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Abstract 

SENSEV AL-2: The Second International 
Workshop on Evaluating Word Sense 
Disambiguation Systems was held on July 
5-6, 2001. This paper gives an overview 
of SENSEV AL-2, discussing the 
evaluation exercise, the tasks, the scoring 
system, and the results. It ends with some 
recommendations for future evaluation 
exercises. 

1 Introduction 

Word sense disambiguation (WSD) is the 
problem of automatically deciding which sense a 
word has in any particular context. The success 
of any project in WSD is clearly tied to the 
evaluation of WSD systems. SENSEV AL was 
started in 1997, under the auspices of ACL­
SIGLEX, to bring together researchers to discuss 
and solve the WSD-evaluation problem. Its aim 
is to evaluate the strengths and weaknesses of 
WSD algorithms and systems with respect to 
different words, different varieties of language, 
and different languages. 

SENSEV AL is independent from other 
evaluation programs in the language technology 
community, such as TREC and MUC. Unlike 
these programs, SENSEV AL is a 'freelance' 
program is run entirely by volunteers. We'd like 
to remind everyone that while SENSEV AL 
takes the guise of a competition, its main 
function is not to determine a winner but to 
explore the scientific aspects of word sense 
disambiguation. 

SENSEV AL held its first evaluation exercise 
in the summer of 1998, culminating in a 
workshop at Herstmonceux Castle, England on 
September 2-4 (Kilgarriff and Palmer 2000). 
Following the success of the first workshop, 
SENSEV AL-2, supported by EURALEX, 
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ELSNET, EPSRC, and ELRA, was organized in 
2000-2001. The Second International 
Workshop on Evaluating Word Sense 
Disambiguation Systems was held in 
conjunction with ACL-2001 on July 5-6, 2001 
in Toulouse. 

This paper gives an overview of SENSEV AL-
2, discussing the evaluation exercise, the tasks, 
the scoring system, and the results. It ends with 
some recommendations for future evaluation 
exercises. 

2 Tasks and participants 

A main goal of SENSEV AL-2 was to encourage 
new languages to participate. We were 
successful: SENSEV AL-2 evaluated WSD 
systems on three types of task on 12 languages 
as follows: 

All-words Czech, Dutch, English, 
Estonian 

Lexical Basque, English, Italian, 
sample Japanese, Korean, Spanish, 

Swedish 
Translation Japanese 

In the all-words task, systems must tag almost 
all of the content words in a sample of running 
text. In the lexical sample task, we first 
carefully select a sample of words from the 
lexicon; systems must then tag several instances 
of the sample words in short extracts of text. 
The translation task (Japanese only) is a lexical 
sample task in which word sense is defined 
according to translation distinction. Task design 
is discussed in section 3 below. 

93 systems were submitted from 34 different 
research teams. Table 1 gives a breakdown of 
the number of submissions and teams who 
participated in each task. Note that some teams 
submitted multiple systems to the same task, and 
some submitted systems to multiple tasks. 



Several tasks had no submissions: the Chinese 
and Danish tasks could not find enough time to 
complete the data in time for the exercise, and 
the available Dutch data was misplaced in the 
process of making it public. The Dutch data is 
available, and the Chinese and Danish data will 
be prepared in due course. 

Language Task No. of No. of 
submissions terum 

Chinese LS 0 0 
Danish LS 0 0 
Dutch AW 0 0 
Czech AW 1 1 
Basque LS 3 2 
Estonian AW 2 2 
Italian LS 2 2 
Korean LS 2 2 
Spanish LS 12 5 
Swedish LS 8 5 
Japanese LS 7 3 
Japanese 1L 9 8 
English AW 21 12 
English LS 26 15 
Total 93 57 

Table 1 Submissiom to SENSEV AL-2 

3 Task design 

A task in SENSEV AL consists of three types of 
data: 1) A lexicon of word-to-sense mappings, 
with possibly extra information to explain, 
define, or distinguish the senses (e.g., WordNet); 
2) A corpus of manually tagged text or samples 
of text that acts as the Gold Standard, and that is 
split into an optional training corpus and test 
corpus; and 3) An optional sense hierarchy or 
sense grouping to allow for fine or coarse 
grained sense distinctions to be used in scoring. 

Regardless of the type of task, each system is 
required to tag the words specified in the test 
corpus with one or more tags in the lexicon. 
Supervised systems can train on the training 
corpus, if one is available. 

The SENSEV AL committee issued general 
guidelines for designing a task (Edmonds 2000). 
But it was up to the individual task organisers, to 
design their own tasks since each had different 
constraints on resource availability (both human 
and data). Everyone, however, used a common 
XML data encoding format developed for 
SENSEV AL-2. 
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Specific issues in choosing and designing the 
resources for each task are described in the 
papers in this proceedings, and, more generally, 
by Kilgarriff and Rosenzweig (2000). 

3.1 Lexicon and lexical samples 

Each task organiser chose the lexicon for their 
task. Notably, WordNet was used for the first 
time in SENSEV AL. Version 1.7 for the 
English tasks, and versions of Euro WordNet for 
Spanish, Italian, and Estonian. 

For the lexical sample tasks, the guidelines 
suggests that words be chosen from different 
parts of speech, different frequencies in the 
corpus, and different polysemies (i.e., number of 
senses). The number of words depended on the 
available resources. The sample words were 
kept secret from the wider community until the 
training data was released; however, the 
organisers consulted each other so that 
translations of some of the sample words could 
be used across tasks. 

3.2 Tagged corpora 

For the all-words tasks, the guidelines suggest 
that at least 5000 words of running text be 
selected, and that all content words be tagged. 

For the lexical sample tasks, it was suggested 
that for each sample word, at least 75+15n 
corpus instances be chosen, where n is the 
number of senses of the word. Again, lack of 
resources might have precluded this much 
tagged data. 

The Gold Standard corpus must be 
replicable; the goal is to have human taggers 
agree at least 90% of the time. Thus, at least 
two human taggers were required to tag every 
instance of a word. Taggers are allowed to tag 
with multiple tags and to use special tags for 
proper names, and unassignable senses. See the 
papers in this proceedings for more details. 

For the evaluation, the corpus had to be 
divided into a training set and a test set. The 
training set is a random subset of the Gold 
Standard corpus, which allows supervised 
systems to train. Not all tasks supplied training 
data, so only 'unsupervised' systems could 
participate (e.g., in the English all-words task­
although many systems trained on other corpora 
such as Semcor). The test set is the rest of the 
corpus, with tags removed, on which the systems 
would be evaluated. It was suggested that a 2:1 



ratio of training to test data be used. Although 
somewhat different from what is normally used 
in machine learning, the committee felt that 
having more te~t data would give a more 
realistic indication of a system's performance 
(since more varied contexts per word would be 
tested), and, moreover, unsupervised systems 
would be less 'short-changed'. 

All data sets are now in the public domain (on 
the SENSEV AL website). 

3.3 Sense groupings 

Since some sense inventories are two fine­
grained for plausible sense disambiguation, the 
scoring program can take into account sense 
hierarchies or sense groupings. Optionally, a 
task could provide such a grouping of senses, so 
that choosing any sense within the group or 
higher in the hierarchy would count towards a 
system's overall score. For example, the 
WordNet hierarchy was used for English nouns, 
whereas a separate 'grouping' was specially 
constructed for the English verbs (since the 
verbs do not have a useful hierarchy in WordNet 
for scoring purposes). See the paper on the 
English tasks for more detail. 

3.4 Common data fonnat 

All tasks used a specially defined common data 
format for encoding the tagged and untagged 
corpus examples. Specifically, it accommodated 
the multi-lingual nature of the data by using an 
XML document type definition which allowed 
for a flexible mapping from lexical items to their 
textual instances. Using XML also allowed for 
arbitrary character encodings in the corpora. 
The structure was designed so that individual 
instances of lexical items could be associated 
with multiple sense tags, and allowed for 
discontinuous phrasal lexical items. It did not, 
however allow for multiple phrasal items with 
overlapping portions in the surface string. 

Another requirement was simplicity. This 
quality would not only facilitate the logistics of 
designing a task, but would also ease any hand 
annotation that may have been necessary. As a 
result, a standoff annotation system was not 
feasible. This restricted the format in such a way 
as to limit the feasibility of embedding extant 
annotation of the corpora and to require that 
participants use standoff annotation in 
submitting their answers for reasons of space 
efficiency. 
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The use of the common data format simplified 
many system's participation in multiple tasks, 
consequently furthering research into the 
comparison of WSD in different languages. 

4 Evaluation procedure 

The evaluation was run centrally from a single 
website at the University of Pennsylvania and 
followed the same procedure as used in the first 
SENSEV AL. For each task, data was released 
in three stages: 

• Trial data: A small set of data so that 
participants can design their systems to 
use the data formats. No 'real' data was 
released. 

• Training data. 
• Test data. 

Each team would register their system, and then 
download the data sets according to the 
schedule. After running their system on the test 
data, each team submitted their answers to the 
website for automatic scoring. Each team's 
results were returned to the team before the 
workshop, but the overall results were unveiled 
at the workshop. 

