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Abstract 
We present the techniques used in the word sense 
disambiguation (WSD) system that was submitted 
to the SENSEVAL-2 workshop. The system builds a 
probabilistic network per sentence to model the de­
pendencies between the words within the sentence, 
and the sense tagging for the entire sentence is com­
puted by performing a query over the network. The 
salient context used for disambiguation is based on 
sentential structure and not positional information. 
The parameters are established automatically and 
smoothed via training data, which was compiled 
from the SemCor corpus and the WordNet glosses. 
Lastly, the One-sense-per-discourse ( OSPD) hypoth­
esis is incorporated to test its effectiveness. The re­
sults from two parameterization techniques and the 
effects of the OSPD hypothesis are presented. 

1 Problem Formulation 
WSD is treated in this system as a classification 
task, where the ith sense (W #i) of a word (W) is 
classified as the correct sense tag (M;), given the 
word W and usually some surrounding context. In 
the SENSEVAL-2 English all-words task, all ambigu­
ous content words (nouns, verbs, adjectives, and ad­
verbs) are to be classified with a sense tag from the 
WordNet 1.7 lexical database (Miller, 1990). For 
example, the words "great", "devastated", and "re­
gion" in the sentence "The great hurricane devas­
tated the region" are classified with the correct sense 
tags 2, 2, and 2, respectively. We will refer to this 
task using the following notation: 

M = Mbest(S) = arg maxP(MIS), (1) 

where S is the input sentence, and M is the se­
mantic tag assigned to each word. While a context 
larger than the sentence S can be and is used in our 
model, we will refer to the context asS. In this for­
mulation, each word W; in the sentence is treated as 
a random variable M; taking on the values {1 .. Ni}, 
where N; is the number of senses for the word W;. 
Therefore, we wish to find instantiations of M such 
that P(MIS) is maximized. 
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To make the computation of Mbest(S) 
more tractable, it can be decomposed into 
Mbest(S) ~ arg max(II;P(M;IS)), where it is 
assumed that each word can be disambiguated 
independently. However, this assumption does 
not always hold, since disambiguating one word 
often affects the sense assignment of another 
word within the same sentence. Alternatively, the 
process can be modeled as a Markov model, e.g., 
Mbest(S) ~ arg max(II;P(W;IM;) X P(M;IM;-I)). 
While the Markov model requires fewer param­
eters, it is unable to capture the long-distance 
dependencies that occur in natural languages. 
Although the first decomposition better captures 
these dependencies, computing P(M;IS) using the 
full sentential context is rarely used, since the 
number of parameters required grows exponen­
tially with each added context. Therefore, one 
can further simplify this model by narrowing the 
context to 2n number of surrounding words, i.e., 
P(M;IS) ~ P(M;IW;-n, ... W;-I, W;+I, ... Wi+n)· 
However, narrowing the context also discards 
long-distance relationships, making it closer to a 
Markov model. 

Without having to artificially limit the size of 
the context, another possible simplification is to 
make independence assumptions between the con­
text words. In the simplest case, every context is 
assumed to be independent from each other, i.e., 
P(M;IS) ~ IIxP(M;IWx), like a Naive Bayes classi­
fier. While the parameters can be simply established 
by a set of bi-grams, the independence assumption 
is often too strong and thus negatively affects accu­
racy. The difficulty is in choosing the context that 
would maximize the accuracy while allowing for re­
liable parameter estimation from training data. 

