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Abstract 
We describe the University of Maryland's su­
pervised sense tagger, which participated in the 
SENSEVAL-2 lexical sample evaluations for En­
glish, Spanish, and Swedish; we also present un­
official results for Basque. We designed a highly 
modular combination of language-independent 
feature extraction and supervised learning us­
ing support vector machines in order to permit 
rapid ramp-up, language independence, and ca­
pability for future expansion. 

1 Introduction 
The SENSEVAL-2 exercise provided an unprece­
dented opportunity to explore word sense dis­
ambiguation (WSD) in a common evaluation 
framework for a large number of languages. In 
past work, we have focused on unsupervised 
methods for English, taking advantage of the 
WordN et hierarchy and sometimes also selec­
tional preferences between predicates and argu­
ments (Resnik, 1997; Resnik, 1999). In the cur­
rent exercise, however, WordNet-like sense hi­
erarchies were not necessarily going to be avail­
able for all languages, and the predominance 
of lexical selection tasks (rather than all- words 
tasks) suggested adopting a disambiguation ap­
proach capable of exploiting manually anno­
tated training data. These considerations mo­
tivated a system design based on supervised 
learning, where senses to be predicted did not 
need to be treated as part of a semantic hierar­
chy. 

Our design was also motivated by the role of 
semantic selection techniques in our longer term 
research agenda. In the context of our group's 
work on cross-language information retrieval 
and machine translation applications (Resnik et 
al., 2001; Cabezas et al., 2001), lexical selection 
- that is, choosing the right target-language 
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word given a source-language word in context 
- is a crucial task. Because the lexical selec­
tion problem is extremely similar to sense selec­
tion, and because this was our first foray into 
supervised methods, we took advantage of the 
opportunity to construct an architecture that 
will support both tasks. 

In the sections that follow, we lay out 
our system architecture, briefly summarize our 
SENSEVAL-2 results, and discuss our plans for 
future work. 

2 System Architecture 

UMD's system follows the classic supervised 
learning paradigm that, for WSD, is perhaps 
best exemplified by Yarowsky's (1993) work. 
Each word in the vocabulary is considered an 
independent classification problem. First, an­
notated training instances for the ambiguous 
word are analyzed so that each instance can 
be represented as a collection of feature-value 
pairs labeled with the correct category. Then, 
these data are used for parameter estimation 
within a supervised learning framework in or­
der to produce a trained classifier. Finally, the 
trained classifier is given previously unseen test 
instances and for each instance it predicts what 
the appropriate category label should be. 

2.1 Contextual Features 

We began by tokenizing all the training in­
stances using a simple language-specific tok­
enizer. Features were then defined in terms of 
the presence of tokens either within a wide con­
text or at a certain position to the right or left 
of the word being disambiguated. 

In detail, let T be the set of unique tokens 
found in the full set of training data (all train­
ing instances), plus the special token UNKNOWN, 
which replaces any token in test data that was 



never seen during training. Define F wide = T. 
A feature f E F wide will be considered present 
and have a non-zero value if f appears any­
where in the wide context of the word being 
disambiguated. For example, if we were disam­
biguating the word training that appears in the 
first sentence of this paragraph, using the entire 
paragraph as the wide context, then there would 
be non-zero values for features WE, BEGAN, and 
every other word in the paragraph. That is, 
features correspond to surrounding words.1 

Let£ = {L3,L2,Ll,Rl,R2,R3}, signifying 
the locations "three tokens to the left", "two to­
kens to the left", ... , "three tokens to the right", 
and define Fcolloc = {l:t ll E £ and t E T}. A 
feature l:t E Fcolloc will be considered present 
and have a non-zero value if token t appears 
at position l relative to the word being disam­
biguated. For example, if we were disambiguat­
ing the word training that appears in the first 
sentence of this section, there would be non-zero 
values for the features L3 : tokenizing, L 2 : all, 
L1: the, L1: instances, L2 :using, and L3: a. 

2.2 Feature Weights 

The value associated with each feature is a 
weight indicating how useful the feature is likely 
to be in disambiguation, analogous to the term 
weights used in representing documents as fea­
ture vectors for information retrieval. 

