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Abstract

We present an approach for semantic rela-
tion extraction between nominals that com-
bines shallow and deep syntactic processing
and semantic information using kernel meth-
ods. Two information sources are consid-
ered: (i) the whole sentence where the re-
lation appears, and (ii) WordNet synsets and
hypernymy relations of the candidate nom-
inals. Each source of information is rep-
resented by kernel functions. In particu-
lar, five basic kernel functions are linearly
combined and weighted under different con-
ditions. The experiments were carried out
using support vector machines as classifier.
The system achieves an overallF1 of 71.8%
on the Classification of Semantic Relations
between Nominals task at SemEval-2007.

1 Introduction

The starting point of our research is an approach
for identifying relations between named entities ex-
ploiting only shallow linguistic information, such as
tokenization, sentence splitting, part-of-speech tag-
ging and lemmatization (Giuliano et al., 2006). A
combination of kernel functions is used to represent
two distinct information sources: (i) the global con-
text where entities appear and (ii) their local con-
texts. The whole sentence where the entities appear
(global context) is used to discover the presence of
a relation between two entities. Windows of limited
size around the entities (local contexts) provide use-
ful clues to identify the roles played by the entities

within a relation (e.g., agent and target of a gene in-
teraction). In the task of detectingprotein-protein
interactions, we obtained state-of-the-art results on
two biomedical data sets. In addition, promising re-
sults have been recently obtained for relations such
aswork for andorg based inin the news domain1.

In this paper, we investigate the use of the above
approach to discover semantic relations between
nominals. In addition to the original feature rep-
resentation, we have integrated deep syntactic pro-
cessing of the global context and semantic informa-
tion for each candidate nominals using WordNet as
external knowledge source. Each source of informa-
tion is represented by kernel functions. A tree kernel
(Moschitti, 2004) is used to exploit the deep syn-
tactic processing obtained using the Charniak parser
(Charniak, 2000). On the other hand, bag of syn-
onyms and hypernyms is used to enhance the repre-
sentation of the candidate nominals. The final sys-
tem is based on five basic kernel functions (bag-of-
words kernel, global context kernel, tree kernel, su-
persense kernel, bag of synonyms and hypernyms
kernel) linearly combined and weighted under dif-
ferent conditions. The experiments were carried out
using support vector machines (Vapnik, 1998) as
classifier.

We present results on the Classification of Seman-
tic Relations between Nominals task at SemEval-
2007, in which sentences containing ordered pairs
of marked nominals, possibly semantically related,
have to be classified. On this task, we achieve an
overallF1 of 71.8% (B category evaluation), largely
outperforming all the baselines.

1These results appear in a paper currently under revision.
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2 Kernel Methods for Relation Extraction

In order to implement the approach based on syntac-
tic and semantic information, we employed a linear
weighted combination of kernels, using support vec-
tor machines as classifier. We designed two families
of basic kernels: syntactic kernels and semantic ker-
nels. These basic kernels are combined by exploit-
ing the closure properties of kernels. We define our
composite kernelKC(x1, x2) as follows

n
∑

i=1

wi
Ki(x1, x2)

√

Ki(x1, x1)Ki(x2, x2)
, (1)

where each basic kernelKi is normalized andwi ∈
{0, 1} is the kernel weight. The normalization factor
plays an important role in allowing us to integrate in-
formation from heterogeneous knowledge sources.

All basic kernels, but the tree kernel (see Section
2.1.3), are explicitly calculated as follows

Ki(x1, x2) = 〈φ(x1), φ(x2)〉, (2)

whereφ(·) is the embedding vector. Even though
the resulting feature space has high dimensionality,
an efficient computation of Equation 2 can be carried
out explicitly since the input representations defined
below are extremely sparse.

2.1 Syntactic Kernels

Syntactic kernels are defined over the whole sen-
tence where the candidate nominals appear.

