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Abstract 

This system uses a background knowledge 

base to identify semantic relations between 

base noun phrases in English text, as eva-

luated in SemEval 2007, Task 4.  Training 

data for each relation is converted to state-

ments in the Scone Knowledge Representa-

tion Language.  At testing time a new 

Scone statement is created for the sentence 

under scrutiny, and presence or absence of 

a relation is calculated by comparing the 

total semantic distance between the new 

statement and all positive examples to the 

total distance between the new statement 

and all negative examples. 

   

1 Introduction 

This paper introduces a knowledge-based approach 

to the task of semantic relation classification, as 

evaluated in SemEval 2007, Task 4: “Classifying 

Relations Between Nominals”.  In Task 4, a full 

sentence is presented to the system, along with the 

WordNet sense keys for two noun phrases which 

appear there and the name of a semantic relation 

(e.g. “cause-effect”).  The system should return 

“true” if a person reading the sentence would con-

clude that the relation holds between the two la-

beled noun phrases. 

Our system represents a test sentence with a se-

mantic graph, including the relation being tested 

and both of its proposed arguments.  Semantic dis-

tance is calculated between this graph and a set of 

graphs representing the training examples relevant 

to the test sentence.  A near-match between a test 

sentence and a positive training example is evi-

dence that the same relation which holds in the 

example also holds in the test.  We compute se-

mantic distances to negative training examples as 

well, comparing the total positive and negative 

scores in order to decide whether a relation is true 

or false in the test sentence. 

2 Motivation 

Many systems which perform well on related tasks 

use syntactic features of the input sentence, 

coupled with classification by machine learning.  

This approach has been applied to problems like 

compound noun interpretation (Rosario and Hearst 

2001) and semantic role labeling (Gildea and Ju-

rafsky 2002). 

In preparing our system for Task 4, we started 

by applying a similar syntax-based feature analysis 

to the trial data: 140 labeled examples of the rela-

tion “content-container”.  In 10-fold cross-

validation  with this data we achieved an average f-

score of 70.6, based on features similar to the sub-

set trees used for semantic role labeling in (Mo-

schitti 2004). For classification we applied the up-

dated tree-kernel package (Moschitti 2006), distri-

buted with the svm-light tool (Joachims 1999) for 

learning Support Vector Machines (SVMs). 

Training data for Task 4 is small, compared to 

other tasks where machine learning is commonly 

applied.  We had difficulty finding a combination 

of features which gave good performance in cross-

validation, but which did not result in a separate 

support vector being stored for every training sen-

tence – a possible indicator of overfitting.  As an 

example, the ratio of support vectors to training 
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examples for the experiment described above was 

.97, nearly 1-to-1.  

  As a result of this analysis we started work on 

our knowledge-based system, with the goal of us-

ing the two approaches together.  We were also 

motivated by an interest in using relation defini-

tions and background knowledge from WordNet to 

greater advantage.  The algorithm we used in our 

final submission is similar to recent systems which 

discover textual entailment relationships (Haghig-

hi, Ng et al. 2005; Zanzotto and Moschitti 2006).  

It gives us a way to encode information from the 

relation definitions directly, in the form of state-

ments in a knowledge representation language.  

The inference rules that are learned by this system 

from training examples are also easier to interpret 

than the models generated by an SVM.  In small-

data applications this can be an advantage.  

3 System Description: A Walk-Through 

The example sentence below is taken (in abbre-

viated form) from the training data for Task 4, Re-

lation 7 “Content-Container” (Girju, Hearst et al. 

2007): 
 

The kitchen holds a cooker. 
 

We convert this positive example into a semantic 

graph by creating a new instance of the relation 

Contains and linking that instance to the WordNet 

term for each labeled argument ("kitch-

en%1:06:00::", "cooker%1:06:00::").  The result is 

shown in Figure 1.  WordNet sense keys (Fellbaum 

1998) have been mapped to a term, a part of 

speech (pos), and a sense number. 

