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Abstract

Data sparsity is one of the main factors that
make word sense disambiguation (WSD)
difficult. To overcome this problem we need
to find effective ways to use resources other
than sense labeled data. In this paper I de-
scribe a WSD system that uses a statistical
language model based on a large unanno-
tated corpus. The model is used to evalu-
ate the likelihood of various substitutes for a
word in a given context. These likelihoods
are then used to determine the best sense for
the word in novel contexts. The resulting
system participated in three tasks in the Se-
mEval 2007 workshop. The WSD of prepo-
sitions task proved to be challenging for the
system, possibly illustrating some of its lim-
itations: e.g. not all words have good sub-
stitutes. The system achieved promising re-
sults for the English lexical sample and En-
glish lexical substitution tasks.

1 Introduction

A typical word sense disambiguation system is
trained on a corpus of manually sense tagged text.
Machine learning algorithms are then employed to
find the best sense for a word in a novel context
by generalizing from the training examples. The
training data is costly to generate and inter-annotator
agreement is difficult to achieve. Thus there is very
little training data available: the largest single cor-
pus of sense tagged text, SemCor, has 41,497 sense
tagged words. (Yuret, 2004) observed that approxi-
mately half of the test instances do not match any of

the contextual features learned from the training data
for an all words disambiguation task. (Yarowsky and
Florian, 2002) found that each successive doubling
of the training data only leads to a 3-4% error reduc-
tion within their experimental range.

Humans do not seem to be cursed with an expo-
nential training data requirement to become profi-
cient with the use of a word. Dictionaries typically
contain a definition and one or two examples of us-
age for each sense. This seems to be sufficient for
a human to use the word correctly in contexts that
share no surface features with the dictionary exam-
ples. The 108 waking seconds it takes a person to
become proficient in a language does not seem suf-
ficient to master all the words and their different
senses. We need models that do not require large
amounts of annotated text to perform WSD.

What possible process can explain our proficiency
without relying on a lot of labeled data? Let us look
at a concrete example: The two most frequent senses
of the word “board” according to WordNet 3.0 (Fell-
baum, 1998) are the “committee” sense, and the
“plank” sense. When we hear a sentence like “There
was a board meeting”, it is immediately obvious that
the first sense is intended. One hypothesis is that a
common sense inference engine in your brain rules
out the second sense. Maybe you visualize pieces
of timber sitting around a meeting table and decide
that it is absurd. Another hypothesis is that the plank
sense does not even occur to you because you hear
this sentence in the middle of a conversation about
corporate matters. Therefore the plank sense is not
psychologically “primed”. Finally, maybe you sub-
consciously perform a substitution and the sentence
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“There was a plank meeting” just sounds bad to your
linguistic “ear”.

In this paper I will describe a system that judges
potential substitutions in a given context using a sta-
tistical language model as a surrogate for the linguis-
tic “ear”. The likelihoods of the various substitutes
are used to select the best sense for a target word.

The use of substitutes for WSD is not new. (Lea-
cock et al., 1998) demonstrated the use of related
monosemous words (monosemous relatives) to col-
lect examples for a given sense from the Internet.
(Mihalcea, 2002) used the monosemous relatives
technique for bootstrapping the automatic acquisi-
tion of large sense tagged corpora. In both cases, the
focus was on collecting more labeled examples to be
subsequently used with supervised machine learn-
ing techniques. (Martinez et al., 2006) extended the
method to make use of polysemous relatives. More
importantly, their method places these relatives in
the context of the target word to query a search en-
gine and uses the search results to predict the best
sense in an unsupervised manner.

There are three areas that distinguish my system
from the previous work: (i) The probabilities for
substitutes in context are determined using a statisti-
cal language model rather than search hits on heuris-
tically constructed queries, (ii) The set of substitutes
are derived from multiple sources and optimized us-
ing WSD performance as the objective function, and
(iii) A probabilistic generative model is used to se-
lect the best sense rather than typical machine learn-
ing algorithms or heuristics. Each of these areas is
explained further below.