4.1 Schedule 

A schedule was set up for task organisers to 
prepare and submit their data to the central 
website, while participants followed a separate, 
more rigid (and in the end very tight), schedule 
for downloads and submissions. 

Task organisers started preparing their data as 
far back as September 2000, but the real push 
occurred in the three months proceeding the 
competition period. 

The competition period ran April 17- June 18. 
Within this period, each task had a critical 
window defined to be the period from when the 
training data was first made available to the last 
day for answer submissions to that task. The 
critical window had to be a minimum of 21 
days. 

Participants could download and submit 
answers at any time during the critical window 
of a particular task, subject to the following 
constraints. A submission of answers must: 

• not have occurred more than 7 days after 
downloading the test data, 



• not have occurred more than 21 days 
after downloading the training data, and 

• have occurred before the end of the 
critical window for the particular task 

This set up allowed participants to have 
sufficient time to participate in several tasks 
over the whole competition period, while 
ensuring that on any particular task, a participant 
had a maximum of one week to run their system 
(and 3 weeks to train their system), which we 
hope did not give any time for tailoring systems 
to the specific words or the corpora of the 
competition. 

4.2 Data distribution 

Data for the tasks was distributed via a website 
at University of Pennsylvania Participants were 
required to register for tasks in order to 
download the trial, training, and test data for the 
tasks, and to upload their answers. Each of these 
operations required authentication via a 
password chosen at the time of registration. 
Additionally, timestamps were recorded for each 
of these operations in order to enforce the timing 
constraints on a per-participant basis. The 
system was not secure, as a participant could 
register multiple times under different names 
and use the data from the first registration to 
perform the task at hand. However, there were 
no signs of security problems in the use of the 
website. 

Use of the distribution center was 
recommended, not required, of the task 
organizers. All the tasks with the exception of 
the Japanese tasks used the distribution center. 
A nice by-product of this process in concert with 
the common data format was the development 
an overarching organization of all the 
SENSEV AL data, which is evident in the data 
available to the public domain. 

4.3 Scoring and evaluation 

The same answer format and scoring program 
was used for SENSEV AL-2 as was used in the 
first SENSEV AL. 

Systems were allowed to tag a word with as 
many senses as appropriate, giving probabilities, 
if desired. If the task had a sense hierarchy or 
grouping, then fine- and coarse-grained scoring 
was done. In fine-grained scoring, a system had 
to give at least one of the Gold Standard senses. 
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In coarse-grained scoring, all senses in the 
answer key and in system output are collapsed to 
their highest parent or group identifier. For sense 
hierarchies, mixed-grained scoring was also 
done: a system is given partial credit for 
choosing a sense that is a parent of the required 
sense according to Melamed and Resnik's 
(1997) scheme. 

Systems were not required to tag all instances 
of a word, or even all words, thus, as in 
SENSEV AL-l, we used precision and recall to 
score the systems, although the metrics are not 
completely analogous to IR evaluation. Recall 
(percentage of right answers on all instances in 
the test set) is the basic measurement of 
accuracy in this task, because it shows how 
many correct disambiguations the system 
achieved overall. Precision (percentage of right 
answers in the set of answered instances) 
favours systems that are very accurate if only on 
a small subset of cases that the system chose to 
give answers to; the cases might be particularly 
easy to disambiguate, but this can be determined 
by comparing the answers to the baseline on the 
same subset (a type of analysis that has yet to be 
done). Coverage, the percentage of instances 
that a system gives any answer to, is also 
reported. Where available, baseline and inter­
tagger agreement numbers are given. 

No further data analysis was done. Thus, the 
question of who 'won' depends on your 
perspective, but, in fact, that is not the relevant 
question. The important thing is to examine 
how each system achieved the performance that 
it shows. Some of this analysis is given in the 
papers of this proceedings. (Note that in the 
results, where appropriate, we distinguished 
between supervised and unsupervised systems.) 

When the results were unveiled at the 
workshop, it soon became apparent that bugs in 
the scoring software had potentially affected the 
results. It was decided by everyone present (on 
the first day) that all systems should be rescored. 
Also, owing to the tight schedule, some teams 
had made serious inadvertent errors in 
formatting their answers. Thus, it was also 
agreed that any team could resubmit their 
(corrected) answers before 31 July 2001. In so 
doing, the team would have to include an 
explanation about the modifications and only 
reasons of 'egregious' bugs would be allowed. 



The official results list all original submissions 
scored with the debugged scorer, and all of the 
resubmissions, clearly identified. This 
compromise maintains the professionalism of 
SENSEV AL, as it does not devalue any team 
that met the original deadline, while encouraging 
the scientific purpose of the exercise. 

5 Recommendations 

Because the results were released so close.to the 
workshop, there had been no time for detatled 
analysis. Thus, the workshop was structured 
around a series of panels about WSD and 
evaluation. Panels were held on domain-specific 
disambiguation, task design for new languages 
to SENSEV AL, sense distinctions, applications 
of WSD, and standardizing WordNets. 

Ideally, the majority of the workshop content 
should have been about the analysis of WSD 
algorithms, so the major recommendation for 
future exercises is to allow at least one month 
for analysis before the workshop. Part of this 
recommendation is to have a proceedings at the 
workshop, rather than post-workshop as this 
one. A related recommendation is to gather 
information about systems (e.g., supervised I 
unsupervised, knowledge source, etc.) as they 
are registered. 

Second, the use of different granularities and 
groupings for the lexicons in question yielded 
some unnecessary inconsistency across tasks. 
For example, the English tasks used a grouping 
which invalidated the mixed-grained scores, 
whereas the Swedish task used a hierarchy 
which yielded vacuous coarse-grained scores. 
This is actually a central issue in WSD, which 
should be addressed before the next 
SENSEV AL exercise. The data from 
SENSEV AL-2 should be invaluable in this 
research. 

Finally, it was felt by some that the 
SENSEV AL organization up to now has been 
somewhat autocratic, which is true. This might 
have been suitable in the past, but we would all 
like SENSEV AL to become as open and 
scientifically professional an activity as possible, 
without sacrificing its grassroots quality. 
Notably, it's the only 'freelance' evaluation 
activity in the computational linguistics 
community, and so we recommend that a more 
democratic organization should be sought, 
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which should include an official executive 
committee to oversee the future of SENSEV AL. 

4 Acknowledgements 

Many people contributed to SENSEV AL-2. The 
preface to this volume acknowledges everyone's 
contributions. 

5 References 

Phil Edmonds (2000). Designing a task for 
SENSEVAL-2. Technical Note. Senseval-2 
website. 

Adam Kilgarriff and Martha Palmer (2000) Guest 
editors. Special Issue on SENSEV AL: Evaluating 
Word Sense Disambiguation Programs. 
Computers and the Humanities 34( 1-2). 

Adam Kilgarriff and Joseph Rosenzweig (2000) 
Framework and results for English SENSEV AL. 
Computers and the Humanities 34( 1-2):15-48. 

Dan Melamed and Phil Resnik (2000) Tagger 
evaluation given hierarchical tag sets. Computers 
and the Humanities 34( 1-2). 

SENSEV AL Website: 
http://www.itri.bton.ac.uk/events/senseval 

SENSEV AL-2 Website: 
www.sle.sharp.co.uk/senseval2 



The Basque task: did systems perform in the upperbound? 

Eneko Agirre, Elena Garcia, Mikel Lersundi, David Martinez, Eli Pociello 
IxA NLP group, Basque Country University 

649 pk. 
20.080 Donostia, Spain 

eneko@ si.ehu.es 

Abstract 

In this paper we describe the Senseval 2 
Basque lexical-sample task. The task 
comprised 40 words (15 nouns, 15 verbs and 
10 adjectives) selected from Euskal Hiztegia, 
the main Basque dictionary. Most examples 
were taken from the Egunkaria newspaper. 
The method used to hand-tag the examples 
produced low inter-tagger agreement (75%) 
before arbitration. The four competing 
systems attained results well above the most 
frequent baseline and the best system scored 
75% precision at 100% coverage. The paper 
includes an analysis of the tagging procedure 
used, as well as the performance of the 
competing systems. In particular, we argue 
that inter-tagger agreement is not a real 
upperbound for the B,asque WSD task. 

1 Introduction 

This paper reviews the design of the lexical­
sample task for Basque. The following steps were 
taken in order to build the hand-tagged corpus: 
1. set the exercise 

a. choose sense inventory 
b. choose target corpus 
c. choose target words 
d. select examples from the corpus 

2. hand-tagging 
a. define procedure 
b. tag 
c. analysis of inter-tagger agreement 
d. arbitration 

The following section presents the setting of the 
exercise. Section 3 reviews the hand-tagging, and 
section 4 the results of the participant systems. 
Section 5 discusses the design of the task, as well 
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as the results, and section 6 presents some future 
work. 

2 Setting of the exercise 

In this section we present the setting of the Basque 
lexical-sample exercise. 

