labeled attachment 

scores (percentage of correctly classified depend-
ency relations, either with or without the depend-
ency relation type) are usually used (cf. Buchholz 
and Marsi, 2006).

However, parsing is very rarely a goal in itself. 
In most cases it is a necessary preprocessing step 
for  a certain application.  Therefore it  is  usually 
not the best option to decide which parser suits 
one's goals best by purely looking on its perform-
ance on some standard test data set.  It is rather 
more  sensible  to  analyse  whether  the  parser  is 
able  to  recognise  those  syntactic  units  or  rela-
tions, which are most relevant for one's applica-
tion.

The  shared  task  #12  PETE  in  the  SemEval-
2010  Evaluation  Exercises  on  Semantic  Evalu-
ation (Yuret, Han and Turgut, 2010) involved re-
cognizing  textual  entailments  (RTE).  RTE  is  a 
binary  classification  task,  whose  goal  is  to  de-
termine, whether for a pair of texts T and H the 
meaning  of  H is  contained  in  T  (Dagan et  al., 
2006). This task can be very complex depending 
on the properties of these texts. However, for the 
data, released by the organisers of PETE, only the 
syntactic information should be sufficient to reli-
ably perform this task. Thus it offers an ideal set-
ting for  evaluating the performance of different 
parsers.

To our mind evaluation of parsers via RTE is a 
very good additional possibility, besides the usual 
evaluation metrics, since in most cases the main 
thing in real-word applications is to recognize the 
primary units, such as the subject, the predicate, 
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the objects, as well as their modifiers, rather than 
the other subordinate relations.

We have been developing our own a multilin-
gual dependency parser (called MDParser), which 
is  based  on  linear  classification1.  Whereas  the 
system is quite fast because the classification is 
linear,  it  usually achieves inferior  results  (using 
UAS/LAS evaluation metrics)  in  comparison  to 
other parsers, which for example use kernel-based 
classification  or  other  more  sophisticated  meth-
ods. 

Therefore the PETE shared task was a perfect 
opportunity for us to investigate whether the in-
ferior result of our parser is also relevant for its 
applicability  in  a  concrete  task.  We have  com-
pared our system with three state of the art pars-
ers made available on the PETE web page: Malt-
Parser,  MiniPar  and  StandfordParser.  We  have 
achieved the total score of 0.6545 (200/301 cor-
rect  answers  on  the  test  data),  which  is  the  4th 

rank out of 19 submissions. 

2 MDParser

MDParser stands for multilingual dependency 
parser and is a data-driven system, which can be 
used  to  parse  text  of  an  arbitrary  language  for 
which training data is available. It is a transition-
based parser and uses a deterministic version of 
the Covington's algorithm (Covington, 2000).

The models of the system are based on various 
features, which are extracted from the words of 
the  sentence,  including word forms  and part  of 
speech tags. No additional morphological features 
or lemmas are currently used in our models, even 
if they are available in the training data, since the 
system is especially designed for processing plain 
text in different languages, and such components 
are not available for every language.

The  preprocessing  components  of  MDParser 
include a.)  a  sentence splitter2,  since  the  parser 
constructs a dependency structure for  individual 
sentences,  b.)  a  tokenizer,  in order to recognise 
the elements between which the dependency rela-
tions will be built3, and c.) a part of speech tagger, 

1http://www.dfki.de/~avolokh/mdparser.pdf
2http://morphadorner.northwestern.edu/morphadorner/sen-
tencesplitter/
3http://morphadorner.northwestern.edu/morphadorner/word-
tokenizer/

in  order  to  determine  the  part  of  speech  tags, 
which are intensively used in the feature models4.

MDParser is an especially fast system because 
it  uses  a  linear  classification  algorithm  L1R-
LR(L1  regularised  logistic  regression)  from the 
machine learning package LibLinear (Lin et al., 
2008) for constructing its dependency structures 
and  therefore  it  is  particularly  suitable  for  pro-
cessing very large amounts of data. Thus it can be 
used as a part of larger applications in which de-
pendency structures are desired. 

Additionally,  significant efforts were made in 
order to make the gap between our linear classi-
fication and more advanced methods as small as 
possible,  e.g.  by  introducing  features  conjunc-
tions, which are complex features built out of or-
dinary features, as well as methods for automatic-
ally measuring feature usefulness in order to auto-
mate and optimise feature engineering.

3 Triple Representation

Every parser  usually produces  its  own some-
how special  representation  of  the  sentence.  We 
have created such a representation, which we will 
call  triple representation and have implemented 
an  automatic  transformation  of  the  results  of 
Minipar,  MaltParser,  Stanford  Parser  and  of 
course MDParser into it (cf. Wang and Neumann, 
2007).

