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Abstract 

The Stanford-CS224N system is an ensemble of sim­
ple classifiers. The first-tier systems are heteroge­
neous, consisting primarily of naive-Bayes variants, 
but also including vector space, memory-based, and 
other classifier types. These simple classifiers are 
combined by a second-tier classifier, which variously 
uses majority voting, weighted voting, or a maxi­
mum entropy model. Results from SENSEVAL-2 lex­
ical sample tasks indicate that, while the individual 
classifiers perform at a level comparable to middle­
scoring team's systems, the combination achieves 
high performance. In this paper, we discuss both 
our system and lessons learned from its behavior. 

1 Introduction 

The problem of supervised word sense disam­
biguation (wsD) has been approached using 
many different classification algorithms, includ­
ing naive Bayes, decision trees, decision lists, 
and memory-based learners. While it is un­
questionable that certain algorithms are better 
suited to the WSD problem than others (for a 
comparison, see Mooney ( 1996)), it seems to be 
the case that, given similar features as input, 
various algorithms do not behave dramatically 
differently. This was seen in the SENSEVAL-2 re­
sults where a large fraction of the systems had 
scores clustered in a fairly narrow region. 

We began building our system with 23 su­
pervised WSD systems, each submitted by a 
student taking the natural language processing 
course (CS224N) at Stanford University. Stu­
dents were free to imple1pent whatever WSD 
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Figure 1: Organization of the system. 

method they chose. While most implemented 
variants of naive Bayes, some implemented a 
range of other methods, including n-gram mod­
els, vector space models, and even memory­
based learners. Although none of these systems 
alone would have produced more than middle­
level performance on the SENSEVAL-2 task, we 
decided to investigate how they would behave 
in combination. 

In section 2, we discuss the first-tier classifiers 
in greater depth and describe our methods of 
combination. Section 3 discusses performance, 
analyzing what benefit was found from combi­
nation, and when. We also discuss aspects of 
the component systems which substantially in­
fluenced overall performance. 

2 The System 
Figure 1 shows the high-level organization of 
our system. First, each of the 23 classifiers is 
run with 5-fold cross-validation on the train­
ing data. Classifiers are ranked, for each word, 
based on their held-out accuracy. In any given 
run of the system, for some k, the top k clas­
sifiers are kept, while lower-ranking classifiers 
are discarded. These remaining classifiers are 
combined by one of three methods. 

• Majority voting: The sense output by the most 
classifiers is chosen. Ties are broken in favor of 
the highest-ranked classifier. 



• Weighted voting: Each classifier is assigned a vot­
ing weight (see below) and adds that weight to the 
sense it outputs. The sense receiving the greatest 
total weight is chosen. 

• Maximum entropy: A maximum entropy classifier 
is trained (see below) and run on the (classifier, 
vote) outputs from the first tier. 

We consider k in the range {5, 7, 9, 11, 13, 15}, 
and so, once the ranking of the first- tier clas­
sifiers is set, there are 18 possible second-tier 
classifiers. 

We train and test each (k, method) pair 
on the training data, again with 5-fold cross­
validation. The classifier type and k-value 
which perform best on the held-out data are 
chosen. Once the (k, method) pair is chosen, 
all first-tier classifiers, as well as the parameters 
for the second-tier combinator, are retrained on 
the entire training corpus. Each target word 
is considered an entirely separate task, and dif­
ferent first- and second-tier choices can be, and 
are, made for each word. Table 1 shows what 
second-tier choices were made for each word. 