2.1 Basque 

Basque is an agglutinative language, that is, for 
the formation of words, the dictionary entry 
independently takes each of the elements 
necessary for the different functions (syntactic 
case included). More specifically, the affixes 
corresponding to the determinant, number and 
declension case are taken in this order and 
independently of each other (deep morphological 
structure). One of the main characteristics of 
Basque is its declension system with numerous 
cases, which differentiates it from the languages 
spoken in the surrounding countries. An example 
follows (the order of the lemmas is the reverse): 

etxekoari emaiozu 
[Give it] [to the one in the house] 

2.2 Sense inventory 

We chose a published dictionary, Euskal Hiztegia 
(Sarasola, 1996), for the sense inventory. It is a 
monolingual dictionary of Basque. It is normative 
and repository of standard Basque. It was 
produced based mainly on literary tradition. The 
dictionary has 30,715 entries and 41,699 main 
senses (see comment on nuances below). The TEl 
version with all the information for each entry was 
included in the distribution. As the format was 
quite complex, another version was also included, 
which listed a plain list of word senses and 
multiword terms. 



This dictionary has the particularity that word 
senses can have very specific sub-senses, called 
nuances which sometimes are illustrated with just 
an example and other times have a full definition. · 
These nuances were also included in the set of 
word senses. 

2.3 Corpora used 

At first the EEBS balanced corpus was chosen, 
comprising one million words. Unfortunately this 
size is too small to provide the number of 
occurrences per word that was defined in the 
Senseval task specification. We therefore turned to 
the biggest corpus at hand, the Egunkaria corpus, 
comprising texts taken from the newspaper. The 
size of this corpus allowed us to easily reach the 
number of examples required. On the negative 
side, it is a specific corpus, and the distribution of 
the word senses could be highly biased. We used 
Egunkaria as the main corpus, but we also used 
the EEBS corpus in some cases, as we will see 
below. 

2.4 Words chosen 

The criterion to choose the 40 words (15 nouns, 15 
verbs and 10 adjectives) was that they should 
cover all possible combinations of frequency, 
polysemy and skew 1. The first two can be 
objectively determined before starting to hand tag, 
but skew could only be determined by 
introspection. After choosing a word, the expected 
skew was sometimes different from the desired 
skew. 

A secondary criterion was the overlap with the 
words in other languages, and the overlap with a 
number of verbs that are being used for 
subcategorization and diathesis alternation studies 
in our group. 

The English task organizers and the Spanish 
task organizers provided us with half of the words 
chosen in their lexical-sample task. This 
information could be used for cross-language 
mapping of word senses. Regarding the overlap 
with verbs, we plan to explore the influence of 

1 By skew in this context, we mean the dominance of 
one sense over the others. It is given as the percentage 
of occurrences of the most frequent sense over all the 
others. 
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word senses in subcategorization and diathesis 
alternations. 

We chose the first set of 40 words that covered 
more or less all combinations of the above 
phenomena from the set of translations of the 
words in the other tasks. This was done blindly, 
without knowing which specific word was chosen. 

This first set was used to extract the examples 
(cf. following section), and the hand-taggers 
started to tag them. Unfortunately, for a number of 
words, all examples in the corpus referred to a 
single word sense. We had not foreseen this 
situation and took two measures: 
1) Search for occurrences in the secondary EEBS 

corpus. 
2) If occurrences of new senses were not found, 

then the word was discarded and a 
replacement word was chosen. 

In order to find the replacement, the hand-tagger 
that was . doing the arbitration scanned the 
examples of a word with similar polysemy and 
frequency and decided whether it had occurrences 
of more than one sense. 

2.5 Selection of examples from corpora 

The minimum number of examples for each word 
according to the task specifications was calculated 
as follows: 

N=75+ 15*senses+6mword 
where senses does not include the nuances (cf. 
section 2.2) and mword is the number of 
multiword terms that included the target word. 

The minimum number of examples per word 
was extracted at random from the Egunkaria 
corpus, plus a 10% buffer. As explained in the 
previous section, for some words occurring in a 
single sense in this corpus, additional examples 
were taken from the secondary EEBS corpus. In 
this case, all available examples from EEBS were 
used, plus the examples from Egunkaria to meet 
the minimum number of examples required. 

The context included 5 sentences, with the 
sentence with the target word appearing in the 
middle. Links were kept to the source corpus, 
document, and to the newspaper section when 
applicable. 

The occurrences were split at random in 
training set (two thirds of all occurrences) and test 
set. 



3 Hand tagging 

Three persons, graduate linguistics students, took 
part in the tagging. They are familiar with word 
senses, as they are involved in the development of 
the Basque WordNet and cleaning the TEl version 
of the Euskal Hiztegia dictionary. The following 
procedure was defined for each word: 
• The three of them would meet, read the 

definitions and examples given in , the 
dictionary and discuss the meaning of each 
word sense. They tried to agree the meaning 
differences among the word senses. 

• Two taggers independently tagged all 
examples for the word. No communication 
was allowed while tagging the word. 

• Multiple tags were allowed, as well as the 
following tags: B new sense or multiword 
term, U unassignable.:. Examples with these 
tags were removed from the final release. 

• A program was used to compute agreement 
rate and output those occurrences where there 
was disagreement grouped by the senses 
assigned. 

• The third tagger, the referee, reviewed the 
disagreements and decided which one was 
correct. 

For the word itzal (shadow), the disagreement was 
specially high. The, taggers decided that the 
definitions and examples were too confusing, and 
decided to replace it with another word. 

Overall, the two taggers agreed 75% of the 
time. Some words attained an agreement rate 
above 95% (e.g. nouns kanal - channel - or 
tentsio -tension - ), but others like herri -
town/people/nation attained only 52% 
agreement..:. 

All in all, 5284 occurrences of the 40 words 
were released. On average, one hand-tagger took 
0.41 minutes per occurrence and the other 0.55 
minutes. The referee took 0.22 minutes per entry, 
including selection of replacement words. Time 
for arbitration meeting is also included. 

4 Participants and Results 

Three different teams and four systems took part 
in the tagging: John Hopkins University (JHU), 
Basque Country University (BCU-EHU-dlist-all 
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and BCU-EHU-dlist-best) and University of 
Maryland (UMD). The third team submitted the 
results later, out of the Senseval competition. The 
results for the fine-grain scoring are shown in 
table 1, including the Most Frequent Sense 
baseline (MFS). Assuming full coverage, JHU 
attains the best performance. BCU-EHU-dlist-best 
has the best precision, but only tags 57% of the 
occurrences. 

Prec. Recall Attempted System 
0,849 0,483 56,9% BCU-ehu-dlist-best 
0,757 0,757 100% JHU 
0,732 0,732 100% BCU-ehu-dlist-all 
0,703 0,703 100% UMD 
0,648 0,648 100% MFS 

Table 1: results of systems and MFS baseline. UMD 
submitted results after the deadline. 

5 Discussion 

These are the main issues that we think are 
interesting for further discussion. 
Dictionary used. Before designing the task, we 
had to choose between two possible dictionaries: 
the Basque WordNet and the Euskal Hiztegia 
dictionary. Another alternative was to start the 
lexicographer's work afresh, defining the word 
senses as the tagging proceeded. We thought the 
printed dictionary would provide clear-cut sense 
distinctions that would allow the tagging to be 
easier. After the tagging, the hand-taggers 
complained that this was not the case. They think 
that the tagging would be much more satisfactory 
had they defined the word senses directly from the 
corpus. 

In particular, they were not allowed to 
introduce new senses or multiword terms, and 
such examples were discarded. 
Corpus used. There was a mismatch between the 
dictionary and the corpus: the corpus was linked to 
a specific genre, and this resulted in having some 
senses which were not included in the dictionary. 
Besides, many senses in the dictionary did not 
appear in our corpus, and some words had to be 
replaced. This caused the taggers some overwork, 
but did not influence the quality of the result. 



Hand-tagging is a very unpleasant task. When 
asked about future editions, the hand taggers 
suggested the following: "please do get somebody 
else". We have to note that the hand taggers are 
used to repetitive tasks, such as building the 
Basque WordNet or cleaning-up the TEl version 
of Euskal Hiztegia. 
Inter-tagger agreement. Part of the disagreement 
was caused by typos and mistakes. Nevertheless, 
we think that the low inter-tagger agreement 
(75%) was caused mainly by the procedure used to 
tag the occurrences. The taggers met and tried to 
understand the word senses, but the fact is that it 
was only after tagging a few occurrences that they 
started to really conceptualise the word senses and 
draw specific lines among one sense and the 
others. If both taggers had been allowed to meet 
(at least once) while they were tagging, they could 
have discussed and agreed on a common 
conceptuali~ation. The referee found that most of 
the times whole sets of examples were 
systematically tagged differently by each of the 
taggers, that is, each of the taggers had a different 
criterion about the word sense applicable to that 
set of examples. The referee then had to decide on 
the tag for those sets of examples. 
Systems performing as good as inter-tagger 
agreement. Traditionally, inter-tagger agreement 
has been used as an upperbound for the 
performance of machines in cognitive tasks. We 
think that in this case, a system may perform 
better on the Basque WSD task than a human, in 
the sense that if the taggers were evaluated against 
the gold standard they would score lower that the 
systems. In fact, current systems, which are still 
under development for Basque, reach the same 
performance as humans. Are machines performing 
better than humans? We think that inter-tagger 
agreement, at least as derived from the procedure 
used in this exercise, is not a real upperbound, and 
that systems can easily perform better. 