Probabilities for substitutes: Statistical language
modeling is the art of determining the probability of
a sequence of words. According to the model used
in this study, the sentence “There was a committee
meeting” is 17,629 times more likely than the sen-
tence “There was a plank meeting”. Thus, a statis-
tical language model can be used as a surrogate for
your inner ear that decides what sounds good and
what sounds bad. I used a language model based on
the Web 1T 5-gram dataset (Brants and Franz, 2006)
which gives the counts of 1 to 5-grams in a web cor-
pus of 1012 words. The details of the Web1T model
are given in the Appendix.

Given that I criticize existing WSD algorithms for

using too much data, it might seem hypocritical to
employ a data source with 1012 words. In my de-
fense, from an engineering perspective, an unanno-
tated 1012 word corpus exists, whereas large sense
tagged corpora do not. From a scientific perspective,
it is clear that no human ever comes close to expe-
riencing 1012 words, but they do outperform simple
n-gram language models based on that much data in
predicting the likelihood of words in novel contexts
(Shannon, 1951). So, even though we do not know
how humans do it, we do know that they have the
equivalent of a powerful statistical language model
in their heads.

Selecting the best substitutes: Perhaps more im-
portant for the performance of the system is the deci-
sion of which substitutes to try. We never thought of
using “monkey” as a potential substitute for “board”.
One possibility is to use the synonyms in Word-
Net which were selected such that they can be in-
terchanged in at least some contexts. However 54%
of WordNet synsets do not have any synonyms. Be-
sides, synonymous words would not always help if
they share similar ambiguities in meaning. Substi-
tutes that are not synonyms, on the other hand, may
be very useful such as “hot” vs. “cold” or “car”
vs. “truck”. In general we are looking for potential
substitutes that have a high likelihood of appearing
in contexts that are associated with a specific sense
of the target word. The substitute selection method
used in this work is described in Section 3.

Selecting the best sense: Once we have a lan-
guage model and a set of substitutes to try, we need
a decision procedure that picks the best sense of a
word in a given context. An unsupervised system
can be designed to keep track of the sense associ-
ated with each substitute based on the lexical re-
source used. However since I used multiple lexical
resources, and had training data available, I chose a
supervised approach. For each instance in the train-
ing set, the likelihood of each substitute is deter-
mined. Then instances of a single sense are grouped
together to yield a probability distribution over the
substitutes for that sense. When a test instance is
encountered its substitute distribution is compared
to that of each sense to select the most appropriate
one. Section 2 describes the sense selection proce-
dure in detail.
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We could say each context is represented with
the likelihood it assigns to various substitutes rather
than its surface features. That way contexts that do
not share any surface features can be related to each
other.

Results: To summarize the results, in the Word
Sense Disambiguation of Prepositions Task, the sys-
tem achieved 54.7% accuracy1 . This is 15.1% above
the baseline of picking the most frequent sense
but 14.6% below the best system. In the Coarse
Grained English Lexical Sample WSD Task, the sys-
tem achieved 85.1% accuracy, which is 6.4% above
the baseline of picking the most frequent sense and
3.6% below the best system. Finally, in the English
Lexical Substitution Task, the system achieved the
top result for picking the best substitute for each
word.

2 Sense Selection Procedure

Consider a target word w0 with n senses S =
{s1, . . . , sn}. Let Cj = {cj1, cj2, . . .} be the set
of contexts in the training data where w0 has been
tagged with sense sj . The prior probability of a
sense sj will be defined as:

P (sj) =
|Cj |∑n

k=1 |Ck|

Suppose we decide to use m substitutes W =
{w1, . . . , wm}. The selection of the possible sub-
stitutes is discussed in Section 3. Let P (wi, c) de-
note the probability of the context c where the target
word has been replaced with wi. This probability is
obtained from the Web1T language model. The con-
ditional probability of a substitute wi in a particular
context c is defined as:

P (wi|c) =
P (wi, c)∑

w∈W P (w, c)

The conditional probability of a substitute wi for
a particular sense sj is defined as:

P (wi|sj) =
1

|Cj |

∑

c∈Cj

P (wi|c)

1In all the tasks participated, the system submitted a unique
answer for each instance. Therefore precision, recall, F-
measure, and accuracy have the same value. I will use the term
accuracy to represent them all.