The triple representation of a sentence is a set 
of  triple  elements  of  the  form  <parent,  label, 
child>, where child and parent elements stand for 
the head and the modifier words and their parts of 
speech, and label stands for the relation between 
them.  E.g.  <have:VBZ,  SBJ,  Somebody:NN>. 
This information is extractable from the results of 
any dependency parser.

4 Predicting Entailment

Whereas the first part of the PETE shared task 
was to construct syntactic representations for all 
T-H-pairs,  the  second important  subtask was  to 
determine whether the structure of H is entailed 
by the structure of T. The PETE guide5 states that 
the following three phenomena were particularly 
important to recognise the entailment relation:

4The part of speech tagger was trained with the SVMTool 
http://www.lsi.upc.edu/~nlp/SVMTool/
5http://pete.yuret.com/guide
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1. subject-verb  dependency  (John  kissed 
Mary. → John kissed somebody.)

2. verb-object  dependency  (John  kissed 
Mary → Mary was kissed.)

3. noun-modifier  dependency (The big red  
boat sank. → The boat was big.)

Thus we have manually formulated the follow-
ing generic decision rule for determining the en-
tailment relation between T and H:

1. identify  the  root  triple  of  H  <null:null, 
ROOT, x>

2. check whether the subject and the com-
plements(objects, verb complements) of the root 
word in H are present in T. Formally: all triples of 
H of the form <x, z, y>  should be contained in 
T(x in 1 and 2 is thus the same word).

3. if 2 returns false we have to check wheth-
er H is a structure in passive and T contains the 
same content in active voice(a) or the other way 
around(b). Formally:

3a. For triples of the form <be:VBZ, SBJ, s> 
and <be:VBZ, VC, t> in H check whether there is 
a  triple of the form <s, NMOD, t> in T.

3b. For triples of the form <u, OBJ,v> in H 
check whether there is  a triple  of  the  form <v, 
NMOD, u> in T.

It turned out that few additional modifications 
to  the  base  rule  were  necessary  for  some  sen-
tences: 1.) For sentences containing conjunctions: 
If we were looking for a subject of a certain verb 
and could not find it, we investigated whether this 
verb is connected via a conjunction with another 
one. If true, we compared the subject in H with 
the subject of the conjunct verb. 2.) For sentences 
containing special verbs, e.g. modal verbs may or 
can or auxiliary verbs like to have it turned out to 
be important to go one level deeper into the de-
pendency structure  and to  check whether  all  of 
their  arguments  in  H are  also present  in T,  the 
same way as in 3.

A triple <x,z,y> is contained in a set of triples 
S, when there exists at least one of the triples in S 
<u,w,v>, such that x=u, w=z and y=v. This is also 
true  if  the  words  somebody,  someone or  some-
thing are  used  on  one  of  the  equation  sides. 
Moreover, we use an English lemmatizer for all 
word forms, so when checking the equality of two 
words we actually check their lemmas, e.g., is and 
are are also treated equally.

5 Results

We have parsed the 66 pairs  of  the develop-
ment  data  with  4  parsers:6 MiniPar,  Stanford 
Parser, MaltParser and MDParser. After applying 
our rule we have achieved the following result:

Accuracy Parsing Speed

MiniPar 45/66 1233 ms

Stanford Parser 50/66 32889 ms

MaltParser 51/66 37149 ms

MDParser 50/66 1785 ms
We used  the  latest  versions  of  MiniPar7 and 

Stanford Parser8. We did not re-test the perform-
ance of these parsers on standard data, since we 
were sure that these versions provide the best pos-
sible results of these systems. 

As far as the MaltParser is concerned we had to 
train our own model. We have trained the model 
with the following LibSVM options: “-s_0_-t_1_-
d_2_-g_0.18_-c_0.4_-r_0.4_-e_1.0”.  We  were 
able  to  achieve  a  result  of  83.86%  LAS  and 
87.25% UAS on the standard CoNLL English test 
data,  a  result  which is  only slightly worse  than 
those reported in the literature, where the options 
are probably better tuned for the data. The train-
ing  data  used  for  training  was  the  same  as  for 
MDParser. 