2.1 Combination Methods 

Our second-tier classifier takes training in­
stances of the forms= (s, s1 , ... , sk) where sis 
the correct sense and each Si is the sense chosen 
by classifier i. We initially planned to combine 
students' classifiers using only a maximum en­
tropy model. Such a model has a set of features 
fx(s) where each feature fx is true over a sub­
set of vectors s. A conditional maximum en­
tropy model with such features assigns, for any 
given choices Si, a distribution over the possible 
senses s. This distribution is of the form: 

P( I ) _ exp Lx "Axfx(s, s1, ... , sk) s s l ' . . . ' s k - -:cc-----=--=~-=-.::_:::_:._:__::_:____:___::_:..___ 

Lt exp Lx "Axfx(t, SI, ... 'Sk) 

The intent was to design the features to recog­
nize and exploit "sense expertise" in the individ­
ual classifiers. For example, one classifier might 
be trustworthy when reporting a certain sense 
but less so for other senses. However, there was 
nowhere near enough data to accurately esti­
mate parameters for such models.1 

In fact, we noticed that, for certain words, 
simple majority voting performed better than 

1 The number of features was not large, only one for 
each (classifier, chosen sense, correct sense) triple. How­
ever, most senses are rarely chosen and rarely correct, 
and so most features had zero or singleton support. 
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the maximum entropy model. It also turned 
out that the most complex features we could 
get value from were features of the form: 

fi(s, SI, · · ·, Sk) = 1 <=:=:? S =.Si 

However, with only these features, the maxi­
mum entropy approach reduces to a weighted 
vote; the s which maximizes the posterior prob­
ability P(sis1, ... , sk) also maximizes the vote: 

v(s) = Li Ai6(si = s) 
The indicators 6 are true for exactly one sense, 
and correspond to the simple fi defined above.2 

The sense with the highest vote value of v( s) will 
be the sense with the highest posterior proba­
bility P(sjs1, ... sk) and will be chosen. 

All three of our combination schemes can be 
seen as ways of estimating the weights Ai. For 
majority voting, we skip any attempt at statis­
tical estimation and simply assign each Ai to be 
1/ k. For the maximum entropy classifier, we 
estimate the weights by maximizing the likeli­
hood of a held-out set, using the standard liS 
algorithm (Berger et al., 1996). 

In weighted voting, we do something in be­
tween. We treat the <5 functions as probabilities, 
treat v ( s) as a mixture model, and do a single 
round of EM to update the Ai starting from uni­
form weights. As we move from majority voting 
to weighted voting to maximum entropy, the es­
timation becomes more sophisticated, but also 
more prone to overfitting. Since solving overfit­
ting is hard, while choosing between classifiers 
based on held-out data is relatively easy, this 
spectrum gives us a way to gracefully handle 
the range of sparsities in the training corpora 
for different words. 

2.2 Individual Classifiers 

While our first-tier classifiers implemented a va­
riety of classification algorithms, the differences 
in their individual accuracies did not primarily 
stem from the algorithm chosen. Rather, 
implementation details led to the largest 
differences. Naive-Bayes classifiers which chose 
sensible window sizes, or dynamically chose 
between window sizes tended to outperform 
those which chose poor sizes. Generally, the 
op_timal windows were either of size one (which 

2If the nth classifier en returns s as the sense, then 
6(sn = s) is 1, otherwise it is zero. 



detected syntactic or collocational cues) or of 
very large size (which detected more topical 
cues). Programs with hard-wired window sizes 
of, say, 5, performed poorly. Ironically, such 
middle-size windows were commonly chosen by 
students, but never useful; either extreme was 
a better design. 

Another implementation choice dramatically 
affecting performance, also for naive-Bayes, was 
the amount and type of smoothing. Heavy 
smoothing and smoothing which backed off con­
ditional distributions to the relevant marginal 
distributions gave good results, while insuf­
ficient smoothing or backing off to uniform 
marginals gave substantially degraded results. 3 

There is one significant way in which our first­
tier classifiers were likely different from other 
teams' systems. In the original class project, 
students were guaranteed that the ambiguous 
word would only appear in a single orthographic 
form. Since this was not true of the SENSEVAL-2 
data, we mapped the ambiguous words (but not 
their context words) down to a citation form. 
We suspect that this lost quite a bit of informa­
tion, since there is considerable correlation be­
tween form and sense, especially for verbs, but 
we made no attempt to re-engineer the student 
systems, and have not thoroughly investigated 
how big a difference this stemming made. 