In our model, we aim to strike this balance by 
choosing the context words based on structural in­
formation, rather than positional information. The 
hypothesis is that an ambiguous word is probabilisti­
cally dependent on its structurally related words and 
is independent of the rest of the sentence. There­
fore, long-distance dependencies can still be cap­
tured, while the context is kept small. Further-



P(A,B,C,D,E,F)=P(AIB,C)xP(BID,F)xP(CID) 
xP(DIE)xP(E)xP(F) 

Figure 1: An example of a Bayesian network and 
the probability tables at each node that define the 
relationships between a node and its parents. The 
equation at the bottom shows how the distribution 
is represented by the network. 

more, each word is not classified independently of 
each other, but is computed as one single query that 
determines all of the sense assignments that result 
in the highest overall probability for the whole sen­
tence. Therefore, our model is a combination of the 
decompositions described above, by selectively mak­
ing independence assumptions on a per-word basis 
to best model P(MdS), while computing Mbest(S) 
in one query to allow for interactions between the 
word senses M;. 

1.1 Bayesian Networks 

This process is achieved by using Bayesian networks 
to model the dependencies between each word and 
its contextual words, and based on the parame­
terization, compute the best overall sense assign­
ments. A Bayesian network is a directed acyclic 
graph G that represents a joint probability distri­
bution P(X1 , ... ,Xn) across the random variables of 
each node in the graph. By making independence 
assumptions between variables, each node i is condi­
tionally dependent upon only its parents P A; (Pearl, 
1988): P(X1, ... ,Xn) = II;P(X;IPA;). By using this 
representation, the number of probabilities needed 
to represent the distribution can be significantly re­
duced. Figure 1 shows an example Bayesian net­
work representing the distribution P(A,B,C,D,E,F). 
Instead of having one large table with 26 parameters 
(with all Boolean nodes), the distribution is repre­
sented by the conditional probability tables (CPTs) 
at each node, such as P(B I D, F) at node B, re­
quiring a total of only 24 parameters for the whole 
distribution. Not only do the savings become more 
significant with larger networks, but the sparse data 
problem becomes more manageable as well. The 
training set no longer needs to cover all permuta­
tions of the feature sets, but only smaller subsets 
dictated by the sets of variables of the CPTs. 

In our model using Bayesian networks for WSD, 
each word is represented by the random variable 

64 

M; as a node in G. We then find a set of par­
ents P A; that M; depends on, based on struc­
tural information. Using this representation, the 
number of parameters is significantly reduced. If 
the average number of parents per node is 2, and 
if the average number of senses per word is 5, 
then the joint distribution across the whole sentence 
P(M1 , .. , MN) is represented by the Bayesian net­
work with ~ s(2+I) * N parameters. This is in con­
trast to a full joint distribution table that would con­
tain 5N entries, which is obviously intractable for 
any sentence of non-trivial length N. Bayesian net­
works also facilitate the computation of the instanti­
ations for M; such that P(M1 , •. , MN) is maximum. 
Instead of looking for the maximum row in the table 
with 5N entries, this computation is made tractable 
by using Bayesian networks. Specifically, this query, 
called Maximum A Posteriori (MAP), can be com­
puted in 0(5w), where w < < N and indicates the 
connectiveness of G. 

Using the same notation above, the process of 
a whole-sentence word sense disambiguation using 
probabilistic networks can be described as the fol­
lowing: 

~ arg maxii;(P(M;IMPA;)P(M;IW;, WpA.)). (2) 

The first approximation is based on our hypoth­
esis of a word's sense is dependent only on struc­
turally related words. It is further decomposed in 
the second term to minimize the sparse data prob­
lem. This process consists of three major steps: 1) 
defining the structure of the Bayesian network G, 
2) quantifying the network with probabilities from 
training data (P(M;!W;, WpAJ), and finally, 3) an­
swering the query of the most probable word sense 
assignments (arg maxii;( ... )). 