Given a test context ct, we would like to find out
which sense sj it is most likely to represent:

argmaxj P (sj |ct) ∝ P (ct|sj)P (sj)

To calculate the likelihood of the test context
P (ct|sj), we first find the conditional probability
distribution of the substitutes P (wi|ct), as described
above. Treating these probabilities as fractional
counts we can express the likelihood as:

P (ct|sj) ∝
∏

w∈W

P (w|sj)
P (w|ct)

Thus we choose the sense that maximizes the pos-
terior probability:

argmaxjP (sj)
∏

w∈W

P (w|sj)
P (w|ct)

3 Substitute Selection Procedure

Potential substitutes for a word were selected from
WordNet 3.0 (Fellbaum, 1998), and the Roget The-
saurus (Thesaurus.com, 2007).

When selecting the WordNet substitutes, the pro-
gram considered all synsets of the target word and
neighboring synsets accessible following a single
link. All words contained within these synsets and
their glosses were considered as potential substi-
tutes.

When selecting the Roget substitutes, the program
considered all entries that included the target word.
By default, the entries that included the target word
as part of a multi word phrase and entries that had
the wrong part of speech were excluded.

I observed that the particular set of substitutes
used had a large impact on the disambiguation per-
formance in cross validation. Therefore I spent a
considerable amount of effort trying to optimize the
substitute sets. The union of the WordNet and Ro-
get substitutes were first sorted based on their dis-
criminative power measured by the likelihood ratio
of their best sense:

LR(wi) = max
j

P (wi|sj)

P (wi|sj)

The following optimization algorithms were then
run to maximize the leave-one-out cross validation
(loocv) accuracy on the lexical sample WSD train-
ing data.
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1. Each substitute was temporarily deleted and the
resulting gain in loocv was noted. The sub-
stitute that led to the highest gain was perma-
nently deleted. The procedure was repeated un-
til no further loocv gain was possible.

2. Each pair of substitutes were tried alone and
the pair that gave the highest loocv score was
chosen as the initial list. Other substitutes were
then greedily added to this list until no further
loocv gain was possible.

3. Golden section search was used to find the ideal
cutoff point in the list of substitutes sorted by
likelihood ratio. Substitutes below the cutoff
point were deleted.

None of these algorithms consistently gave the
best result. Thus, each algorithm was run for each
target word and the substitute set that gave the best
loocv result was used for the final testing. The loocv
gain from using the optimized substitute sets instead
of the initial union of WordNet and Roget substi-
tutes was significant. For example the average gain
was 9.4% and the maximum was 38% for the En-
glish Lexical Sample WSD task.

4 English Lexical Substitution

The English Lexical Substitution Task (McCarthy
and Navigli, 2007), for both human annotators and
systems is to replace a target word in a sentence with
as close a word as possible. It is different from the
standard WSD tasks in that there is no sense repos-
itory used, and even the identification of a discrete
sense is not necessary.

The task used a lexical sample of 171 words with
10 instances each. For each instance the human
annotators selected several substitutes. There were
three subtasks: best: scoring the best substitute for
a given item, oot: scoring the best ten substitutes for
a given item, and mw: detection and identification
of multi-words. The details of the subtasks and scor-
ing can be found in (McCarthy and Navigli, 2007).
My system participated in the first two subtasks.

Because there is no training set, the supervised
optimization of the substitute set using the algo-
rithms described in Section 3 is not applicable.
Based on the trial data, I found that the Roget substi-
tutes work better than the WordNet substitutes most

BEST P R Mode P Mode R
all 12.90 12.90 20.65 20.65

Further Analysis
NMWT 13.39 13.39 21.20 21.20
NMWS 14.33 13.98 21.88 21.42
RAND 12.67 12.67 20.34 20.34
MAN 13.16 13.16 21.01 21.01

OOT P R Mode P Mode R
all 46.15 46.15 61.30 61.30

Further Analysis
NMWT 48.43 48.43 63.42 63.42
NMWS 49.72 49.72 63.74 63.74
RAND 47.80 47.80 62.84 62.84
MAN 44.23 44.23 59.55 59.55