2.1.1 Global Context Kernel

Bunescu and Mooney (2005) and Giuliano et al.
(2006) successfully exploited the fact that relations
between named entities are generally expressed us-
ing only words that appear simultaneously in one of
the following three contexts.

Fore-Between Tokens before and between the two
entities, e.g.“the head of[ORG], Dr. [PER]” .

Between Only tokens between the two entities, e.g.
“ [ORG] spokesman[PER]” .

Between-After Tokens between and after the two
entities, e.g.“ [PER], a [ORG] professor”.

Here, we investigate whether this assumption is
also correct for semantic relations between nomi-
nals. Our global context kernel operates on the con-
texts defined above, where each context is repre-
sented using abag-of-words. More formally, given
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Figure 1: Acontent-containerrelation test sentence
parse tree (a) and the corresponding RT structure (b).

a relation exampleR, we represent a contextC as a
row vector

φC(R) = (tf(t1, C), tf(t2, C), . . . , tf(tl, C)) ∈ R
l
, (3)

where the functiontf(ti, C) records how many
times a particular tokenti is used inC. Note that
this approach differs from the standard bag-of-words
as punctuation and stop words are included inφC ,
while the nominals are not. To improve the classi-
fication performance, we have further extendedφC

to embed n-grams of (contiguous) tokens (up ton =
3). By substitutingφC into Equation 2, we obtain
the n-gram kernelKn, which counts uni-grams, bi-
grams, . . . , n-grams that two patterns have in com-
mon2. TheGlobal ContextkernelKGC(R1, R2) is
then defined as

KF B(R1, R2) + KB(R1, R2) + KBA(R1, R2), (4)

where KFB , KB and KBA are n-gram kernels
that operate on the Fore-Between, Between and
Between-After patterns respectively.

2.1.2 Bag-of-Words Kernel

The bag-of-words kernel is defined as the previ-
ous kernel but it operates on the whole sentence.

2.1.3 Tree Kernel

Tree kernels can trigger automatic feature selec-
tion and represent a viable alternative to the man-

2In the literature, it is also calledn-spectrumkernel.
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ual design of attribute-value syntactic features (Mos-
chitti, 2004). A tree kernelKT (t1, t2) evaluates
the similarity between two treest1 and t2 in terms
of the number of fragments they have in common.
Let Nt be the set of nodes of a treet and F =
{f1, f2, . . . , f|F|} be the fragment space oft1 and
t2. Then

KT (t1, t2) =
P

ni∈Nt1

P

nj∈Nt2
∆(ni, nj) , (5)

where ∆(ni, nj) =
∑|F|

k=1
Ik(ni) × IK(nj) and

Ik(n) = 1 if k is rooted inn, 0 otherwise.
For this task, we defined anad-hocclass of struc-

tured features (Moschitti et al., 2006), the Reduced
Tree (RT), which can be derived from a sentence
parse treet by the following steps: (1) remove all the
terminal nodes but those labeled as relation entities
and those POS tagged as verbs, auxiliaries, prepo-
sitions, modals or adverbs; (2) remove all the in-
ternal nodes not covering any remaining terminal;
(3) replace the entity words with placeholders that
indicate the direction in which the relation should
hold. Figure 1 shows a parse tree and the resulting
RT structure.

2.2 Semantic Kernels

In (Giuliano et al., 2006), we used the local context
kernel to infer semantic information on the candi-
date entities (i.e., roles played by the entities). As
the task organizers provide the WordNet sense and
role for each nominal, we directly use this informa-
tion to enrich the feature space and do not include
the local context kernel in the combination.

2.2.1 Bag of Synonyms and Hypernyms Kernel

By using the WordNet sense key provided, each
nominal is represented by the bag of its synonyms
and hypernyms (direct and inherited hypernyms).
Formally, given a relation exampleR, each nominal
N is represented as a row vector

φN(R) = (f(t1, N), f(t2, N), . . . , f(tl, N)) ∈ R
l
, (6)

where the binary functionf(ti, N) records if a par-
ticular lemmati is contained into the bag of syn-
onyms and hypernyms of N. Thebag of synonyms
and hypernymskernelKS&H(R1, R2) is defined as

Ktarget(R1, R2) + Kagent(R1, R2), (7)

whereKtarget andKagent are defined by substitut-
ing the embedding of the target and agent nominals
into Equation 2 respectively.