Contains
{relation}

kitchen_n_1

container content

cooker_n_1

 
Figure 1.  Semantic graph for the training example 

"The kitchen holds a cooker".   Arguments are 

represented by a WordNet term, part of speech, 

and sense number. 

 

This graph is instantiated as a statement using 

the Scone Knowledge Representation System, or  

(new-statement {kitchen_n_1} {contains} {cooker_n_1}) 

(new-statement {artifact_n_1} {contains} {artifact_n_1}) 

(new-statement  {whole_n_1}   {contains}  {whole_n_1}) 

Figure 2.  Statements in Scone KR syntax, based 

on generalizing the training example "The kitchen 

holds a cooker". 
 

“Scone” (Fahlman 2005).  Scone gives us a way to 

store, search, and perform inference on graphs like 

the one shown above.  After instantiating the graph 

we generalize it using hypernym information from 

WordNet.  This generates additional Scone state-

ments which are stored in a knowledge base (KB), 

shown in Figure 2.  The first statement in the fig-

ure was generated verbatim from our training sen-

tence.  The remaining statements contain hyper-

nyms of the original arguments. 

For each argument seen in training, we also ex-

tract hypernyms and siblings from WordNet.  For 

the argument kitchen, we extract 101 ancestors 

(artifact, whole, object, etc.) and siblings (struc-

ture, excavation, facility, etc.).  A similar set of 

WordNet entities is extracted for the argument 

cooker.  These entities, with repetitions removed, 

are encoded in a second Scone knowledge base, 

preserving the hierarchical (IS-A) links that come 

from WordNet.  The hierarchy is manually linked 

at the top level into an existing background Scone 

KB where entities like animate, inanimate, person, 

location, and quantity are already defined.   

After using the training data to create these two 

KBs, the system is  ready for a test sentence.  The 

following example is also adapted from SemEval 

Task 4 training data: 
 

     Equipment was carried in a box. 
 

First we convert the sentence to a semantic 

graph, using the same technique as the one de-

scribed above.  The graph is implemented as a new 

Scone statement which includes the WordNet pos 

and sense number for each of the arguments: 

“box_n_1 contains equipment_n_1”. 

Next, using inference operations in Scone, the 

system verifies that the statement conforms to 

high-level constraints imposed by the relation defi-

nition.  If it does, we calculate semantic distances 

between the argument nodes of our test statement 

and the analogous nodes in relevant training state-

ments.  A training statement is relevant if both of 

its arguments are ancestors of the appropriate ar-
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guments of the test sentence.  In our example, only 

two of the three KB statements from Figure 2 are 

relevant to the test statement “box contains equip-

ment”: “whole contains whole” and “artifact con-

tains artifact”.  The first statement, “kitchen con-

tains cooker” fails to apply because kitchen is not 

an ancestor of box, and also because cooker is not 

an ancestor of equipment.   

Figure 3 illustrates the distance from “box con-

tains equipment” to “whole contains whole”, calcu-

lated as the sum of the distances between box-

whole and equipment-whole.  

Contains
{relation}

box equipment

container content

artifact artifact

Contains
{relation}

whole whole

container content

Distance = 2
Support = 1/2

Distance = 2
Support = 1/2

 
Figure 3.  Calculating the distance through the 

knowledge base between "equipment contains box" 

and “whole contains whole”.  Dashed lines indicate 

IS-A links in the knowledge base.   

 

The total number of these relevant, positive 

training statements is an indicator of “support” for 

the test sentence throughout the training data.  The 

distance between one such statement and the test 

sentence is a measure of the strength of support.  

To reach a verdict, we sum over the inverse dis-

tances to all arguments from positive relevant ex-

amples: in Figure 3, the test statement “box con-

tains equipment” receives a support score of  (½  + 

½ + 1 + 1), or 3.      

Counter-evidence for a test sentence can be cal-

culated in the same way, using relevant negative 

statements.  In our example there are no negative 

training statements, so the total positive support 

score (3) is greater than the counter-evidence score 

(0), and the system verdict is “true”. 