2 Network Structure 
The first step in constructing a Bayesian network 
is to determine its structure G, which defines each 
node's dependency relationship with the rest of the 
network. In our model, we are making these inde­
pendence assumptions based on the structural re­
lationships between words. Specifically, given the 
sentence S and its parse tree, we automatically con­
struct a graph G by first creating a node M; for each 
word W;. This process is best illustrated by the ex­
ample shown in Figure 2. For each node M;, an edge 
is added to node Mx, where Mx is the head word of 
a verb phrase (board -+ approved), the target of the 
modifier M; (today's-+ meeting), or the preposition 
Mx where M; is the target or a constituent of the 
prepositional phrase (approved -+ at). One can see 
that if the parse tree is known, the construction of 
network G is straight-forward. For SENSEVAL-2, the 



Figure 2: An example of a Bayesian network repre­
senting the inter-dependencies between the words of 
the sentence "The board approved its acquisition by 
ABC Co. of New York at today:s meeting." 

parse trees provided in Treebank format were used 
to build the Bayesian networks' structure. 

Once the structure of the Bayesian network is de­
termined: the context: i.e.: the parents P Ai: for each 
word is established. Using the same example: the 
context for the word "approved" is "board" and "ac­
quisition", and for "at" it is "approved': and "meet­
ing'). Our hypothesis is that these structurally re­
lated words: among all of the words within the sen­
tence, provide the best contextual information for 
sense disambiguation. That is, given that the par­
ents' word form WPA, and senses MPA, are known, 
the sense assignment for Mi is independent of all 
other words in the sentence. This is, of course, a 
simplification due to the constraint in minimizing 
the context. However, the use of Bayesian networks 
allows for easy expansion of context by establish­
ing more edges between nodes or adding new nodes, 
provided that the parameters can be determined re­
liably. 

3 Establishing the Parameters 
Once G is determined, the CPTs at each node 
need to be quantified. Using the same exam­
ple above, for the word "approved", its CPT 
P(appraved#ilboard#i, acquisition#i) would con­
tain 2 (number of senses for "approved") x 9 x 4 = 
72 entries. For a word without any parents, such as 
"today's'), its priors are used. 

While determining the network structure is rel­
atively simple, establishing accurate parameters is 
quite difficult, even with a small context such as 
ours. Due to the limited size of SemCor, our only 
labeled training data, we used additional sources 
to quantify and smooth these parameters. Primar­
ily we deployed the same techniques used in our 
Bayesian Hierarchical Disambiguator (BHD) model 
(Chao and Dyer, 2000), which uses Internet search 
engines to estimate parameters based on permuta­
tions of synonym words, a method first introduced 
by Mihalcea and Moldovan (1999). These param­
eters are then smoothed by training data obtained 
from SemCor. The details of BHD are omitted here 
due to space constraints. 

Although BHD was only used on adjective-noun 
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pairs, the same principles are used to quantify all of 
the CPTs in this model. While only one hierarchi­
cal network is needed to smooth the parameter for 
adjective-noun pairs, up to three hierarchical net­
works are used for each potential parent. Since the 
smoothing computation is very efficient, being linear 
in the depth of the network, these additions did not 
impact the speed of the model. The majority of the 
time was used to query the Internet search engine. 

The BHD model, however, did use additional 
training data that was collected from the Word­
Net glosses and manually annotated. While it re­
sulted in good accuracy, this was obviously not an 
option for SENSEVAL-2. Instead, the example sen­
tences from WordNet are extracted and first tagged 
by Brill's POS tagger (Brill, 1995). Then an ex­
perimental parser and our WSD system were used 
to parse and disambiguate the sentences to extract 
additional training data. For example, for the 6th 
sense of adjective "great", the pair "great#6 time" is 
extracted from the example sentence fragment "had 
a great time at the party" and automatically dis­
ambiguated. The labeled pair is then added to the 
training set for great#6. 

Lastly, the priors in this model are determined 
directly from SemCor's occurrence statistics and 
estimated using Maximum Likelihood Estimation 
(MLE). This is another simplification over the BHD 
model, where the priors were determined using the 
hundred most frequent adjective-noun pairs culled 
from the Internet and then manually classified. It is 
well known that MLE is inaccurate when the num­
ber of events are low, as is in this case when rarer 
senses often have only single occurrences. 

