
Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), pages 165–168,
Prague, June 2007. c©2007 Association for Computational Linguistics

HIT-IR-WSD: A WSD System for English Lexical Sample Task 

Yuhang Guo, Wanxiang Che, Yuxuan Hu, Wei Zhang and Ting Liu 
Information Retrieval Lab 

Harbin Institute of technology 
Harbin, China, 150001 

{yhguo,wxche}@ir.hit.edu.cn 

 
 

Abstract 

HIT-IR-WSD is a word sense disambigua-
tion (WSD) system developed for English 
lexical sample task (Task 11) of Semeval 
2007 by Information Retrieval Lab, Harbin 
Institute of Technology. The system is 
based on a supervised method using an 
SVM classifier. Multi-resources including 
words in the surrounding context, the part-
of-speech of neighboring words, colloca-
tions and syntactic relations are used. The 
final micro-avg raw score achieves 81.9% 
on the test set, the best one among partici-
pating runs. 

1 Introduction 

Lexical sample task is a kind of WSD evaluation 
task providing training and test data in which a 
small pre-selected set of target words is chosen and 
the target words are marked up. In the training data 
the target words’ senses are given, but in the test 
data are not and need to be predicted by task par-
ticipants. 

HIT-IR-WSD regards the lexical sample task 
as a classification problem, and devotes to extract 
effective features from the instances. We didn’t use 
any additional training data besides the official 
ones the task organizers provided. Section 2 gives 
the architecture of this system. As the task pro-
vides correct word sense for each instance, a su-
pervised learning approach is used. In this system, 
we choose Support Vector Machine (SVM) as 
classifier. SVM is introduced in section 3. Know-
ledge sources are presented in section 4. The last 

section discusses the experimental results and 
present the main conclusion of the work performed. 

2 The Architecture of the System 

HIT-IR-WSD system consists of 2 parts: feature 
extraction and classification. Figure 1 portrays the 
architecture of the system. 

 
Figure 1: The architecture of HIT‐IR‐WSD 

165



Features are extracted from original instances 
and are made into digitized features to feed the 
SVM classifier. The classifier gets the features of 
training data to make a model of the target word. 
Then it uses the model to predict the sense of target 
word in the test data. 

3 Learning Algorithm 

SVM is an effective learning algorithm to WSD 
(Lee and Ng, 2002). The SVM tries to find a 
hyperplane with the largest margin separating the 
training samples into two classes. The instances in 
the same side of the hyperplane have the same 
class label. A test instance’s feature decides the 
position where the sample is in the feature space 
and which side of the hyperplane it is. In this way, 
it leads to get a prediction. SVM could be extended 
to tackle multi-classes problems by using one-
against-one or one-against-rest strategy. 

In the WSD problem, input of SVM is the fea-
ture vector of the instance. Features that appear in 
all the training samples are arranged as a vector 
space. Every instance is mapped to a feature vector. 
If the feature of a certain dimension exists in a 
sample, assign this dimension 1 to this sample, else 
assign it 0. For example, assume the feature vector 
space is <x1, x2, x3, x4, x5, x6, x7>; the instance is 
“x2 x6 x5 x7”. The feature vector of this sample 
should be <0, 1, 0, 0, 1, 1, 1>.  

The implementation of SVM here is libsvm 1 
(Chang and Lin, 2001) for multi-classes. 

4 Knowledge Sources 

We used 4 kinds of features of the target word and 
its context as shown in Table 1. 

Part of the original text of an example is “… 
This is the <head>age</head> of new media , the 
era of …”. 

Name Extraction 
Tools Example 

Surrounding 
words 

WordNet 
(morph)2 

…, this, be, age, new, 
medium, ,, era, … 

Part-of-
speech SVMTool3 

DT_0, VBZ_0, DT_0, 
NN_t, IN_1, JJ_1, 
NNS_1 

                                                 
1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2 http://wordnet.princeton.edu/man/morph.3WN.html 
3 http://www.lsi.upc.es/~nlp/SVMTool/ 

Collocation  
this_0, be_0, the_0, 
age_t, of_1, new_1, 
medium_1, ,_1, the_1 

Syntactic 
relation MaltParser4 

SYN_HEAD_is 
SYN_HEADPOS_VBZ 
SYN_RELATION_PRD 
SYN_HEADRIGHT 

Table 1: Features the system extracted 
The next 4 subsections elaborate these features. 