The gold standard reflects the 
conceptualization of one human, the referee, 
which does not have to agree with the 
conceptualization made by other persons 
(specially if these are done in isolation). People 
disagree whether in a certain occurrence this word 
sense or the other applies, i.e. they can disagree in 
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the meaning of the word senses as defined in the 
dictionary. In fact, trying to achieve a common 
ground when reading the dictionary definitions 
sometimes produced heated debate in the 
meetings. 

If the gold standard reflects a systematic 
conceptualization of a person, machine learning 
algorithms can learn to replicate these 
conceptualization (categorizations in this case), 
and achieve high degrees of agreement with the 
person behind the gold standard. This does not 
mean that the system is smarter than the human 
taggers, but rather that the system has no opinion 
on his own, and just imitates one of the persons. 
Error reduction similar to English task. The 
best recall for Basque was 75% vs. 64% of the 
MFS baseline. In English the best system achieved 
64% recall vs. 47% of the most frequent sense 
baseline (called commonest baseline in the official 
results). It is clear that the skew of the Basque 
words allowed for higher results. On the other 
hand, the error reduction for Basque was 29%, 
compared to 32% for English. This implies that 
systems could effectively learn from the data in 
both tasks. 
No use of domain tags, full documents. No 
system used the extra information provided by the 
full documents or the domain tags. 

6 Future work 

First of all, we plan to explore the use of other 
procedures for the hand-tagging. We think that the 
data attained high levels of quality (which has 
been shown by the error reduction attained by the 
participating systems over the MFS baseline), but 
still we are not satisfied with the sense inventory 
used. 

Further analysis of the results of the 
participating systems is also planned, as Kappa 
statistics and the performance of the combination 
of the systems. 
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Abstract 
We describe the Dutch word sense disambigua­
tion data submitted to SENSEVAL-2, and give 
preliminary results on the data using a WSD 
system based on memory-based learning and 
statistical keyword selection. 

1 Introduction 
Solving lexical ambiguity, or word sense disam­
biguation (WSD), is an important task in Nat­
ural Language Processing systems. Much like 
syntactic word-class disambiguation, it is not a 
end in itself, but rather a subtask of other nat­
ural language processing tasks (Kilgarriff and 
Rozenzweig, 2000). The problem is far from 
solved, and research and competition in the de­
velopment of WSD systems in isolation is mer­
ited, preferrably on many different languages 
and genres. 

Here we introduce the first electronic Dutch 
word-sense annotated corpus, that was collected 
under a sociolinguistic research project (Sch­
rooten and Vermeer, 1994), and was kindly do­
nated by the team coordinators to the WSD 
systems community. In this paper we describe 
the original data and the preprocessing steps 
that were applied to it before submission to the 
SENSEVAL-2, in Section 2. We also present the 
first, preliminary, results obtained with MBWSD­

D, the Memory-Based Word-Sense Disambigua­
tion system for Dutch, that uses statistical key­
word selection, in Section 3. 

2 Data: The Dutch child book 
corpus 

The Dutch WSD corpus was built as a part of a 
sociolinguistic project, led by Walter Schrooten 
and Anne Vermeer (1994), on the active vocab­
ulary of children in the age of 4 to 12 in the 
Netherlands. The aim of developing the corpus 
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was to have a realistic wordlist of the most com­
mon words used at elementary schools. This 
wordlist was further used in the study to make 
literacy tests, including tests how many senses 
of ambiguous words were known by children of 
different ages. 

The corpus consists of texts of 102 illustrated 
children books in the age range of 4 to 12. Each 
word in these texts is manually annotated with 
its appropriate sense. The data was annotated 
by six persons who all processed a different part 
of the data. 

Each word in the dataset has a non­
hierarchical, symbolic sense tag, realised as a 
mnemonic description of the specific meaning 
the word has in the sentence, often using a re­
lated term. As there was no gold standard sense 
set of Dutch available, Schrooten and Vermeer 
have made their own set of senses. 

Sense tags consist of the word's lemma and 
a sense description of one or two words ( dro­
gen_nat) or a reference of the grammatical cat­
egory (fiets_N, fietsen_ V). Verbs have as their 
tag their lemma and often a reference to their 
function in the sentence (is/ zijn_kww). When a 
word has only one sense, this is represented with 
a simple"=". Names and sound imitations also 
have "=" as their sense tag. 

The dataset also contains senses that span 
over multiple words. These multi-word ex­
pressions cover idiomatic expressions, sayings, 
proverbs, and strong collocations. Each word 
in the corpus that is part of such multi-word 
expression has as its meaning the atomic mean­
ing of the expression. 

These are two example sentences in the cor­
pus: 

"/= het/heLiidwoord raadsel/= vanjvan_prepositie 

de/=. verdwenenjverdwijnen regenboog/= 
kan /ku n nen JTiogelijkheid aileen j a lleen_adv 



#tokens 
#types 
#sentences 
# words per sentence 
# unambiguous words 
# words that occurs once 
# sense tags 
# word/ sense combinations 

occuring once 
% of ambiguous tokens 
in corpus 

152.758 
10.263 
12.287 

12.4 
9.095 
4.9~9 
9319 

6.702 

54 

Table 1: Basic corpus statistics 

metjmeLprepositie geweld/= opgelostjoplossen_probleem 

wordenjworden_hww ," /= zeiden/zeggen_praten 

de/= koningenjkoning .J= toenjtoen_adv verklaar­

denjverklaren_oorlog zej= elkaar/=de/= oorlog/= .J= 

The dataset needed some adaptations to 
make it fully usable for computational purposes. 
First, spelling and consistency errors have been 
corrected for most part, but in the data submit­
ted to SENSEVAL-2, a certain amount of errors is 
still present. Second, in Dutch, prepositions are 
often combined with verbs as particles and these 
combinations have other meanings than the two 
separate words. Unfortunately the annotations 
of these cases were rather inconsistent and for 
that reason it was decided to give all preposi­
tions the same sense tag "/prepositie" after their 
lemma. 

The dataset consists of approximately 
150,000 tokens (words and punctuation tokens) 
and about 10,000 different word forms. Nine 
thousand of these words have only one sense, 
leaving a thousand word types to disambiguate. 
These ambiguous types account for 54 % of the 
tokens in the corpus. The basic numbers can 
be found in Table 1. 

For the SENSEVAL-2 competition, the dataset 
was divided in two parts. The training set con­
sisted of 76 books and approximately 115.000 
words. The test set consisted of the remaining 
26 books and had about 38.000 words. 

3 The MBWSD-D system and 
preliminary results 

We first describe the representation of the cor­
pus data in examples presented to a memory-
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based learner in Subsection 3.1. We then de­
scribe the architecture of the system in Subsec­
tion 3.2, and we then present its preliminary 
results in Subsection 4. 

3.1 Representation: Local and keyword 
features 

As a general idea, disambiguation information 
is assumed to be present in the not-too-distant 
context of ambiguous words; the present instan­
tiation of MBWSD-D limits this to the sentence 
the ambiguous word occurs in. Sentences are 
not represented as is, but rather as limited sets 
of features expected to give salient information 
about which sense of the word applies. 

The first source of useful disambiguation in­
formation can be found immediately adjacent 
to the ambiguous word.It has been found that a 
four-word window, two words before the target 
word and two words after gives good results; cf. 
(Veenstra et al., 2000). 

Second, information about the grammatical 
category of the target word and its direct con­
text words can also be valuable. Consequently, 
each sentence of the Dutch corpus was tagged 
and the part-of-speech (POS) tags of the word 
and its direct context (two left, two right) are 
included in the representation of the sentence. 
Part-of-speech tagging was done with the Mem­
ory Based Tagger (Daelemans et al., 1996). 

Third, informative words in the context ('key­
words') are detected based on the statistical 
chi-squared test. Chi-square estimates the sig­
nificance, or degree of surprise, of the number 
of keyword occurrences with respect to the ex­
pected number of occurrences (apriori probabil­
ity): 

x2 = t (ik - ek) 2 

k=l ek 
(1) 

where fi is the keyword frequency and ei is 
the expected frequency. fi is the word frequency 
and ei is the expected word frequency. The 
expected frequency of the keyword is given in 
equation 3.1. It must be noted that the Chi­
Square method cannot be considered reliable 
when the expected frequency has a value below 
5: ei = Uwi/ fw) * ]k, where fi is the frequency 
the ambiguous word w of sensei, fw is the fre­
quency of word wand fk is the frequency of the 
keyword. 



The number of occurrences of a very good 
keyword will have a strong deviation of its ex­
pected number of occurrences divided over the 
senses. The expected probability with respect 
to all senses can be seen as a distribution of the 
keyword. A good keyword is a word that differs 
from the expected distribution and always co­
occurs with a certain sense, or never co-occurs 
with a certain sense. 