The application of our rule for MDParser and 
MaltParser  was fully automated,  since both use 
the  same  training  data  and  thus  work  over  the 
same tag sets. For MiniPar and Stanford Parser, 
which  construct  different  dependency structures 
with  different  relation  types,  we  had  to  go 
through all pairs manually in order to investigate 
how the rule should be adopted to their tag sets 
and structures. However, since we have already 
counted the  number  of  structures,  for  which an 
adoptation of the rule would work during this in-
vestigation, we did not implement it in the end. 
Therefore  these  results  might  be  taken  with  a 
pinch of salt, despite the fact that we have tried to 
stay as fair as possible and treated some pairs as 
correct, even if a quite large modification of the 

6For all results reported in this section a desktop PC with 
an Intel Core 2 Duo E8400 3.00 GHz processor and 4.00 GB 
RAM was used.

7http://webdocs.cs.ualberta.ca/~lindek/minipar  
8http://nlp.stanford.edu/downloads/lex-parser.shtml  
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rule was necessary in order to adopt it to the dif-
ferent tag set and/or dependency structure.

For test  data we were only able to apply our 
rule for the results of MDParser and MaltParser, 
since for such a large number of pairs (301) only 
the fully automated version of our mechanism for 
predicting entailment could be applied. For Mini-
Par and Stanford Parser it was too tedious to ap-
ply it to them manually or to develop a mapping 
between  their  dependency  annotations  and  the 
ones used in MDParser or MaltParser.  Here are 
the official results of our submissions for Malt-
Parser and MDParser:

Accuracy Parsing Speed

MDParser 197/301 8704 ms

MaltParser 196/301 147938 ms

6 Discussion

We were able to show that our parser based on 
a linear classification technique is especially fast 
compared to other state of the art parsers. Further-
more, despite the fact, that it achieves an inferior 
result,  when using usual  evaluation metrics like 
UAS or LAS, it is absolutely suitable for being 
used in applications, since the most important de-
pendency relations are recognized correctly even 
with  a  less  sophisticated  linear  classifier  as  the 
one being used in MDParser.

As  far  as  the  overall  score  is  concerned  we 
think a much better result  could be achieved, if 
we would put more effort into our mechanism for 
recognizing  entailment  using  triple  representa-
tions. However, many of the pairs required more 
than only syntactical information. In many cases 
one would need to extend one's mechanism with 
logic,  semantics  and  the  possibility  to  resolve 
anaphoric  expressions,  which  to  our  mind  goes 
beyond the idea behind the PETE task. Since we 
were  primarly  interested  in  the  comparison 
between MaltParser and MDParser, we have not 
tried to include solutions for such cases. Here are 
some of the pairs we think require more than only 
syntax:

(4069  entailment="YES")  <t>Mr.  Sherwood 
speculated  that  the  leeway  that  Sea  Containers 
has means that Temple would have to "substan-
tially  increase  their  bid  if  they're  going  to  top 
us."</t>

<h>Someone  would  have  to  increase  the 
bid.</h>

(7003 entailment="YES") <t>After all, if  you 
were going to set up a workshop you had to have 
the proper equipment and that was that.</t>

<h>Somebody  had  to  have  the  equip-
ment.</h>

(3132.N entailment="YES")  <t>The first  was 
that America had become -- or was in danger of 
becoming  --  a  second-rate  military  power.</t>

<h>America was in danger.</h>
→ 4069,  7003 and 3132.N are  examples  for 

sentences were beyond syntactical information lo-
gic  is  required.  Moreover  we are  surprised that 
sentences of the form “if A, then B” entail B and 
a sentence of the form “A or  B” entails  B, since 
“or” in this case means uncertainty.

(4071.N  entailment="NO")  <t>Interpublic 
Group said its television programming operations 
-- which it expanded earlier this year -- agreed to 
supply  more  than  4,000  hours  of  original  pro-
gramming across Europe in 1990.</t>

<h>Interpublic Group expanded.</h>
(6034  entailment="YES")  <t>"Oh,"  said  the 

woman, "I've seen that picture already."</t>
<h>The woman has seen something.</h>

→ In 4071.N one has to resolve “it” in “it ex-
panded” to Interpublic Group. In 6034 one has to 
resolve “I” in “I've seen” to “the woman”. Both 
cases are examples for the necessity of anaphora 
resolution, which goes beyond syntax as well.

(2055) <t>The Big Board also added computer 
capacity  to  handle  huge  surges  in  trading 
volume.</t>

<h>Surges were handled.</h>
→ If something is added in order to do some-

thing it does not entail that this something is thus 
automatically done. Anyways pure syntax is not 
sufficient,  since  the  entailment  depends  on  the 
verb used in such a construction.

(3151.N) <t>Most of them are Democrats and 
nearly all consider themselves, and are viewed as, 
liberals.</t>
<h>Some consider themselves liberal.</h>

→ One has to know that the semantics of “con-
sider themselves as liberals” and “consider them-
selves liberal” is the same.
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