4 System Components in Detail 

As the detailed example above shows, this system 

is designed around its knowledge bases. The KBs 

provide a consistent framework for representing 

knowledge from a variety of sources as well as for 

calculating semantic distance. 

4.1 Background knowledge 

WordNet-extracted knowledge bases of the type 

described in Section 3 are generated separately for 

each relation.  Average depth of these hierarchies 

is 4; we store only hypernyms of WordNet depth 7 

and above, based on experiments in the literature 

by Nastase, et al. (2003; 2006).  

Relation-specific and task-specific knowledge is 

encoded by hand.  For each relation, we examine 

the relation definition and create a set of con-

straints in Scone formalism.  For example, the de-

finition of “container-contains” includes the fol-

lowing restriction (taken from training data for 

Task 4): There is strong preference against treat-

ing legal entities (people and institutions) as con-

tent. 

In Scone, we encode this preference as a type 

restriction on the container role of any Contains 

relation: (new-is-not-a {container} {potential 

agent}) 

During testing, before calculating semantic dis-

tances, the system checks whether the test state-

ment conforms to all such constraints. 

4.2 Calculating semantic distance 

Semantic distances are calculated between con-

cepts in the knowledge base, rather than through 

WordNet directly.  Distance between two KB en-

tites is calculated by counting the edges along the 

shortest path between them, as illustrated in Figure 

3.  In the current implementation, only ancestors in 

the IS-A hierarchy are considered relevant, so this 

calculation amounts to counting the number of an-

cestors between an argument from the test sentence 

and an argument from a training example.  Quick 

type-checking features which are built into Scone 

allow us to skip the distance calculation for non-

relevant training examples. 

5 Results & Conclusions 

This system performed reasonably well for relation 

3, Product-Producer, outperforming the baseline 

(baseline guesses “true” for every test sentence).  

Performance for this relation was also higher than 

the average F-score for all comparable groups in 

Task 4 (all groups in class “B4”).  Average recall 

for this system over all relations was mid-range, 
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compared to other participating groups.  Average 

precision and average f-score fell below the base-

line and below the average for all comparable 

groups.  These scores are given in Table 1. 

 

Relation  R P F 
1.  Cause-Effect 73.2 54.5 62.5 

2.  Instrument-Agency 76.3 50.9 61.1 

3.  Product-Producer 79.0 71.0 74.8 

4.  Origin-Entity 63.9 54.8 59.0 

5.  Theme-Tool 48.3 53.8 50.9 

6.  Part-Whole 57.7 45.5 50.8 

7.  Content-Container 68.4 59.1 63.4 

Whole test set, not 

divided by relation 

57.1 68.9 62.4 

Average for CMU-AT 66.7 55.7 60.4 

Average for all B4 

systems 
64.4 65.3 63.6   

Baseline: “alltrue” 100.0   48.5 64.8   

Table 1.  Recall, Precision, and F-scores, separated 

by relation type.  Baseline score is calculated by 

guessing "true" for all test setences. 

 

Analysis of the training data reveals that relation 

3 is the class where target nouns occur most often 

together in nominal compounds and base NPs, with 

little additional syntax to connect them.  While 

other relations included sentences where the targets 

were covered by a single VP, Product-Producer did 

not.  It seems that background knowledge plays a 

larger role in identifying the Producer-Produces 

relationship than it does for other relations.  How-

ever this conclusion is softened by the fact that we 

also spent more time in development and cross-

evaluation for relations 3 and 7, our two best per-

forming relations. 

This system demonstrates a knowledge-based 

framework  that performs very well for certain re-

lations.  Importantly, the system we submitted for 

evaluation did not make use of syntactic features, 

which are almost certainly relevant to this task.  

We are already exploring methods for combining 

the knowledge-based decision process with one 

that uses syntactic evidence as well as corpus sta-

tistics, described in Section 2. 
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