Table 1: BEST and OOT results: P is precision, R
is recall, Mode indicates accuracy selecting the sin-
gle preferred substitute when there is one, NMWT

is the score without items identified as multi-words,
NMWS is the score using only single word substi-
tutes, RAND is the score for the items selected ran-
domly, and MAN is the score for the items selected
manually.

of the time. The antonyms in each entry and the
entries that did not have the target word as the head
were filtered out to improve the accuracy. Antonyms
happen to be good substitutes for WSD, but not so
good for lexical substitution.

For the final output of the system, the substitutes
wi in a context c were simply sorted by P (wi, c)
which is calculated based on the Web1T language
model.

In the best subtask the system achieved 12.9% ac-
curacy, which is the top score and 2.95% above the
baseline. The system was able to find the mode (a
single substitute preferred to the others by the anno-
tators) in 20.65% of the cases when there was one,
which is 5.37% above the baseline and 0.08% be-
low the top score. The top part of Table 1 gives
the breakdown of the best score, see (McCarthy and
Navigli, 2007) for details.

The low numbers here are partly a consequence of
the scoring formula used. Specifically, the score for
a single item is bounded by the frequency of the best
substitute in the gold standard file. Therefore, the
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Figure 1: Training set size vs. accuracy above base-
line for the English lexical sample task.

highest achievable score was not 100%, but 45.76%.
A more intuitive way to look at the result may be
the following: Human annotators assigned 4.04 dis-
tinct substitutes for each instance on average, and
my system was able to guess one of these as the best
in 33.73% of the cases.

In the oot subtask the system achieved 46.15%
accuracy, which is 16.45% above the baseline and
22.88% below the top result. The system was able to
find the mode as one of its 10 guesses in 61.30% of
the cases when there was a mode, which is 20.73%
above the best baseline and 4.96% below the top
score. Unlike the best scores, 100% accuracy is pos-
sible for oot. Each item had 1 to 9 distinct substi-
tutes in the gold standard, so an ideal system could
potentially cover them all with 10 guesses. The sec-
ond part of Table 1 gives the breakdown of the oot
score.

In conclusion, selecting substitutes based on a
standard repository like Roget and ranking them us-
ing the ngram language model gives a good base-
line for this task. To improve the performance along
these lines we need better language models, and bet-
ter substitute selection procedures. Even the best
language model will only tell us which words are
most likely to replace our target word, not which
ones preserve the meaning. Relying on reposito-
ries like Roget for the purpose of substitute selection
seems ad-hoc and better methods are needed.

5 English Lexical Sample WSD

The Coarse-Grained English Lexical Sample WSD
Task (Palmer et al., 2007), provided training and
test data for sense disambiguation of 65 verbs and
35 nouns. On average there were 223 training and
49 testing instances for each word tagged with an
OntoNote sense tag (Hovy et al., 2006). OntoNote
sense tags are groupings of WordNet senses that
are more coarse-grained than traditional WN entries,
and which have achieved on average 90% inter-
annotator agreement. The number of senses for a
word ranged from 1 to 13 with an average of 3.6.

I used substitute sets optimized for each word as
described in Section 3. Then a single best sense for
each test instance was selected based on the model
given in Section 2. The system achieved 85.05% ac-
curacy, which is 6.39% above the baseline of pick-
ing the most frequent sense and 3.65% below the top
score.

These numbers seem higher than previous Sen-
seval lexical sample tasks. The best system in
Senseval-3 (Mihalcea et al., 2004; Grozea, 2004)
achieved 72.9% fine grained, 79.3% coarse grained
accuracy. Many factors may have played a role but
the most important one is probably the sense inven-
tory. The nouns and verbs in Senseval-3 had 6.1 fine
grained and 4.5 coarse grained senses on average.

The leave-one-out cross-validation result of my
system on the training set was 83.21% with the un-
filtered union of Roget and WordNet substitutes, and
90.69% with the optimized subset. Clearly there is
some over-fitting in the substitute optimization pro-
cess which needs to be improved.

