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Abstract

We describe a supervised learning approach to 
categorizing  inter-noun  relations,  based  on 
Support Vector Machines, that builds a differ-
ent classifier for each of seven semantic rela-
tions.  Each  model  uses  the  same  learning 
strategy,  while  a  simple  voting  procedure 
based on five trained discriminators with vari-
ous  blends  of  features  determines  the  final 
categorization.  The features that  characterize 
each of the noun pairs are a blend of lexical-
semantic  categories extracted  from WordNet 
and  several  flavors  of  syntactic  patterns  ex-
tracted  from  various  corpora,  including 
Wikipedia and the WMTS corpus.

1 Introduction

The  SemEval  task  for  classifying  inter-noun 
semantic  relations  employs  seven  semantic 
relations  that  are  not  exhaustive:  Cause-Effect, 
Instrument-Agency,  Product-Producer  Origin-
Entity,  Theme-Tool,  Part-Whole  and  Content-
Container.  The  task  is  to  classify  the  relations 
between pairs of concepts that are part of the same 
syntactic  structure  in  a  given  sentence.  This 
approach  employs  a  context-dependent 
classification,  as  opposed to  usual  out-of-context 
approaches  in  classifying  semantic  relations 
between noun pairs (e.g., (Turney, 2005), (Nastase 
et. al., 2006)).

Our  approach  is  based  on  the  Support  Vector 
Machines  learning  paradigm  (Vapnik,  1995),  in 
which supervised machine learning is used to find 
the most  salient combination of features for each 
semantic relation. These features include semantic 
generalizations of  the noun-senses as encoded as 
WordNet (WN) hyponyms,  some manually selec-

ted  linguistic  features  (e.g.,  agentive,  gerundive, 
etc.) as well as the observed relational behaviour of 
the given nouns in three different corpora: the col-
lected  glosses  of  WordNet;  the  collected  text  of 
Wikipedia; and the WMTS corpus.

One can find similar approaches in the literature 
to the semantic classification of noun compounds. 
Turney (2005) uses automatically extracted para-
phrases to build a similarity measure between pairs 
of concepts, while  Nastase et. al. (2006) proposes 
separate models for two different word representa-
tions  when  determining  the  semantic  relation  in 
modifier-noun compounds:  a model  based on the 
lexico-semantic aspects of words and a model that 
uses contextual information from corpora. Our ap-
proach is different in that we use all the available 
features of word representations and concept inter-
actions in a single hybrid model.

2 System description

Our  system,  named  the  Semantic  Relation  Dis-
criminator (or SRD), takes as input a set of noun 
pairs that are manually classified as positive/negat-
ive for a given semantic relation and produces as 
output  a  discriminator  for  that  semantic  relation. 
We used SRD to learn different models for each of 
the  seven  semantic  relations  in  the  classification 
scheme for task 4 in the SemEval Workshop. The 
SRD system relies  on several  data-resources  and 
tools:  the  WN  noun-sense  hierarchy,  a  corpus 
made up of the WordNet glosses, the complete text 
of  Wikipedia  (downloaded June,  2005),  a  search 
engine indexing a very large corpus of text, and the 
WEKA  Data  Mining  software  package  (version 
3.5). 

SRD combines  two types  of  features  for  each 
noun pair:  semantic  features  extracted  from  WN 
noun-sense hierarchy, for which the WN synset-id 
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information of each noun is used and syntactic fea-
tures extracted from the unlabeled and unstructured 
corpora mentioned above for which a shallow pars-
ing approach is employed. 

2.1 Feature acquisition 

SRD follows four steps in acquiring features: 

• Select  semantic  generalizations.  For  each 
noun-sense in a pair, SRD extracts all hyper-
nyms  at  depth  8 or  higher  in  the  WordNet 
noun-sense hierarchy.

• Extract  syntactic  phrases.  SRD  looks  for 
phrases in corpora that occur before or after 
each noun in a pair and which obey one of 
several  syntactic  templates.  SRD also looks 
for  joining  phrases  between  each  pair  of 
nouns that contain 5 words or less.

• Clean-up these phrases. SRD lemmatizes the 
words in each phrase and removes function 
words such as articles, possessive pronouns, 
adjective and adverbs. 

• Record  observed  patterns.  For  each  noun 
pair, SRD records the following types of syn-
tactic patterns together with their corpus fre-
quencies: joining terms that comprise at least 
one verb; phrases that are composed of one 
verb  and  one  preposition;  and  phrases  that 
are composed of a simple verb or a phrasal 
verb.

2.2 Selecting the features

Due to the large number of  features extracted in 
these  steps,  SRD  employs  five  different  models 
that  use  different  combination  of  features  and 
which pool their votes to determine a single predic-
ation for each learning task. We describe below the 
feature sets used for each component. The features 
have binary values: 1 if the feature is present for a 
noun pair, and 0 otherwise. 