3 Results and Discussion 

Table 1 shows the results per word, and table 2 
shows results by part-of-speech. A wide range 
of models are chosen, and the chosen model usu­
ally beats the best single classifier for that word, 
on average by 1.9%. The improvement over the 
globally best single classifier is even greater. 

Notably, if we use the test data as an oracle 
to chose the best combination method, rather 
than relying on held-out data, accuracy jumps 
by an average of 3.6%. This gap is dramati­
cally larger than the gap between the top scor­
ing systems for this SENSEVAL-2 task. While 
the knowledge of actual best performance is ob­
viously not available, one might suspect that a 
more sophisticated or better-tuned method of 

3In particular, there is a defective behavior with naive 
Bayes where, when one smoothes far too little, the cho­
sen sense is the one which has occurred with the most 
words in the context window. For skewed-prior data 
like the SENSEVAL-2 sets, this is invariably the common 
sense, regardless of what the context words are. 
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Figure 2: The accuracy of the various combina­
tion methods as the number of component systems 
changes. The best single classifier is chosen per word 
from held-out data and averaged. Chosen combina­
tion is also selected per word and averaged. 

choosing a final combination model might lead 
to significant improvement. 

Figure 2 shows how the three combination 
methods' average scores varied with the num­
ber of component classifiers used. A critical as­
pect of our system is that the first-tier classi­
fiers are very diverse, not only in implementa­
tion but also in performance. Initially, accuracy 
increases as added classifiers bring value to the 
ensemble. However, as lower-quality classifiers 
are added in, the better classifiers are steadily 
drowned out. The weighted vote and maxi­
mum entropy combinations are less affected by 
low-quality classifiers than the majority vote 
being able to suppress them with low weights: 
Still, majority vote was a good method to have 
around for words where weights could not be 
usefully set by the other methods. 

When combining heterogeneous classifiers, 
one would like to know when and how the 
combination will outperform the individuals. 
One factor is how complementary the mistakes 
of the individual classifiers are. We can mea­
sure this complementarity by averaging, over 
all pairs of classifiers, the fraction of errors 
that pair has in common. This gives average 
pairwise error independence. Another factor is 
the difficulty of the word being disambiguated. 
A high most-frequent sense baseline means 
that there is little room for improvement by 
combining classifiers. Figure 3 shows, for the 
overall top 7 first-tier classifiers, the absolute 
gain between their average accuracy and the 
accuracy of their majority. The x-axis is the dif­
ference between the pairwise independence and 
the baseline accuracy. The pattern is loose, but 
clear. The gain increases with complementarity 
and decreases with the baseline. 