Table 2 details the performance on individual
words. The accuracy is 88.67% on the nouns and
81.02% on the verbs. One can clearly see the rela-
tion of the performance with the number of senses
(decreasing) and the frequency of the first sense (in-
creasing). Interestingly no clear relation exists be-
tween the training set size and the accuracy above
the baseline. Figure 1 plots the relationship between
training set size vs. the accuracy gain above the most
frequent sense baseline. This could indicate that the
system peaks at a low training set size and general-
izes well because of the language model. However,
it should be noted that each point in the plot rep-
resents a different word, not experiments with the
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same word at different training set sizes. Thus the
difficulty of each word may be the overriding factor
in determining performance. A more detailed study
similar to (Yarowsky and Florian, 2002) is needed to
explore the relationship in more detail.

6 WSD of Prepositions

The Word Sense Disambiguation of Prepositions
Task (Litkowski and Hargraves, 2007), provided
training and test data for sense disambiguation of
34 prepositions. On average there were 486 train-
ing and 234 test instances for each preposition. The
number of senses for a word ranged from 1 to 20
with an average of 7.4.

The system described in Sections 2 and 3 were
applied to this task as well. WordNet does not have
information about prepositions, so most of the can-
didate substitutes were obtained from Roget and The
Preposition Project (Litkowski, 2005). After opti-
mizing the substitute sets the system achieved 54.7%
accuracy which is 15.1% above the most frequent
sense baseline and 14.6% below the top result. Un-
fortunately there were only three teams that partic-
ipated in this task. The detailed breakdown of the
results can be seen in the second part of Table 2.

The loocv result on the training data with the ini-
tial unfiltered set of substitutes was 51.70%. Opti-
mizations described in Section 3 increased this to
59.71%. This increase is comparable to the one
in the lexical substitution task. The final result of
54.7% shows signs of overfitting in the substitute se-
lection process.

The average gain above the baseline for preposi-
tions (39.6% to 54.7%) is significantly higher than
the English lexical sample task (78.7% to 85.1%).
However the preposition numbers are generally
lower compared to the nouns and verbs because they
are more ambiguous: the number of senses is higher
and the first sense frequency is lower.

Good quality substitutes are difficult to find for
prepositions. Unlike common nouns and verbs,
common prepositions play unique roles in language
and are difficult to replace. Open class words have
synonyms, hypernyms, antonyms etc. that provide
good substitutes: it is easy to come up with “I ate
halibut” when you see “I ate fish”. It is not as easy
to replace “of” in the phrase “the president of the

company”. Even when there is a good substitute,
e.g. “over” vs. “under”, the two prepositions usually
share the exact same ambiguities: they can both ex-
press a physical direction or a quantity comparison.
Therefore the substitution based model presented in
this work may not be a good match for preposition
disambiguation.

7 Contributions and Future Work

A WSD method employing a statistical language
model was introduced. The language model is used
to evaluate the likelihood of possible substitutes for
the target word in a given context. Each context is
represented with its preferences for possible substi-
tutes, thus contexts with no surface features in com-
mon can nevertheless be related to each other.

The set of substitutes used for a word had a large
effect on the performance of the resulting system. A
substitute selection procedure that uses the language
model itself rather than external lexical resources
may work better.

I hypothesize that the model would be advanta-
geous on tasks like “all words” WSD, where data
sparseness is paramount, because it is able to link
contexts with no surface features in common. It can
be used in an unsupervised manner where the sub-
stitutes and their associated senses can be obtained
from a lexical resource. Work along these lines was
not completed due to time limitations.

Finally, there are two failure modes for the algo-
rithm: either there are no good substitutes that dif-
ferentiate the various senses (as I suspect is the case
for some prepositions), or the language model does
not yield accurate preferences among the substitutes
that correspond to our intuition. In the first case we
have to fall back on other methods, as the substi-
tutes obviously are of limited value. The correspon-
dence between the language model and our intuition
requires further study.