Each model employs WordNet hypernyms (from 
the  top  8  layers  of  the  noun  hierarchy)  of  both 
noun-senses as semantic features, while models 1 
and 2 employ the following additional features for 
each noun pair (N1, N2):

1. The  most  frequent  syntactic  patterns  that 
appear between N1 and N2 in corpora

2. The  most  frequent  syntactic  patterns  that 
appear between N2 and N1 in corpora

Model 1 and Model 2 differ only in the syntactic 
templates  used  to  validate  inter-noun  patterns. 
Model  1  fixates  on  patterns  that  contain  a  verb, 
while Model 2 accepts patterns that contain either a 
preposition or a verb, or both. This yields, on aver-
age, 5,000 binary features for Model 1 for each of 
the seven relation types, and an average of 10,000 
binary features for Model 2. 

In addition to WN-derived hypernymic-features, 
models 3 and 4 employ the following: 

1. The  most  frequent  syntactic  patterns  that 
immediately precede N1 in a corpus

2. The  most  frequent  syntactic  patterns  that 
immediately follow N1 in a corpus

3. The  most  frequent  syntactic  patterns  that 
immediately precede N2 in a corpus

4. The  most  frequent  syntactic  patterns  that 
immediately follow N2 in a corpus

In Model  3 each syntactic  pattern comprises a 
hyphenated  verb,  while  the  syntactic  patterns  in 
Model 4 each contain a preposition or a verb. SRD 
generates,  on  average,  1,500  binary  features  in 
Model 3 and 2,500 features in Model 4 for each re-
lation-type.

In addition to WN-derived hypernymic-features, 
model 5 employs the following:

1. A set of linguistic features for N1, indicat-
ing  whether  this  noun  is  a  nominalized 
verb, or whether it frequently appears in a 
specific semantic case role (e.g., agent).

2. The same set of linguistic features as de-
termined for N2.

SRD generates, on average, approximately 700 
binary features for each relation-type in Model 5. 

2.3 Building the models

The  SVM  learning  paradigm  seems  particularly 
suitable  to  our  task  for  a  number  of  reasons. 
Firstly, it  behaves robustly for all  seven learning 
tasks, ignoring the noise in the training set. This is 
important, since e.g., some training pairs for the In-
strument-Agency relation were labeled as both true 
and false. Secondly, SVM has an automated mech-
anism  for  parameter  tuning,  which  reduces  the 
overall computational effort. 

SRD employs  polynomial  SVMs because  they 
appear  to  perform  better  for  this  task  compared 
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with simple linear SVMs or radial-basis functions. 
We used the WEKA implementation of John Plat-
t’s Sequential Minimal Optimization method (Platt, 
1998) to train the feature weights on all the avail-
able training data. Using SMO to train the polyno-
mial SVM takes approx. 2.8 CPU sec. per model.

The motivation for a multiple model scheme ap-
proach comes from empirical results. SRD yields 
higher  results  relative  to  the  five  single  models 
schemes that compose our system when evaluated 
using 10-fold cross validation on the training data. 

3 Experiments and Results

The SemEval  data-set  for  each  of  the  seven  se-
mantic relations comprises 140 annotated instances 
for training and between 70 to 90 for testing. Each 
instance  is  manually  labelled  with  the  part  of 
speech of each concept in a pair, as well as the WN 
synset-id of the intended word-sense and a sample 
sentential context. SRD’s predictions fall into eval-
uation category B, as the system uses WN synset-
id but not the query pattern used to originally pop-
ulate the data-sets with instances. SRD also skips 
those  training  instances  where  WN sense-ids  are 
not provided, so that the actual number of training 
instances used ranges from 129 to 138 manually la-
belled examples per relation-type.

SRD’s  precision,  recall,  F-score  and  accuracy 
for each relation is given by Table 1.

P R F1 Acc #t 
inst.

Cause-Effect 69.8 73.2 71.4 70.0 80
Instrument-Agency 72.5 76.3 74.4 74.4 78
Product-Producer 80.6 87.1 83.7 77.4 93
Origin-Entity 60.0 50.0 54.5 63.0 81
Theme-Tool 50.0 34.5 40.8 59.2 71
Part-Whole 71.4 57.7 63.8 76.4 72
Content-Container 84.8 73.7 78.9 79.7 74
Average 69.9 64.6 66.8 71.4 78.4

Table1. Results for SRD across the seven learning tasks

To  assess  the  effect  of  varying  quantities  of 
training  data,  the  model  was  tested  on  different 
fractions of the training data: dataset B1 comprises 
the first quarter of the training data, dataset B2 the 
first  half,   while  B3  dataset  comprises  the  first 
three  quarters  and  B4  comprises  the  complete 
training dataset. We report the behavior of SRD in 
predicting the unseen test data when learning from 
these datasets in table 2. The measures of table 2 

represent an average of SRD’s performance across 
all relation-types.