In sum, a representation of an instance of an. 
ambiguous word consists of the two words be­
fore the target word, two words after the word, 
the POS tags of these words and of the target 
word itself, a number of selected keywords, and 
of course the annotated sense of the word as the 
class label. 

3.2 System architecture 

Following the example of ILK's previous word­
sense disambiguation system for English (Veen­
stra et al., 2000), it was decided to use word ex­
perts. Berleant (Berleant, 1995) defines a word 
expert as follows: "A word expert is a small 
expert system-like module for processing a par­
ticular word based on other words in its vicin­
ity" (1995, p.1). Word experts are common 
in the field of word sense disambiguation, be­
cause words are very different from each other. 
Words all have different numbers of senses, dif­
ferent frequencies and. need different informa­
tion sources for di~ambiguation. With word ex­
perts, each word can be treated with its own 
optimal method. 

Making word experts for every ambiguous 
word may not be useful because many words 
occur only a few times in the corpus. It was 
decided to create word experts for wordforms 
with a threshold of minimal 10 occurrences in 
the training set. There are 524 of such words 
in the training set. 10 is a rather low threshold, 
but many words can be easily disambiguated by 
knowledge a single feature value, such as of their 
part-of-speech tag. 

The software for emulating memory-based 
learning used in this research is TiMBL (Tilburg 
Memory-Based Learner). TiMBL (Daelemans 
et al., 2001) is a software package developed by 
the ILK research group at Tilburg University. 
TiMBL implements several memory-based clas­
sifiers. In essence, memory-based classifiers use 
stored classified examples to disambiguate new 
examples. 
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For each word a TiMBL word expert was 
trained on that portion of the training corpus 
that consisted of sentence representations con­
taining that word. TiMBL was trained 300 
times, each time with another combination of 
parameters. Each of these training sessions 
was evaluated with leave-one-out cross valida­
tion (Weiss and Kulikowski, 1991) to select the 
optimal TiMBL setting for a particular word, to 
be used eventually for classifying the test mate­
rial. 

For each word expert a total of 300 experi­
ments were performed, each with another com­
bination of parameter settings. In this study 
the following options were used ( cf. (Daelemans 
et al.,. 2001) for first pointers to descriptions of 
these metrics and functions): 

distance-weighted voting : (1) all neighbors 
have equal weight; (2) Inverse Distance 
weighting; (3) Inverse Linear weighting 

feature weighting : (1) no weighting; (2) 
Gain Ratio; (3) Information Gain; ( 4) Chi 
Square; (5) Shared Variance 

similarity metric : (1) Overlap metric; (2) 
MVDM 

number of nearest neighbours : 1, 3, 5, 7, 
9, 11, 15, 25, 45, and 75 

The last step for each word expert was to test 
the optimal settings on the test set. To evaluate 
the results, described in the next Section, there­
sults were compared with a baseline score. The 
baseline was to select for each word the most 
frequent sense. 

4 Results 
The top line of Table 2 shows the mean score 
of all the word experts together on the test 
set. The score of the word experts on the 
test set, 84.1%, is generously higher than the 
baseline score of 7 4.1%. These are the results 
of the word experts only; the second row also 
includes the best-guess outputs for the lower­
frequency words, lowering the system's perfor­
mance slightly. 

The same results, now split on the frequency 
of the words in the training set, can be seen in 
Table 3. The first column shows the frequency 
groups, based on the word frequencies in the 
training set, the second the number of words in 



test selection 
word-expert words 
all ambiguous words 
all words 

#words 
15365 
16686 
37770 

baseline system 
74.1 84.1 
74.6 83.8 
88.8 92.9 

Tabl~ 2: Summary of results on test material 

the test set, and the third column shows the 
mean score of the WSD system. The scores 
tend to get better as the frequency goes up, ex­
cept for the group of 40-49, which has the lowest 
score of all. Note that the baseline score of the 
group of words with a frequency below 10 is rel­
atively high: 80.5%. 

frequency #words baseline system 
<10 1321 - 80.5 
10-19 868 63.0 76.8 
20-29 644 70.3 79.5 
30-39 503 75.9 83.3 
40-49 390 66.7 75.9 
50-99 1873 73.7 85.4 
100-199 2289 77.7 83.1 
> 200 8798 74.6 85.6 
> 100 10995 75.3 85.1 

Table 3: Results divided into frequency groups 

We can also calculate the score on all the 
words in the text, including the unambiguous 
words, to give an impression of the overall per­
formance. The unambiguous words are given 
a score of 100%, because the task was to dis­
ambiguate the ambiguous words. It might be 
useful for a disambiguation system to tag unam­
biguous words with their lemma, but the kind of 
tagging this is not of interest in our task. The 
third row of Table 2 shows the results on all 
words in which the system was applied with a 
threshold of 10: The system scores 4 % higher 
than the baseline. 

5 Discussion 

This paper introduced a Dutch child book cor­
pus, generously donated to the WSD commu­
nity by the team leaders of the sociolinguistic 
project that produced the corpus. The data 
is annotated with a non-hierarchical mnemonic 
sense inventory. The data has been cleaned up 
and split for the SENSEVAL-2 competition. 

16 

The data provides an arguably interesting 
case of a "fiat" semantic tagging, where there 
is obviously no gain from a governing wordnet, 
but alternatively it is not negatively biased by 
an inappropriate or badly-structured wordnet 
either. Learnability results are therefore an in­
teresting baseline to beat when the data would 
be annotated with a Dutch wordnet. 

The system applied to the data as a first in­
dication of its complexity and learnability, con­
sisted of an ensemble of word experts trained to 
disambiguate particular ambiguous word forms. 
The score of the system on the 16686 ambiguous 
words in the test set was 83.8% compared to a 
baseline score of 7 4.6%. On free held out text the 
system achieved a result of 92.9%; 4% over the 
baseline of 88.8%, or in other words yielding an 
error reduction of about 37%. These absolute 
and relative figures are roughly comparable to 
performances of other systems on other data, in­
dicating at least that the data represents learn­
ability properties typical for the WSD area. 
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The English lexical sample task (adjectives 
and nouns) for SENSEVAL 2 was set up accord­
ing to the same principles as for SENSEVAL-
1, as reported in (Kilgarriff and Rosenzweig, 
2000). (Adjectives and nouns only, because the 
data preparation for the verbs lexical sample 
was undertaken alongside that for the English 
all-words task, and is reported in Palmer et 
al (this volume). All discussion below up to 
the Results section covers only adjectives and 
nouns.) 

1 Lexical sample 
The lexicon was sampled to give a range of low, 
medium and high frequency words (see Table 
1). These were all different words to the ones 
used in SENSEVAL 1. 

2 Corpus choic~ 
For the most part, the British National Cor­
pus (New edition) was used. (The new edition 
has the advantage that it is available world­
wide, so all participants had the opportunity 
of obtaining it for system training.) Our goal 
was to match this source, containing British En­
glish, with another, of American English. In the 
event, only limited quantities of corpus data for 
American English were available without copy­
right complications, so the lion's share of the 
data was from the BNC with a limited quantity 
from the Wall Street Journal. 

In accordance with standard SENSEVAL pro­
cedure, the goal was to have 75 + 15n + 6m in­
stances for each lexical-sample word, where n is 
the number of senses the word has and m is the 
number of multiword expressions that the word 
is part of (both, of course, relative to a specific 
lexicon). In practice numbers varied slightly, 
as instances were deleted because they had the 
wrong part of speech or were otherwise unus-
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able. See Table 1 for actual numbers of senses, 
multiwords expressions and instances. 

3 Lexicon choice 

Here lay the biggest contrast with the 
SENSEVAL-1 task, which had used Oxford 
University Press's experimental HECTOR lexi­
con. This time, in response to popular acclaim, 
WordNet was used. 

Since SENSEVAL was first mooted, in 1997, 
WordNet-or-not-WordNet has been a recurring 
theme. In favour was the argument that it was 
already very widely used, almost a de facto stan­
dard. The argument against concerned its sense 
distinctions. WordNet, like thesauruses but un­
like standard dictionaries, is organised around 
groups of words of similar meanings ( synsets), 
not around words (with their various meanings). 
This means that the priority for the lexicogra­
pher is building coherent synsets rather than the 
coherent analysis of the various meanings of a 
particular word. The writer of a thesaurus does 
not need to pay as much attention to the distinc­
tion between two senses of a word, as the writer 
of a dictionary. Word sense disambiguation is a 
task which needs clear and well-motivated sense 
distinctions. In English SENSEVAL-1, Word­
Net was not used because of concerns that it 
did not provide clean enough sense distinctions. 