Appendix: Web1T Language Model

The Web 1T 5-gram dataset (Brants and Franz,
2006) that was used to build a language model for
this work consists of the counts of word sequences
up to length 5 in a 1012 word corpus derived from
the Web. The data consists of mostly English words
that have been tokenized and sentence tagged. To-
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kens that appear less than 200 times and ngrams that
appear less than 40 times have been filtered out.

I used a smoothing method loosely based on the
one-count method given in (Chen and Goodman,
1996). Because ngrams with low counts are not in-
cluded in the data I used ngrams with missing counts
instead of ngrams with one counts. The missing
count is defined as:

m(wi−1
i−n+1) = c(wi−1

i−n+1)−
∑

wi

c(wi
i−n+1)

where wi
i−n+1 indicates the n-word sequence end-

ing with wi, and c(wi
i−n+1) is the count of this se-

quence. The corresponding smoothing formula is:

P (wi|w
i−1
i−n+1) =

c(wi
i−n+1) + (1 + αn)m(wi−1

i−n+1)P (wi|w
i−1
i−n+2)

c(wi−1
i−n+1) + αnm(wi−1

i−n+1)

The parameters αn > 0 for n = 2 . . . 5 was opti-
mized on the Brown corpus to yield a cross entropy
of 8.06 bits per token. The optimized parameters are
given below:

α2 = 6.71, α3 = 5.94, α4 = 6.55, α5 = 5.71
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English Lexical Sample WSD
lexelt trn/tst s mfs acc lexelt trn/tst s mfs acc
affect.v 45/19 1 1.000 1.000 allow.v 108/35 2 0.971 0.971
announce.v 88/20 2 1.000 1.000 approve.v 53/12 2 0.917 0.917
area.n 326/37 3 0.703 0.838 ask.v 348/58 6 0.517 0.759
attempt.v 40/10 1 1.000 1.000 authority.n 90/21 4 0.238 0.714
avoid.v 55/16 1 1.000 1.000 base.n 92/20 5 0.100 0.650
begin.v 114/48 4 0.562 0.792 believe.v 202/55 2 0.782 0.836
bill.n 404/102 3 0.755 0.902 build.v 119/46 3 0.739 0.543
buy.v 164/46 5 0.761 0.783 capital.n 278/57 4 0.965 0.982
care.v 69/7 3 0.286 1.000 carrier.n 111/21 7 0.714 0.667
cause.v 73/47 1 1.000 1.000 chance.n 91/15 4 0.400 0.667
claim.v 54/15 3 0.800 0.800 come.v 186/43 10 0.233 0.372
complain.v 32/14 2 0.857 0.857 complete.v 42/16 2 0.938 0.938
condition.n 132/34 2 0.765 0.765 contribute.v 35/18 2 0.500 0.500
defense.n 120/21 7 0.286 0.476 describe.v 57/19 3 1.000 1.000
development.n 180/29 3 0.621 0.759 disclose.v 55/14 1 0.929 0.929
do.v 207/61 4 0.902 0.934 drug.n 205/46 2 0.870 0.935
effect.n 178/30 3 0.767 0.800 end.v 135/21 4 0.524 0.619
enjoy.v 56/14 2 0.571 0.643 estimate.v 74/16 1 1.000 1.000
examine.v 26/3 3 1.000 1.000 exchange.n 363/61 5 0.738 0.902
exist.v 52/22 2 1.000 1.000 explain.v 85/18 2 0.889 0.944
express.v 47/10 1 1.000 1.000 feel.v 347/51 3 0.686 0.765
find.v 174/28 5 0.821 0.821 fix.v 32/2 5 0.500 0.500
future.n 350/146 3 0.863 0.829 go.v 244/61 12 0.459 0.426
grant.v 19/5 2 0.800 0.400 hold.v 129/24 8 0.375 0.542
hope.v 103/33 1 1.000 1.000 hour.n 187/48 4 0.896 0.771
improve.v 31/16 1 1.000 1.000 job.n 188/39 3 0.821 0.795
join.v 68/18 4 0.389 0.556 keep.v 260/80 7 0.562 0.562
kill.v 111/16 4 0.875 0.875 lead.v 165/39 6 0.385 0.513
maintain.v 61/10 2 0.900 0.800 management.n 284/45 2 0.711 0.978
move.n 270/47 4 0.979 0.979 need.v 195/56 2 0.714 0.857
negotiate.v 25/9 1 1.000 1.000 network.n 152/55 3 0.909 0.836
occur.v 47/22 2 0.864 0.864 order.n 346/57 7 0.912 0.930
part.n 481/71 4 0.662 0.901 people.n 754/115 4 0.904 0.948
plant.n 347/64 2 0.984 0.984 point.n 469/150 9 0.813 0.920
policy.n 331/39 2 0.974 0.949 position.n 268/45 7 0.467 0.556
power.n 251/47 3 0.277 0.766 prepare.v 54/18 2 0.778 0.833
president.n 879/177 3 0.729 0.927 produce.v 115/44 2 0.750 0.750
promise.v 50/8 2 0.750 0.750 propose.v 34/14 2 0.857 1.000
prove.v 49/22 3 0.318 0.818 purchase.v 35/15 1 1.000 1.000
raise.v 147/34 7 0.147 0.441 rate.n 1009/145 2 0.862 0.917
recall.v 49/15 3 0.867 0.933 receive.v 136/48 2 0.958 0.958
regard.v 40/14 3 0.714 0.643 remember.v 121/13 2 1.000 1.000
remove.v 47/17 1 1.000 1.000 replace.v 46/15 2 1.000 1.000
report.v 128/35 3 0.914 0.914 rush.v 28/7 2 1.000 1.000
say.v 2161/541 5 0.987 0.987 see.v 158/54 6 0.444 0.574
set.v 174/42 9 0.286 0.500 share.n 2536/525 2 0.971 0.973
source.n 152/35 5 0.371 0.829 space.n 67/14 5 0.786 0.929
start.v 214/38 6 0.447 0.447 state.n 617/72 3 0.792 0.819
system.n 450/70 5 0.486 0.586 turn.v 340/62 13 0.387 0.516
value.n 335/59 3 0.983 0.983 work.v 230/43 7 0.558 0.721
AVG 222.8/48.5 3.6 0.787 0.851