2.2.2 Supersense Kernel

WordNet synsets are organized into 45 lexicogra-
pher files, based on syntactic category and logical
groupings. E.g.,noun.artifactis for nouns denoting
man-made objects,noun.attributefor nouns denot-
ing attributes for people and objects etc. Thesuper-
sensekernelKSS(R1, R2) is a variant of the previ-
ous kernel that uses the names of the lexicographer
files (i.e., the supersense) to index the feature space.

3 Experimental Setup and Results

Sentences have been tokenized, lemmatized, and
POS tagged with TextPro3. We considered each re-
lation as a different binary classification task, and
each sentence in the data set is a positive or negative
example for the relation. The direction of the rela-
tion is considered labelling the first argument of the
relation as agent and the second as target.

All the experiments were performed using the
SVM package SVMLight-TK4, customized to em-
bed our own kernels. We optimized the linear com-
bination weightswi and regularization parameterc

using 10-fold cross-validation on the training set.
We set the cost-factorj to be the ratio between the
number of negative and positive examples.

Table 1 shows the performance on the test set. We
achieve an overallF1 of 71.8% (B category evalua-
tion), largely outperforming all the baselines, rang-
ing from 48.5% to 57.0%. The average training plus
test running time for a relation is about 10 seconds
on a Intel Pentium M755 2.0 GHz. Figure 2 shows
the learning curves on the test set. For all relations
but theme-tool, accurate classifiers can be learned
using a small fraction of training.

4 Discussion and Conclusion

Experimental results show that our kernel-based ap-
proach is appropriate also to detect semantic rela-
tions between nominals. However, differently from
relation extraction between named entities, there is
not a common kernel setup for all relations. E.g.,

3
http://tcc.itc.it/projects/textpro/

4
http://ai-nlp.info.uniroma2.it/moschitti/
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Figure 2: Learning curves on the test set.

Relation P R F1 Acc
Cause-Effect 67.3 90.2 77.1 72.5
Instrument-Agency 76.9 78.9 77.9 78.2
Product-Producer 76.2 77.4 76.8 68.8
Origin-Entity 62.2 63.9 63.0 66.7
Theme-Tool 69.2 62.1 65.5 73.2
Part-Whole 65.5 73.1 69.1 76.4
Content-Container 78.8 68.4 73.2 74.3
Avg 70.9 73.4 71.8 72.9

Table 1: Results on the test set.

for content-containerwe obtain the best perfor-
mance combining the tree kernel and the bag of syn-
onyms and hypernyms kernel; on the other hand, for
instrument-agencythe best performance is obtained
by combining the global kernel and the supersense
kernel. Surprisingly, the supersense kernel alone
works quite well and obtains results comparable to
the bag of synonyms and hypernyms kernel. This
result is particularly interesting as a supersense tag-
ger can easily provide a satisfactory accuracy (Cia-
ramita and Altun, 2006). On the other hand, ob-
taining an acceptable accuracy in word sense disam-
biguation (required for a realistic application of the
bag of synonyms and hypernyms kernel) is imprac-
tical as a sufficient amount of training for at least all
nouns is currently not available. Hence, the super-
sense could play a crucial role to improve the perfor-
mance when approaching this task without the nomi-
nals disambiguated. To model the global context us-
ing the Fore-Between, Between and Between-After
contexts did not produce a significant improvement
with respect to the bag-of-words model. This is
mainly due to the fact that examples have been col-

lected from the Web using heuristic patterns/queries,
most of which implying Between patterns/contexts
(e.g., for thecause-effectrelation “* comes from *”,
“* out of *” etc.).
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