4.1 Words in the Surrounding Context 

We take the neighboring words in the context of 
the target word as a kind of features ignoring their 
exact position information, which is called bag-of-
words approach. 

Mostly, a certain sense of a word is tend to ap-
pear in a certain kind of context, so the context 
words could contain some helpful information to 
disambiguate the sense of the target word. 

Because there would be too many context words 
to be added into the feature vector space, data 
sparseness problem is inevitable. We need to re-
duce the sparseness as possible as we can. A sim-
ple way is to use the words’ morphological root 
forms. In addition, we filter the tokens which con-
tain no alphabet character (including punctuation 
symbols) and stop words. The stop words are 
tested separately, and only the effective ones 
would be added into the stop words list. All re-
maining words in the instance are gathered, con-
verted to lower case and replaced by their morpho-
logical root forms. The implementation for getting 
the morphological root forms is WordNet (morph). 

4.2 Part-of-Speechs of Neighboring Words 

As mentioned above, the data sparseness is a se-
rious problem in WSD. Besides changing tokens to 
their morphological root forms, part-of-speech is a 
good choice too. The size of POS tag set is much 
smaller than the size of surrounding words set. 
And the neighboring words’ part-of-speeches also 
contain useful information for WSD. In this part, 
we use a POS tagger (Giménez and Márquez, 2004) 
to assign POS tags to those tokens.  

We get the left and right 3 words’ POS tags to-
gether with their position information in the target 
words’ sentence.  

For example, the word age is to be disambi-
guated in the sentence of “… This is the 

                                                 
4 http://w3.msi.vxu.se/~nivre/research/MaltParser.html 

166



<head>age</head> of new media , the era of …”. 
The features then will be added to the feature vec-
tor are “DT_0, VBZ_0, DT_0, NN_t, IN_1, JJ_1, 
NNS_1”, in which _0/_1 stands for the word with 
current POS tag is in the left/right side of the target 
word. The POS tag set in use here is Penn Tree-
bank Tagset5. 

4.3 Collocations 

Different from bag-of-words, collocation feature 
contains the position information of the target 
words’ neighboring words. To make this feature in 
the same form with the bag-of-words, we appended 
a symbol to each of the neighboring words’ mor-
phological root forms to mark whether this word is 
in the left or in the right of the target word. Like 
POS feature, collocation was extracted in the sen-
tence where the target word belongs to. The win-
dow size of this feature is 5 to the left and 5 to the 
right of the target word, which is attained by em-
pirical value. In this part, punctuation symbol and 
stop words are not removed. 

Take the same instance last subsection has men-
tioned as example. The features we extracted are 
“this_0, be_0, the_0, age_t, of_1, new_1, me-
dium_1”. Like POS, _0/_1 stands for the word is 
in the left/right side of the target word. Then the 
features were added to the feature vector space. 

4.4 Syntactic Relations 

Many effective context words are not in a short 
distance to the target word, but we shouldn’t en-
large the window size too much in case of includ-
ing too many noises. A solution to this problem is 
to use the syntactic relations of the target word and 
its parent head word. 

We use Nivre et al., (2006)’s dependency parser. 
In this part, we get 4 features from every instance: 
head word of the target word, the head word’s POS, 
the head word’s dependency relation with the tar-
get word and the relative position of the head word 
to the target word. 

Still take the same instance which has been 
mentioned in the las subsection as example. The 
features we extracted are “SYN_HEAD_is, 
SYN_HEADPOS_VBZ, SYN_RELATION_PRD, 
SYN_HEADRIGHT”, in which SYN_HEAD_is 
stands for is is the head word of age; 
SYN_HEADPOS_VBZ stands for the POS of the 
                                                 
5 http://www.lsi.upc.es/~nlp/SVMTool/PennTreebank.html 

head word is is VBZ; SYN_RELATION_PRD 
stands for the relationship between the head word 
is and target word age is PRD; and 
SYN_HEADRIGHT stands for the target word age 
is in the right side of the head word is. 

5 Data Set and Results 

This English lexical sample task: Semeval 2007 
task 116 provides two tracks of the data set for par-
ticipants. The first one is from LDC and the second 
from web. 

We took part in this evaluation in the second 
track. The corpus is from web. In this track the task 
organizers provide a training data and test data set 
for 20 nouns and 20 adjectives. 