Preposition WSD
lexelt trn/tst s mfs acc lexelt trn/tst s mfs acc
about.p 710/364 6 0.885 0.934 above.p 48/23 5 0.609 0.522
across.p 319/151 2 0.960 0.960 after.p 103/53 6 0.434 0.585
against.p 195/92 6 0.435 0.793 along.p 364/173 3 0.954 0.954
among.p 100/50 3 0.300 0.680 around.p 334/155 6 0.452 0.535
as.p 173/84 1 1.000 1.000 at.p 715/367 12 0.425 0.662
before.p 47/20 3 0.450 0.850 behind.p 138/68 4 0.662 0.676
beneath.p 57/28 3 0.571 0.679 beside.p 62/29 1 1.000 1.000
between.p 211/102 7 0.422 0.765 by.p 509/248 10 0.371 0.556
down.p 332/153 3 0.438 0.647 during.p 81/39 2 0.385 0.564
for.p 950/478 13 0.238 0.395 from.p 1204/578 16 0.279 0.415
in.p 1391/688 13 0.362 0.436 inside.p 67/38 4 0.526 0.579
into.p 604/297 8 0.451 0.539 like.p 266/125 7 0.768 0.808
of.p 3000/1478 17 0.205 0.374 off.p 161/76 4 0.763 0.776
on.p 872/441 20 0.206 0.469 onto.p 117/58 3 0.879 0.879
over.p 200/98 12 0.327 0.510 round.p 181/82 7 0.378 0.512
through.p 440/208 15 0.495 0.538 to.p 1182/572 10 0.322 0.579
towards.p 214/102 4 0.873 0.873 with.p 1187/578 15 0.249 0.455
AVG 486.3/238.1 7.4 0.397 0.547

Table 2: English Lexical Sample and Preposition WSD Results: lexelt is the lexical item, trn/tst is the
number of training and testing instances, s is the number of senses in the training set, mfs is the most
frequent sense baseline, and acc is the final accuracy.
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