While HECTOR provided good sense distinc­
tions, it was unsatisfactory in that it did not 
cover the whole lexicon so there was no pos­
sibility of scaling up. The case for WordNet 
- that it was already integrated into so much 
NLP and WSD work - still stood, so the de­
cision was made to use WordNet. To guard 
against cases where WordNet made a distinc­
tion between two meanings, but it was not clear 
what the distinction was, all the words in the 
lexical sample had their entries reviewed by a 



II Word I Ss I Mwe I inst I ITA I 
ADJS: lexical sample size: 15 

blind 3 21 163 89.6 
colorless 2 0 103 94.2 
cool 6 1 158 92.1 
faithful 3 0 70 94.6 
fine 9 6 212 84.0 
fit 3 0 86 85.0 
free 8 36 247 79.2 
graceful 2 0 85 72.6 
green 7 80 284 86.6 
local 3 12 113 89.1 
natural 10 37 309 72.4 
oblique 2 5 86 96.4 
simple 7 19 196 67.8 
solemn 2 0 77 84.1 
vital 4 7 112 93.7 
ALL ADJS 2301 83.4 

NOUNS: lexical sample size: 29 
art 5 35 294 78.5 
authority 7 6 276 84.3 
bar 13 57 455 87.3 
bum 4 0 137 91.7 
chair 4 35 207 92.8 
channel 7 10 218 84.8 
child 4 16 193 92.3 
church 3 21 192 88.0 
circuit 6 31 255 93.5 
day 9 82 434 76.3 
detention 2 5 95 98.7 
dyke 2 0 86 96.5 
facility 5 9 172 89.5 
fatigue 4 6 128 97.7 
feeling 6 5 153 77.0 
grip 7 3 153 85.2 
hearth 3 1 96 85.0 
holiday 2 9 93 90.5 
lady 3 27 158 74.1 
material 5 39 209 85.1 
mouth 8 10 179 88.7 
nation 3 10 112 90.5 
nature 5 8 138 86.7 
post 8 33 236 87.7 
restraint 6 3 136 80.4 
sense 5 37 160 87.1 
spade 3 7 98 95.1 
stress 5 7 118 74.7 
yew 2 15 85 97.1 
ALL NOUNS 5266 86.3 

II ALL 1 7567 1 85.5 1 

Table 1: Lexical sample: rubric for column 
headers: Ss=number of fine-grained senses; 
Mwe =number of multi-word expressions which 
the word participates in (as bear participates in 
WordNet headword polar bear); inst = number 
of instances tagged; ITA = inter-tagger agree­
ment (fine-grained). 

lexicographer, with a view particularly to merg­
ing insufficiently-distinct senses. It was initially 
unclear how these revisions would relate to the 
publicly available version of WordNet (at that 
time, WordNet 1.6). We are very grateful to the 
Princeton WordNet team (George Miller, Chris­
tiane Fellbaum and Randee Tengi) for their help 
at this point; they agreed to incorporate our 
proposed revisions into a new version of Word­
Net (1.7) which was then made available in time 
(despite some very tight deadlines) for the SEN­
SEVAL competition. 

WordNet 1.7 was not available as a complete 
object at the time of the gold standard pro­
duction, in Spring 2001, but the entries for the 
lexical sample words were fixed at that point. 
For each lexical sample entry, we produced an 
HTML version for the lexicographers to work 
from. In addition to all the relevant infor­
mation in WordNet, this had a mnemonic for 
each sense, so that taggers could use mnemon­
ics when doing the tagging, rather than easily:­
forgotten, easily-confused sense numbers. The 
mnemonics were selected by a lexicographer. 

4 Gold standard production 

Once the corpus sources and lexical entries 
were fixed, work could proceed with the Gold­
Standard tagging. 1 

First, a team of three professional lexicogra­
phers and fourteen students and others was re­
cruited. Recruitment proceeded as follows: an 
aptitude test was set up on the web. The test 
involved sense-tagging some corpus instances 
(taken from SENSEVAL-1, so the gold-standard 
answers were known). Email postings were 
made asking interested people to visit the web­
site and take the test. All applicants scoring 
sufficiently well on the test were then offered 
work, on a piecework basis. 

An HTML version of the corpus for a word 
was prepared. This comprised a series of ten­
sentence stretches of text, with one word in the 
last of the sentences highlighted; that was the 
word to be sense-tagged. The files were HTML 
versions of the XML files used for test and train­
ing data. 

A tagger was emailed the lexical entry and 
corpus for a word. They then tagged it, and 

1The tagging was supported by a grant from EPSRC, 
the UK funding council, under GR/R02337 /01 (MATS). 
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returned, by email, a file of answers. These 
files were checked automatically, and if they 
contained 'answers' which were not possible an­
swers for the word, the suspect items were au­
tomatically emailed back to the tagger for cor­
rection. 

The tagger guidelines are available along with 
other resources for the English-lexical-sample 
task. They developed in the course of the exer­
cise; when a tagger asked a pertinent questions, 
I circulated the question and my answer to all 
taggers and incorporated them into the guide­
lines. 

As in SENSEVAL-1, "Unassignable" and 
"Proper-name" tags were always available 
alongside regular tags, and taggers were told to 
put down more than one tag, where multiple 
tags were equally applicable. Taggers were also 
asked to mark items where the part of speech 
was wrong; these were then deleted from the 
dataset. 

5 Tagger agreement procedures and 
scores 

As in all exercises where a gold standard corpus 
is the goal, it was necessary to have all data 
tagged by more than one person. The question 
then arises, how many taggings does each item 
need? The algorithm adopted here was: 

1. send item out to two taggers 

2. if they agree completely, stop; return 
agreed answer 

3. else, send out to another tagger 

4. is there one or more tag that two agree on? 

5. if yes, stop; return all tags which two 
people agree on 

6. if no, return to step 3 

Thus, in simple cases, a minimum of effort 
was used, but in difficult cases, more opinions 
were obtained. The number of taggings per 
items is shown below. Note that the algorithm 
stops at step 2 if both taggers agree on one tag, 
or if both taggers agree on two or more tags. 

Taggings Number % 
2 5032 66.5 
3 2446 32.3 
4 86 1.1 
5 4 0.05 

3 taggers' answers GS cases 
A A B A 651 
A A;B A A 550 
A A;B B A;B 209, 
A A;B A;B A;B 189 
A A;B c A 162 
A A A;B;C A 67 
A A;B A;C A 51 
A A B;C A 44 

A;B A;C c A;C 41 
A;B A:B;C c A;B;C 38 

Table 2: Patterns of (dis)agreement for 3-tagger 
cases. GS = gold standard tagging arising from 
these human taggings. ";" used as separator 
where a tagger (or the gold standard) gave mul­
tiple tags. 

Of the 5032 two-tagger items, in 4688 cases, the 
taggers agreed on one tag; in 340 cases, on two 
tags; and in 4 cases, on three tags. 

For the 2446 cases which were tagged three 
times, 136 were cases where all three taggers 
agreed perfectly (so, had the algorithm been 
followed to the letter, the item would not have 
been tagged a third time; such cases were caused 
by delays in taggers returning answers.) The 
common patterns amongst the remainder are 
shown in Table 2. 

For the 86 cases with four taggers, half the 
cases were {A, A, B, C} taggings. 

Fine-grained inter-tagger agreement (ITA) 
figures was calculated using the same scoring 
algorithm as for the systems. 2 For each pair 
of taggers tagging an instance, two scores were 
calculated, one with the one answer as the key, 
the other with the other. For each instance, 
scores were normalised so that the maximum 
score for each corpus instance was one, however 
many times it had been tagged. The overall ITA 
was 85.5%. A breakdown by word and by word 
cla.':;s is given in Table 1. 3 

2 All ITA figures and other results reported in this pa­
per refer to fine-grained sense distinctions. The grouping 
of senses into coarse-grained categories took place inde­
pendently of the gold-standard preparation, which was 
based entirely on fine sense distinctions. 

3Kappa was not calculated because there were vari­
ous ways in which it might have been calculated, so it 
was unclear which was appropriate, and it would have 
introduced more complication than clarification. Also 
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As argued in (Kilgarriff and Rosenzweig, 
2000) (also (Kilgarriff, 1999)) the inter-tagger 
agreement figure for a gold standard is of less 
interest than the replicability figure: if a com­
pletely different team of taggers used the same 
methodology to do the same task, what would 
the agreement level between the two teams' out­
puts be? It is the replicability figure, rather 
than ITA, which defines an upper bound for the 
task. We have not yet had time to conduct such 
a study. 

6 Task organisation 

The organisation followed standard SENSEVAL 
procedure. The data was prepared in XML us­
ing SENSEVAL DTDs, with the data for each 
word split in a ration of 2:1 between training 
and test data. Data distribution, results up­
loads, baselines and scoring were handled at 
UPenn (see paper by Cotton and Edmonds). 

7 Results 

Results are presented in the table below. Owing 
to space constraints, where a team submitted 
multiple systems with similar results, only the 
best result is shown. Full results are available 
at the SENSEVAL website, as are decodings of 
system names. At the SENSEVAL workshop 
(5-6 July 2001) it was agreed that there should 
also be a later deadline (end July 2001) so that 
'egregious bugs' could be fixed. In order to hon­
our both standard practice in evaluation exer­
cises ( eg, no extension of deadlines) and also the 
agreement made at the workshop, both results 
sets are presented, with later-deadline results 
marked with (R) as a suffix to the name. 