In detail, let us designate the full feature set 
as F = Fwide U Fcolloc' and let N:F = j.Fj. 
Clearly some features are more useful than oth-
ers. For example, the feature into (word into 
appearing anywhere in the context) is unlikely 
to help distinguish among senses, although the 
feature R1: into (word into appearing one word 
to the right) might be useful for disambiguat­
ing among the senses of some verbs. In order to 
assign weights to features based on their likely 
utility, we follow a strategy similar to what is 
done in information retrieval, defining inverse 
category frequency (ICF), by analogy with in­
verse document frequency (IDF), as a function 
of how many distinct categories a feature ap­
pears with in training data. 

1 For SENSEVAL-2, we defined the surrounding context 
for wide contexts as being anywhere within the test in­
stance, because instances comprised only a sentence or 
two. In a more general setting the context could be de­
fined as a window of ±50 words, ±100 words, the entire 
document, etc. 
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Specifically, if we are disambiguating a word 
w with senses S = { s1, s2, ... , SNw}, then we de­
fine ICF wU) = -log( N ~/ N w) where N ~ is the 
number of distinct elements of S that ever co­
occur with feature f in the training data for 
word w. For example, if a word has five senses, 
and the feature L1 :the appears in some train­
ing instance for each of the five senses, then 
ICFw(LI :the) = -log(5/5) = 0, correctly in­
dicating that this feature is not at all useful 
for disambiguating among the five senses of this 
word. The lower N ~ is, the greater the value of 
the ICF wU) value and hence the greater weight 
accorded this feature. 

Training and test instances are represented as 
N :F-ary feature vectors: given a training or test 
instance for a word w, the vector representa­
tion is defined by vw[f] = ICF wU) if f E F is 
present, and zero otherwise. 

2.3 Learning Framework 

Once training and test instances are represented 
as feature vectors, it becomes possible to ex­
ploit any number of existing supervised learn­
ing algorithms. In general, such algorithms take 
a set {(vbci),(v2,c2), ... ,(vN,cN)} of training 
instances, and produce a classifier that takes a 
feature vector v as input and return a distri­
bution or confidence function over the possible 
categories. 

For SENSEVAL-2, we selected support vec­
tor machines (SVMs) as the supervised learn­
ing framework. We were motivated by the fact 
that SVMs have been shown to achieve high per­
formance and work efficiently in environments 
where there are very large numbers of features, 
and also by the existence of a good off-the­
shelf implementation, SVM-Light, available for 
research purposes (Joachims, 1999; Joachims, 
1998).2 

SVM learning is appropriate for binary clas­
sification tasks, rather than the multi-way clas­
sification needed for disambiguating among n 
senses. For each word in the lexical sample 
tasks, therefore, we constructed a family of 
SVM classifiers, one for each of the word's Nw 
senses. All positive training examples for a 

2 Hearst {1998) presents a collection of brief 
and illuminating discussions of SVMs; see 
http:/ fwww.computer.org/intelligent/ex1998/pdf/x4018.pdf. 
SVM-Light is available at http:/ Jwww-ai,cs.uni­
dortmund.de/ svm..light. 



Language I Precision (%) I Recall (%) I 
English (coarse) 64.3 64.3 
English (fine) 56.8 56.8 

I Spanish (fine) 62.7 62.7 

I Swedish (mixed) I 65.6 65.6 
I Swedish (fine) I 61.1 61.1 

I Basque (fine) I 70.3 70.3 

Table 1: UMD-SST lexical sample results 

sense Si of w were treated as negative training 
examples for all the other senses Sj, j f:. i. 

In the testing phase, we convert test instances 
for word w into feature vectors, and we then we 
run these vectors through the SVM classifiers 
for { St, s2, ... , SNw}· For each instance, we se­
lect the sense for which the SVM classifier's re­
sponse is most strongly "yes" (or, equivalently, 
most weakly "no"). 