Nevertheless, we are able to address both of the 
manual steps used in the BHD model with auto­
mated processes. However, it is our belief that they 
are also the weakest part of our model and contribute 
the most to the errors. 

4 Querying the Network 
With both the structure G and the parameters 
established, the query we pose is to compute 
the instantiations for each random variable that 
would result in the highest joint probability, i.e., 
arg maxP(MiiS). This is computed easily using the 
Maximum A Posteriori (MAP) query. This was im­
plemented using the JointTree algorithm (Darwiche, 
1995) and can be computed in O(lclw) time, where 
lei is the size ofthe variable (number of senses), and 
w is the tree width. Given that our networks are 
sparsely connected, w is usually close to 3, the aver­
age number of parents + 1. 

The advantage of using the MAP query is that 
it computes variable instantiations that will maxi­
mize the overall probability across the whole sen­
tence, rather than the localized context. Further-



Model Precision Recall 

1 0.500 0.449 
2 0.475 0.454 
3 0.474 0.453 

Table 1: Precision/recall results of the three models 
submitted to SENSEVAL-2. 

more, the resulting instantiation and probability is 
guaranteed to be maximum. So given the indepen­
dence assumptions made on the context and the es­
timated parameters, MAP will always produce the 
most probable sense tagging for every word in the 
sentence. 

5 Beyond Sentential Context 
It is well known that word senses are often influ­
enced by contexts larger than the sentence, such as 
surrounding sentences or even the whole passage. 
We experimented with the One-sense-per-discourse 
(OSPD) hypothesis (Yarowsky, 1993) by applying 
the probabilities described in Stetina et al. (1998) 
to words that have previously appeared in the text 
and thus have been disambiguated. The only mod­
ification needed to our model described thus far is 
to apply OSPD probabilities, which is dependent on 
the distance between the sentences, to each sense 
of a re-occurring word before the MAP query. It is 
our observation that this incarnation of the OSPD 
hypothesis, chosen for its ease of implementation, 
tends to propagate erroneous sense tagging from ini­
tial sentences to the remainder of the passage. A 
better approach would be to determine the one sense 
that would maximize the consensus across the whole 
passage, as well as within each individual sentence. 
How this can be achieved efficiently in a probabilistic 
framework is currently being investigated. 

6 Evaluation 
For SENSEVAL-2, we submitted three models for 
comparison, which differ by their methods of pa­
rameter estimation. Model 2 uses the training data 
from SemCor and Hierarchical networks to smooth 
the parameters from Internet search engines. Model 
3 incorporates additional training data gathered au­
tomatically from the WordNet glosses. Lastly, model 
1 combines all training data, as well as the OSPD 
hypothesis. 

One can see that the model that uses all of the 
available data achieved best accuracy (model 1) but 
unfortunately also had the lowest recall due to the 
added complexity. Some highly polysemous words 
were omitted due to time and memory constraints. 
Between the 2 training sets, it was unfortunate that 
the addition of the automatically generated training 
set reduced the accuracy slightly, mainly due to the 
noisy data produced by our experimental system. 
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Nevertheless, we believe that there is a wealth 
of information contained within WordNet's glosses. 
Since one of our aims is to use as much automated 
processing as possible, we are focusing on improving 
the accuracy of the automatically generated train­
ing data. Our goal is that as the WSD accuracy 
of our system improves, so will the reliably of these 
automatically generated training data. Having im­
proved training data will further improve the sys­
tem's WSD accuracy, i.e., a bootstrapping system. 
We are at the initial stage of this process, but some 
fundamental problems such as reliable POS tagging 
and parsing of sentence fragments need to be ad­
dressed first. FUrthermore, parameter estimation 
based on Internet statistics might prove to be too 
noisy, so we are currently focusing on learning al­
gorithms such as Expectation Maximization to tune 
the parameters. Lastly, if our context is found to 
be too limited, additional features can be added to 
the Bayesian networks to improve the classification 
accuracy. 
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