There has not yet been time for an analy­
sis of the results. The one comment that does 
seem pertinent is the contrast with the English­
lexical-sample task in SENSEVAL-1. The tasks 
were organised in similar ways, and some of the 
systems were improved versions of systems par­
ticipating in 1998. Yet the performance of the 
best systems has, apparently, dropped around 
14%. We may well ask, why? 

We believe the drop is due to the choice 
of lexicon. As discussed above, using Word­
Net for SENSEVAL has drawbacks. High-

the figures shown, unlike kappa figures, have the merit 
of being directly comparable with system performance 
scores. 
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PR ATT System 
Supervised systems 

.82 28 BCU ehu-dlist-best 

.67 25 IRST 

.64 100 JHU (R) 

.64 100 SMUls 

.63 100 KUNLP 

.62 100 Stanford-CS224 

.61 100 Sinequa-LIA SCT 

.59 100 TALP 

.57 98 BCU ehu-dlist-all 

.57 100 Duluth-3 

.57 100 UMD-SST 

.50 100 UNED LS-T 

.42 98 Alicante 
Supervised baselines 

.51 100 Base Lesk 

.48 100 Base Commonest 
Unsupervised systems 

.58 55 ITRI-WASPS 
40 100 UNED-LS-U 
.29 100 CLresearch DIMAP 
.25 99 IIT-2 (R) 

Unsupervised baselines 
.16 100 Base Lesk-defs 
.14 100 Base random 

Table 3: PR=system precision; ATT= percent­
age of cases for which an answer was returned 
("attempted"). 

accuracy word sense disambiguation is only pos­
sible where the lexicon makes clear and well­
motivated sense distinctions, and provides suf­
ficient information about the distinctions for the 
disambiguation algorithm to build on. An im­
plication for future WSD research is that it is 
time to turn our attention from algorithms, to 
sense distinctions. 

References 
Adam Kilgarriff and Joseph Rosenzweig. 2000. 

Framework and results for English SENSEVAL. 
Computers and the Humanities, 34(1-2):15-48. 
Special Issue on SENSEVAL, edited by Adam Kil­
garriff and Martha Palmer. 

Adam Kilgarriff. 1999. 95% replicability for manual 
word sense tagging. In Proc. EACL, pages 277-
278, Bergen, June. 



English Tasks: All-Words and Verb Lexical Sample 

Martha Palmer, Christiane Fellbaum, Scott Cotton, 
Lauren Delfs, and Hoa Trang Dang 

University of Pennsylvania 
{ mpalmer,fellbaum,cotton,lcdelfs,htd }@linc.cis. upenn.edu 

Abstract 

We describe our experience in preparing the 
lexicon and sense-tagged corpora used in the 
English all-words and lexical sample tasks of 
SENSEVAL-2. 

1 Overview 

The English lexical sample task is the result 
of a coordinated effort between the University 
of Pennsylvania, which provided training/test 
data for the verbs, and Adam Kilgarriff at 
Brighton, who provided the training/test data 
for the nouns and adjectives (see Kilgarriff, this 
issue). In addition, we provided the test data 
for the English all-words task. The pre-release 
version ofWordNet 1.7 from Princeton was used 
as the sense inventory. Most of the revisions of 
sense definitions relevant to the English tasks 
were done prior to the bulk of the tagging. 

The manual annotation for both the English 
all-words and verb lexical sample tasks was done 
by researchers and students in linguistics and 
computational linguistics at the University of 
Pennsylvania. All of the verbs in both the lex­
ical sample and all-words tasks were annotated 
using a graphical tagging interface that allowed 
the annotators to tag instances by verb type and 
view the sentences surrounding the instances. 
Well over 1000 person hours went into the tag­
ging tasks. 

2 English All-Words Task 

The test data for the English all-words task con­
sisted of 5,000 words of running text from three 
Wall Street Journal articles representing varied 
domains from the Penn Treebank II. Annota­
tors preparing the data were allowed to indi-

Christiane Fellbaum is at Princeton University, fell­
baum@clarity.princeton.edu 
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System Precision Recall 
SMUaw- 0.690 0.690 
AVe-Antwerp 0.636 0.636 
LIA -Sinequa-AllWords 0.618 0.618 
david-fa-UNED-AW-T 0.575 0.569 
david-fa-UNED-AW-U 0.556 0.550 
gchao2- 0.475 0.454 
gchao3- 0.474 0.453 
Ken-Litkowski-clr-aw (*) 0.451 0.451 
Ken-Litkowski-clr-aw 0.416 0.451 
gchao- 0.500 0.449 
cm.guo-usm-english-tagger2 0.360 0.360 
magnini2-irst-eng-all 0.748 0.357 
cmguo-usm-english-tagger 0.345 0.338 
c.guo-usm-english-tagger3 0.336 0.336 
agirre2-ehu-dlist-all 0.572 0.291 
judita- 0.440 0.200 
dianam-system3ospdana 0.545 0.169 
dianam-system2ospd 0.566 0.169 
dianam-system1 0.598 0.140 
woody-IIT2 0.328 0.038 
woody-IIT3 0.294 0.034 
woody-IITl 0.287 0.033 

Table 1: System performance on English all­
words task (fine-grained scores); (*) indicates 
system results that were submitted after the 
SENSEVAL-2 workshop and official deadline. 

cate at most one multi-word construction for 
each content word to be tagged, but could give 
multiple senses for the construction. In some 
cases, a multi-word construction was annotated 
with senses associated with just the head word 
of the phrase in addition to more specific senses 
based on the entire phrase. The annotations 
were done under a double-blind scheme by two 
linguistics students, and were then adjudicated 
and corrected by a different person. 

Task participants were supplied with test 
data only, in the standard all-words format for 
SENSEVAL-2, as well as the original syntactic 



and part-of-speech annotations from the 'free­
bank. Table 1 shows the system performance 
on the task. Most of the systems tagged al­
most all the content words. This included not 
only indicating the appropriate sense from the 
WordNet 1.7 pre-release (as it stood at the time 
of annotation), but also marking multi-word 
constructions appropriate to the corresponding 
sense tags. If given a perfect lemmatizer, a sim­
ple baseline strategy which does not attempt to 
find the satellite words in multi-word construc­
tions, but which simply tags each head word 
with the first WordNet sense for the correspond­
ing 'freebank part-of-speech tag, would result in 
precision and recall of about 0.57. 

3 English Lexical Sample Task 

The data for the verb lexical sample task came 
primarily from the Penn 'freebank II Wall 
Street Journal corpus. However, where that 
did not supply enough samples to approximate 
75+ 15*n instances per verb, where n is the num­
ber of senses for the verb, we supplemented with 
British National Corpus instances. We did not 
find sentences for every sense of every word we 
tagged. We also sometimes found sentences for 
which none of the available senses were appro­
priate, and these were discarded. The instances 
for each verb were partitioned into training/test 
data using a ratio of 2:1. 

We also grouped the nouns, adjectives and 
verbs for the lexical sample task, attempting to 
be explicit about the criteria for each grouping. 
In particular, the criteria for grouping verbs 
included differences in semantic classes of ar­
guments, differences in the number and type 
of arguments, whether an argument refers to 
a created entity or a resultant state, whether 
an event involves concrete or abstract entities 
or constitutes a mental act, whether there is 
a specialized subject domain, etc. All of the 
verbs were grouped by two or more people, with 
differences being reconciled. In some cases the 
groupings of the verbs are identical to the ex­
isting WordNet groupings; in some cases they 
are quite different. The nouns and adjectives 
were grouped by the primary annotator in the 
project; WordNet does not have comparable 
groups for nouns and adjectives. 

These groupings were used for coarse-grained 
scoring, under the framework of SENSEVAL-1. 
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After the SENSEVAL-2 workshop, participanb 
were invited to retrain their systems on th< 
groups; only a handful of participants chose tc 
do this, and in the end the results were uni· 
formly only slightly better than training on thE 
fine-grained senses with coarse-grained scoring. 

Table 2 shows the system performancE 
on just the verbs of the lexical samplE 
task. For comparison we ran several sim­
ple baseline algorithms that had been used in 
SENSEVAL-1, including RANDOM, COMMON­
EST, LESK, LESK-DEFINITION, and LESK­
CORPUS (Kilgarriff and Rosenzweig, 2000}. In 
contrast to SENSEVAL-1, in which none of the 
competing systems performed significantly bet­
ter than the highest baseline (LESK-CORPUS), 
the best-performing systems this time per­
formed well above the highest baseline. 

Overall, the performance of the systems was 
much lower than in SENSEVAL-1. Several fac­
tors may have contributed to this. In addi­
tion to the use of fine-grained WordNet senses 
instead of the smaller Hector sense inventory 
from SENSEVAL-1, most of the verbs included 
in this task were chosen specifically because we 
expected them to be difficult to tag. There was 
also generally less training data made available 
to the systems (ignoring outliers, there were on 
average twice as many training samples for each 
verb in SENSEVAL-1 as there were in SENSEVAL-
2). Table 3 shows the correspondence between 
test data size (half of training data size), en­
tropy, and system performance for each verb. 