Single Combination Oracle Chosen 
word base sngl vot7 wei? me7 best any used model 
art~n 41.8 58.2 53.1 54.1 52.0 58.2 74.5 58.2 we iS 
authority~n 33.7 70.7 70.7 70.7 68.5 76.1 92.4 72.8 wei5 
bar~n 39.7 72.2 61.6 64.9 70.2 71.5 86.8 65.6 me9 
begin-v 58.6 81.4 82.1 82.1 86.1 86.1 95.0 84.3 mel5 
blind-a 83.6 76.4 87.3 87.3 81.8 87.3 94.5 87.3 wei7 
bum-n 75.6 55.6 75.6 75.6 7!.1 75.6 9].] 64.4 me15 
call-v 25.8 25.8 31.8 30.3 24.2 33.3 65.2 25.8 me5 
carry·v 22.7 24.2 37.9 36.4 33.3 37.9 72.7 21.2 me15 
chair-n 79.7 82.6 81.2 81.2 82.6 82.6 84.1 82.6 me5 
channel-n 27.4 60.3 58.9 60.3 63.0 67.1 86.3 60.3 wei7 
child-n 54.7 79.7 54.7 54.7 78.1 78.1 89.1 75.0 me15 
church-n 53.1 73.4 75.0 75.0 75.0 76.6 90.6 75.0 rne5 
circuit-n 27.1 78.8 64.7 64.7 72.9 78.8 89.4 78.8 rne5 
collaborate-v 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 wei15 
colorless-a 65.7 62.9 62.9 65.7 65.7 68.6 85.7 62.9 vot7 
cool~a 46.2 53.8 55.8 55.8 48.1 59.6 84.6 48.1 rne5 
day-n 59.3 62.1 68.3 69.0 64.8 69.0 84.8 67.6 rne5 
detention-n 65.6 84.4 84.4 84.4 84.4 84.4 90.6 84.4 wei5 
tlevelop-v 29.0 29.0 34.8 34.8 34.8 42.0 69.6 33.3 votl3 
draw-v 9.8 24.4 31.7 24.4 24.4 31.7 43.9 24.4 me5 
dress-v 42.4 49.2 47.5 49.2 42.4 49.2 72.9 49.2 wei9 
drift-v 25.0 28.1 25.0 25.0 28.1 34.4 75.0 25.0 vot7 
drive-v 28.6 26.2 38.1 38.1 31.0 45.2 69.0 45.2 wei15 
dyke-n 89.3 92.9 92.9 92.9 92.9 92.9 96.4 92.9 vot5 
face-v 83.9 67.7 83.9 83.9 86.0 86.0 88.2 83.9 wei15 
faci!ity-n 48.3 67.2 67.2 69.0 63.8 74.1 91.4 65.5 wei15 
faithful-a 78.3 78.3 78.3 78.3 78.3 78.3 100 78.3 weil5 
fatigue-n 76.7 90.7 90.7 90.7 93.0 93.0 93.0 90.7 wei7 
feBling-n 56.9 49.0 56.9 56.9 60.8 60.8 88.2 56.9 wei9 
find-v 14.7 29.4 30.9 30.9 23.5 30.9 55.9 29.4 vot13 
fine-a 38.6 51.4 57.1 58.6 60.0 61.4 80.0 55.7 me5 
fit~a 51.7 82.8 89.7 89.7 79.3 89.7 96.6 89.7 wei9 
free-a 39.0 53.7 57.3 57.3 61.0 61.0 75.6 61.0 me9 
graceful-a 75.9 79.3 79.3 79.3 79.3 79.3 89.7 79.3 vot9 
green-a 78.7 83.0 83.0 83.0 85.1 85.1 92.6 84.0 rnel5 
grip-n 54.9 74.5 66.7 66.7 56.9 70.6 84.3 66.7 rne11 
hearth-n 75.0 62.5 75.0 62.5 62.5 75.0 87.5 75.0 vot15 
holiday-n 83.9 83.9 83.9 83.9 83.9 83.9 96.8 83.9 me15 
keep-v 37.3 47.8 38.8 50.7 47.8 52.2 68.7 47.8 me5 
1ady-n 69.8 77.4 79.2 79.2 77.4 79.2 83.0 79.2 wei7 
leave-v 31.8 40.9 42.4 45.5 37.9 45.5 75.8 43.9 votl5 
live-v 50.7 62.7 58.2 61.2 62.7 67.2 79.1 58.2 me15 
local-a 57.9 68.4 71.1 71.1 68.4 73.7 92.1 68.4 vot15 
rnatch-v 35.7 47.6 45.2 45.2 4.5.2 54.8 83.3 42.9 me15 
material-n 42.0 46.4 53.6 53.6 50.7 60.9 88.4 58.0 weill 
moutl-Hl 45.0 50.0 55.0 55.0 55.0 58.3 90.0 51.7 vot9 
nation-n 70.3 73.0 70.3 70.3 73.0 73.0 83.8 73.0 mel5 
natural-a 27.2 55.3 47.6 47.6 47.6 55.3 79.6 52.4 wei13 
nature-n 45.7 45.7 45.7 45.7 56.5 58.7 84.8 45.7 votS 
oblique-a 69.0 75.9 75.9 79.3 75.9 79.3 93.1 79.3 wei9 
play-v 19.7 37.9 39.4 40.9 37.9 45.5 68.2 40.9 wei7 
post-n 31.6 67.1 57.0 60.8 65.8 68.4 79.7 64.6 me13 
pull-v 21.7 25.0 28.3 25.0 30.0 35.0 71.7 33.3 rnell 
replace-v 53.3 53.3 53.3 53.3 53.3 55.6 88.9 53.3 vot7 
restraint-n 31.1 64.4 71.1 73.3 68.9 73.3 84.4 66.7 weill 
see-v 31.9 37.7 43.5 43.5 39.1 43.5 60.9 40.6 votl5 
sense-n 22.6 52.8 60.4 58.5 52.8 64.2 83.0 60.4 votll 
serve~v 29.4 54.9 60.8 62.7 58.8 66.7 76.5 56.9 vot15 
simple-a 51.5 54.5 51.5 51.5 54.5 54.5 83.3 53.0 rne5 
solemn-a 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 wei15 
spade-n 63.6 63.6 78.8 78.8 81.8 81.8 81.8 75.8 weil5 
stress-n 46.2 48.7 35.9 41.0 51.3 5!.3 89.7 51.3 me9 
strike-v 16.7 22.2 37.0 29.6 33.3 38.9 66.7 35.2 wei15 
train-v 30.2 54.0 54.0 54.0 52.4 60.3 84.1 55.6 weill 
treat-v 38.6 47.7 54.5 56.8 47.7 59.1 95.5 54.5 vot7 
turn-v 14.9 23.9 34.3 28.4 31.3 34.3 58.2 31.3 weill 
use·v 65.8 64.5 65.8 65.8 65.8 68.4 81.6 65.8 me9 
vital-a 92.1 92.1 92.1 92.1 92.1 92.1 92.1 92.1 wei15 
wander-v 80.0 80.0 82.0 82.0 80.0 82.0 82.0 80.0 mel5 
wash-v 25.0 66.7 33.3 58.3 50.0 58.3 83.3 25.0 vot15 
work-v 26.7 50.0 45.0 41.7 43.3 45.0 76.7 41.7 weil3 
yew-n 78.6 78.6 78.6 78.6 78.6 78.6 82.1 78.6 me15 