3 SENSEVAL-2 Results 
Table 1 shows the performance of UMD's su­
pervised sense tagger (UMD-SST) for the lex­
ical sample tasks in four languages. The fig­
ures for English, Spanish, and Swedish are offi­
cial SENSEVAL-2 results; the figures for Basque 
are unofficial results kindly computed by the 
Basque task organizers after SENSEVAL-2 be­
cause our Basque responses were not submitted 
in time for official evaluation. 

In general, we were quite pleased with the re­
sults, particularly since this was our first time 
participating in SENSEVAL. UMD-SST turned 
in a solid performance in comparison with the 
baselines and other systems, with essentially 
no language-specific alterations necessary other 
than those required for tokenization. This en­
abled us to participate in system evaluation for 
more languages than any site except JHU. We 
consider this a good starting point for our fur­
ther investigations, which we now briefly de­
scribe. 

4 Future Work 
Using the current system as a starting point, 
we are engaged in three lines of further investi­
gation: linguistically richer contextual features, 
corpus-dependent expansion of feature vectors, 
and lexical selection via supervised learning. 

In our preliminary tests using training and 
development data, we experimented first with 
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using F wide as the feature set, and obtained sig­
nificant improvements when we added Fcolloc 
in order to capture collocations and other local 
contextual features. In our follow-up efforts we 
plan to use broad-coverage parsing to create a 
set of features augmented further by grammat­
ical relations, thus capturing collocations medi­
ated by syntactic structure. For example, al­
though our current feature vectors could not 
represent the presence of the word tagger as a 
nearby collocate of the word describe in the ab­
stract of this paper, syntactically richer repre­
sentations of this context for the verb describe 
would include the feature object='tagger'. 
Use of syntactic collocates will require broad­
coverage parsing in all the languages of inter­
est in order to identify grammatical relations; 
for this we will take advantage of our other 
work at Maryland on bootstrapping stochastic 
parsers for new languages using parallel corpora 
(Cabezas et al., 2001). 

In our preliminary efforts we were not sur­
prised to find that sparseness of data was 
a problem. Although we expect that some 
improvements may be obtained by collapsing 
across word variants - e.g. via morphologi­
cal equivalence classes or stemming - we also 
plan to focus our efforts on semantic expansion, 
using document expansion techniques we have 
developed in our research on cross-language in­
formation retrieval (Levow et al., 2001). We 
have implemented a variant of the architecture 
in which training contexts are used as queries 
to a comparable corpus in order to retrieve re­
lated documents. The features from these docu­
ments are then added to the context representa­
tions, providing semantically enhanced feature 
vectors. Evaluation of this approach using SEN­

SEVAL data is in progress. 

Our third avenue of investigation focuses on 
the use of our supervised WSD infrastructure 
to address problems of lexical selection in ma­
chine translation. Empirically, there is a close 
relationship between sense distinctions and pat­
terns of lexicalization across languages (Resnik 
and Yarowsky, 1999). And operationally, there 
is no real difference between labeling a word 
with a sense tag from a monolingual dictionary 
and labeling that word with a translation from a 
bilingual dictionary. Using WSD techniques for 
lexical selection primarily requires solving two 



problems. The first problem is acquisition of 
annotated training data, and in this case large 
corpora of translation-labeled words in context 
can be created by obtaining parallel corpora, 
performing word-level alignment, and labeling 
each word with its correspondent in the other 
language; this problem is already solved as part 
of our infrastructure for research on statistical 
machine translation (Cabezas et al., 2001). The 
second problem is one of scalability: the ap­
proach we have described requires a separate 
classifer for every sense (or, now, every possi­
ble word-level translation) of every source lan­
guage word. This remains an open issue, but we 
are optimistic about rapid developments in this 
area since scaling up to large vocabularies is a 
problem shared by everybody who wishes to use 
supervised WSD techniques in a broad-coverage 
setting. 

5 Conclusions 

University of Maryland's sense tagger repre­
sents a classic instance of the supervised learn­
ing approach. At the same time, we have made 
architectural choices that promote language in­
dependence, modularity, extensibility, and scal­
ability, and in a relatively short time period we 
succeeded in putting together an implementa­
tion that performs quite credibly among an im­
pressive collection of competitors. We are en­
couraged by the results and we look forward to 
participating in further SENSEVAL exercises. 
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