P R F1 Acc
Dataset B1  65.4 53.3 56.4 66.2
Dataset B2 67.8 63.8 63.5 69.6
Dataset B3 71.7 64.0 66.8 71.6
Dataset B4 69.9 64.6 66.8 71.4

Table2. Results for SRD on different training datasets

3.1 Error analysis

Three types of baseline values were proposed for 
this  task.  Baseline  1 (“majority baseline”)  is  ob-
tained by always guessing either "true" or "false", 
according to whichever is the majority category in 
the testing data-set for the given relation. Baseline 
2 (“alltrue baseline”) is achieved by always guess-
ing  “true”.  Baseline  3  (“probmatch  baseline”)  is 
obtained  by  randomly  guessing  "true"  or  "false" 
with  a  probability  matching  the  distribution  of 
"true" or "false" in the testing dataset.
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Figure1.  Comparison  of  SRD’s  F-scores  for  each  se-
mantic relation and the corresponding baselines.

Figure 1 plots the F-scores obtained for each se-
mantic relation. We observe that SRD has exhibits 
poor performance on two particular relations, Ori-
gin-Entity and Theme-Tool, denoted “class4” and 
“class5” in the plot of Figure 1. SRD achieves the 
same  F-measure  score  as  the  random  prediction 
baseline for Theme-Tool class, suggesting that the 
features used are simply not capable of building a 
discriminator for this semantic relation. SRD’s F-
score for Origin-Entity class is 10% higher than the 
random baseline, but still performs below the other 
two baselines. SRD’s best performance is achieved 
for Product-Producer and Part-Whole,  with an F-
score 11% higher than the highest baseline.
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Table3. SRD F-measures using different feature sets

3.2 Improvements

One obvious problem with SRD is that we use a 
high-dimensional feature-space to train each mod-
el. Research in text categorization (e.g., Dumais et  
al., 1998) shows that feature selection algorithms 
like information gain can identify the most produc-
tive dimensions of the feature space and simultane-
ously boost classification accuracy.

To explore  this  potential  for  improvement,  we 
applied two types of feature selection filters (using 
WEKA): the InfoGainAttrEval filter that evaluates 
the utility of  a feature  by measuring information 
gain w.r.t. the class; and the  CfsSubsetEval filter, 
which evaluates the utility of a subset of features 
by considering the individual predictive ability of 
each individually and the degree of redundancy be-
tween  them  collectively.  Results  of  our  experi-
ments with SRD using different subsets of feature 
sets are displayed in Table 3. Set 1 is the complete 
set of all features. Set 2 is the subset obtained with 
the  top  n  features  as  ranked  by the  InfoGainAt-
trEval filter  (n is  determined using 10-fold cross 
validation on the training data). Set 3 is a tailored 
feature-set created for each relation-type using the 
CfsSubsetEval filter. Set 4 is the subset of all fea-
tures extracted from WN. 

We find that feature-filtering boosts the perfor-
mance of some learning tasks by up to 14 % (e.g., 
the Theme-Tool relation), but it can also decrease 
performance by the same amount (e.g., the Origin-
Entity relation). SRD achieves its best performance 
-- an overall F-measure of 71.7% -- when using a 
feature set that is tailored to each of the semantic 
relation classification tasks (e.g., Set 4 (WN only) 
for Origin-Entity, Set 1 (all) for Product-Producer 
and Container-Content, Set 4 and Set 3 (relation-
specific subsets) for everything else).

4 Conclusions

SRD  is  an  SVM-based  approach  to  classifying 
noun-pairs into categories that best reflect the se-
mantic relationship underlying each pair. Without 
feature-filtering, SRD shows modest classification 
capability, performing better than the highest base-
lines for five of the seven relational classes. Exper-
iments  with  feature  filtering  encourage  us  to  try 
and refine SRD’s feature space to focus on more 
discriminatory and semantically-revealing features 
of nouns. Feature-filtering can diminish as well as 
improve performance, and thus, should ideally be 
linked to an insightful theory of how particular fea-
tures  contribute  to  the  human-understanding  of 
noun-noun  pairs.  Filtering  techniques  provide  a 
good basis for formulating feature-based hypothe-
ses, but the most productive feature sets will come, 
we hope, from a cognitive and conceptual under-
standing of  the  processes  of  phrase  construction, 
rather than from an exhaustive and largely theory-
free exploration of different feature-sets.
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