Table 1: Results by word. Single classifiers: base 
= most-frequent-sense baseline, sngl = best single 
first-tier classifier as chosen on held-out data for that 
word. Fixed combinations: vot = majority vote, wei 
= weighted vote, me = maximum entropy combina­
tion; all are shown for the top seven classifiers only. 
Oracle bounds: best = best combination system as 
measured on the test data, any = test cases where 
at least one first-tier classifier produced the correct 
answer. Actually chosen: model shows which model 
performed best according to held-out data, and used 
shows its performance, which were our results for 
the SENSEVAL-2 English lexical sample task. 
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Single Combination Oracle Chosen 
base sng! vot7 wei? me7 best any used 

I noun 
50.5 67.0 6fi.8 66.4 67.7 71.7 86.6 68.3 

adjective 57.8 67.1 68.0 68.4 67.8 71.1 86.7 68.6 
verb 40.2 49.8 52.8 53.0 52.1 56.8 76.9 52.3 

1 average 47.5 59.8 60.8 61.1 61.2 65.4 82.6 61.7 

Table 2: Results by part-of-speech, and overall. 
25 
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Figure 3: Gain in accuracy of majority vote over 
the average component performance as (pair­
wise independence - baseline accuracy) grows. 

4 Conclusion 
We have demonstrated that the combination of 
a number of heterogeneous classifiers can lead 
to a substantial performance increase over the 
individual classifiers. Our system is robust to 
both the wide range of accuracy of the first-tier 
classifiers and to sparsity of training data when 
building the second-tier classifier. The system's 
overall accuracy is high, despite the medium 
level of accuracy of the component systems. 
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