In order to develop our system, we divided the 
training data into 2 parts: training and development 
sets. The size of the training set is about 2 times of 
the development set. The development set contains 
1,781 instances. 

4 kinds of features were merged into 15 combi-
nations. Here we use a vector (V) to express which 
features are used. The four dimensions stand for 
syntactic relations, POS, surrounding words and 
collocations, respectively. For example, 1010 
means that the syntactic relations feature and the 
surrounding words feature are used. 

V Precision V Precision
0001 78.6% 1001 78.2% 
0010 80.3% 1010 81.9% 
0011 82.0% 1011 82.8% 
0100 70.4% 1100 73.3% 
0101 79.0% 1101 79.1% 
0110 82.1% 1110 82.5% 
0111 82.9% 1111 82.9% 
1000 72.6%   
Table 2: Results of Combinations of Features 
From Table 2, we can conclude that the sur-

rounding words feature is the most useful kind of 
features. It obtains much better performance than 
other kinds of features individually. In other words, 
without it, the performance drops a lot. Among 
these features, syntactic relations feature is the 
most unstable one (the improvement with it is un-
stable), partly because the performance of the de-
pendency parser is not good enough. As the ones 
with the vector 0111 and 1111 get the best perfor-

                                                 
6http://nlp.cs.swarthmore.edu/semeval/tasks/task11/descript
ion.shtml 

167



mance, we chose all of these kinds of features for 
our final system. 

A trade-off parameter C in SVM is tuned, and 
the result is shown in Figure 2. We have also tried 
4 types of kernels of the SVM classifier (parame-
ters are set by default). The experimental results 
show that the linear kernel is the most effective as 
Table 3 shows. 

 
Figure 2: Accuracy with different C parameters 

Kernel 
Function 

Type 
Linear Poly-

nomial RBF Sig-
moid

Accuracy 82.9% 68.3% 68.3% 68.3%
Table 3: Accuracy with different kernel function 
types 

Another experiment (as shown in Figure 3) also 
validate that the linear kernel is the most suitable 
one. We tried using polynomial function. Unlike 
the parameters set by default above (g=1/k, d=3), 
here we set its Gama parameter as 1 (g=1) but oth-
er parameters excepting degree parameter are still 
set by default. The performance gets better when 
the degree parameter is tuned towards 1. That 
means the closer the kernel function to linear func-
tion the better the system performs. 

 
Figure 3: Accuracy with different degree  in po‐
lynomial function 

In order to get the relation between the system 
performance and the size of training data, we made 
several groups of training-test data set from the 
training data the organizers provided. Each of them 
has the same test data but different size of training 
data which are 2, 3, 4 and 5 times of the test data 
respectively. Figure 4 shows the performance 

curve with the training data size. Indicated in Fig-
ure 4, the accuracy increases as the size of training 
data enlarge, from which we can infer that we 
could raise the performance by using more training 
data potentially. 

 
Figure 4: Accuracy’s trend with the training da‐
ta size 

Feature extraction is the most time-consuming 
part of the system, especially POS tagging and 
parsing which take 2 hours approximately on the 
training and test data. The classification part (using 
libsvm) takes no more than 5 minutes on the train-
ing and test data. We did our experiment on a PC 
with 2.0GHz CPU and 960 MB system memory. 

Our official result of HIT-IR-WSD is: micro-
avg raw score 81.9% on the test set, the top one 
among the participating runs. 

Acknowledgement 
We gratefully acknowledge the support for this 
study provided by the National Natural Science 
Foundation of China (NSFC) via grant 60435020, 
60575042, 60575042 and 60675034. 

References 
Lee, Y. K., and Ng, H. T. 2002. An empirical evaluation 

of knowledge sources and learning algorithms for 
word sense disambiguation. In Proceedings of 
EMNLP02, 41–48. 

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: a 
library for support vector machines. 

Jesús Giménez and Lluís Márquez. 2004. SVMTool: A 
general POS tagger generator based on Support Vec-
tor Machines. Proceedings of the 4th International 
Conference on Language Resources and Evaluation 
(LREC'04). Lisbon, Portugal. 

Nivre, J., Hall, J., Nilsson, J., Eryigit, G. and Marinov, S. 
2006. Labeled Pseudo-Projective Dependency Pars-
ing with Support Vector Machines. In Proceedings of 
the Tenth Conference on Computational Natural 
Language Learning (CoNLL). 

168