4 Annotating the Gold Standard 

The annotators made every effort to match the 
target word to a WordNet sense both syntacti­
cally and semantically, but sometimes this could 
not be done. Given a conflict between syntax 
and semantics, the annotators opted to match 
semantics. For example, the word "train" has 
an intransitive sense ("undergo training or in­
struction in preparation for a particular role, 
function, or profession") as well as a related 
(causative) transitive sense ("create by training 
and teaching")_ Instances of "train" that were 
interpreted as having a dropped object were 
tagged with the transitive sense even though the 
overt syntax did not match the sense definition. 

Some sentences seemed to fit equally well 
with two different senses, often because of am-



System p R 
agirre3-ehu-dlist-best 0.846 0.229 
magnini-irst-eng-sample 0.660 0.138 
kunlp- 0.576 0.576 
jhu-english-JHU-final (*) 0.566 0.566 
SMUls- 0.563 0.563 
LIA -Sinequa-Lexsam ple 0.535 0.535 
manning-cs224n 0.523 0.523 
agirre3-ehu-dlist-all 0.514 0.493 
talp-TALP 0.513 0.513 
umcp-englishl- 0.494 0.493 
jhu-english-JHU-ENGLISH 0.489 0.489 
montoyo-U ni v .-Alicante-System 0.486 0.480 
jhu-english-JHU 0.485 0.485 
tdpl-duluth3 0.465 0.465 
tdpla-duluthC 0.453 0.453 
tdpl-duluth5 0.450 0.450 
tdpl-duluth4 0.446 0.446 
baseline-lesk-corpus 0.445 0.445 
tdpl-duluth2 0.440 0.440 
tdpla-duluthA 0.439 0.439 
tdpl-duluthl 0.437 0.437 
tdpla-duluthB 0.404 0.404 
baseline-commonest 0.403 0.403 
david-fa!-UNED-LS-T 0.388 0.387 
david-fal-UNED-LS-U 0.288 0.287 
Haynes-IIT2 0.233 0.232 
Haynes-IITl 0.220 0.220 
Kenneth-Litkowski-clr-ls 0.218 0.218 
Haynes-IIT2 (*) 0.199 0.192 
Haynes-IITl (*) 0.193 0.186 
baseline-lesk 0.181 0.181 
michael-oakes.suss2 0.094 0.094 
baseline-lesk-def 0.088 0.088 
baseline-random 0.085 0.085 

Table 2: System precision (P) and recall (R) for 
English verb lexical sample task (fine-grained 
scores); (*) indicates system results that were 
submitted after the SENSEVAL-2 workshop and 
official deadline. 

biguous context; others did not fit well under 
any sense. One of the solutions employed in 
these cases was the assignment of multiple sense 
tags. The taggers would choose two senses (on 
rare occasions, even three) that they felt made 
an approximation of the correct sense when used 
in combination. Sometimes this strategy was 
also used in arbitration, when it was decided 
that neither tagger's tag was better than the 
other. The taggers tried to use this strategy 
sparingly and chose single tags whenever possi­
ble. 

Often, a particular verb yielded multiple in-
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Verb Size Entropy Fine Coarse 
ferret 1 0.00 0.913 0.913 
collaborate 30 0.44 0.898 0.898 
wander 50 0.96 0.619 0.786 
face 93 1.09 0.690 0.785 
replace 45 1.62 0.471 0.860 
use 76 1.68 0.558 0.682 
begin 280 1.76 0.625 0.625 
treat 44 2.10 0.453 0.543 
live 67 2.35 0.455 0.476 
match 42 2.35 0.398 0.620 
train 63 2.60 0.394 0.492 
drift 32 2.77 0.327 0.354 
dress 59 2.89 0.434 0.679 
serve 51 3.02 0.404 0.445 
drive 42 3.03 0.308 0.528 
leave 66 3.06 0.317 0.428 
develop 69 3.17 0.301 0.456 
see 69 3.28 0.278 0.317 
wash 12 3.31 0.343 0.535 
work 60 3.54 0.303 0.442 
keep 67 3.62 0.336 0.353 
call 66 3.68 0.246 0.457 
play 66 3.80 0.323 0.345 
find 68 3.81 0.178 0.285 
carry 66 3.97 0.279 0.332 
strike 54 4.06 0.248 0.331 
pull 60 4.24 0.255 0.414 
draw 41 4.60 0.195 0.264 
turn 67 4.79 0.216 0.327 

Table 3: Test corpus size, entropy (base 2) of 
tagged data, and average system recall for each 
verb, using fine-grained and coarse-grained scar­
mg. 

stances of what was clearly a salient sense, but 
one not found in WordNet. One of the results 
was that sentences that should have received a 
clear sense tag ended up with something rather 
ad hoc, and often inconsistent. One of the 
most notorious examples was "call," which had 
no sense that fit sentences like "The restau­
rant is called Marrakesh." WordNet contains 
some senses related to this one. One sense 
refers to the bestowing of a name; another to 
informal designations; another to greetings and 
vocatives. But there is no sense in WordNet 
for simply stating something's name without 
additional connotations, and the gap possibly 
caused some inconsistencies in the annotation. 
All these senses belonged to the same group, 
and if the annotators had been allowed to tag 
with the more general group sense, there may 



have been less inconsistency. 
It has been well-established that sense­

tagging is a very difficult task (Kilgarriff, 1997; 
Hanks, 2000), even for experienced human tag­
gers. If the sense inventory has gaps or redun­
dancies, or if some of the sense glosses have 
ambiguous wordings, choosing the correct sense 
can be all but impossible. Even if the annotator 
is working with a very good entry, unforeseen 
instances of the word always arise. 

The degree of polysemy does not affect the 
relative difficulty of tagging, at least not in the 
way it is often thought. Very polysemous words, 
such as "drive," are not necessarily harder to 
tag than less polysemous words like "replace." 
The difficulty of tagging depends much more on 
other aspects of the entry and of the word itself. 
Often very polysemous words are quite difficult 
to tag, because they are more likely to be un­
derspecified or occur in novel uses; however, "re­
place," with four senses, proved a difficult verb 
to tag, while "play," with thirty-five senses, was 
relatively straightforward. 

In many ways, the grouped senses are very 
helpful for the sense-tagger. Grouping similar 
senses allows the sense-tagger to study side-by­
side the senses that are perhaps most likely to be 
confused, which is helpful when the differences 
between the senses are very subtle. However, it 
would be a poor idea to attempt to tag a corpus 
using only the groups, and not the finer sense 
distinctions, because often some of the senses 
included in a group will have some properties 
that the others do not; it is always better to 
make the finest distinction possible and not just 
assign the same tag to everything that seems 
close. 

Inter-annotator agreement figures for the hu­
man taggers are quite low. However, in some 
respects they are not quite as low as they seem. 
Some of the apparent discrepancies were sim-, 
ply the result of a technical error: the annota­
tor accidentally picked the wrong tag, perhaps 
choosing one of its neighbors. Other differences 
resulted from the sense inventories themselves. 
Sometimes the taggers interpreted the wording 
of a given sense definition in different ways, 
which caused them to choose different tags, but 
does not entail that they had interpreted the 
instances differently; in fact, discussion of such 
cases usually revealed that the taggers had in-
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terpreted the instances themselves in the sam 
way. Additional apparent discrepancies resulte< 
from the various strategies for dealing with case 
in which there was no single proper sense i1 
WordNet. This was the case when an instanc( 
in the corpus was underspecified so as to al 
low multiple appropriate interpretations. Thi: 
resulted in (a) multiple tags by one or bot} 
taggers, and (b) each tagger making a differ· 
ent choice. Here, again, the taggers often ha( 
the same interpretation of the instance itself 
but because the sense inventory was insufficieni 
for their needs, they were forced to find differen1 
strategies. Sometimes, in fact, one tagger would 
double-tag a particular instance while the sec­
ond tagger chose a single sense that matched 
one of the two selected by the first annotator. 
This is considered a discrepancy for statistical 
purposes, but clearly reflects siip.ilar interpreta­
tions on the part of the annotators. 

In the most recent evaluation, with two new 
annotators tagging against the Gold Standard, 
the best fine-grained agreement figures for verbs 
were in the 70's, similar to Semcor figures. How­
ever, when we used the groupings to do a more 
coarse-grained evaluation, and counted a match 
between a single tag and a member of a double 
tag as correct, the human annotator agreement 
figures rose to 90%. 
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Abstract 
This paper describes the all-word sense disam­
biguation task provided by Estonian team at 
SENSEVAL-2. About 10,000 words are manually 
disambiguated according to Estonian WordN et 
word senses. Language-specific problems and 
lexicon features are discussed. 

1 Introduction 
We got interested in word sense disambiguation 
(WSD) for two reasons. First, already a couple 
of years ago it was evident that WSD is beco­
ming one of the new "hot" topics in computatio­
nal linguistics and language engineering as our 
knowledge of how to handle semantic parame­
ters of texts and semantic features of words in 
texts increased. The second reason was purely 
practical. Since 1996 we have been involved in 
a large project of building a semantic database 
of Estonian; participating in the Euro WordNet 
project has been a part of it (but a very impor­
tant part, of course). The main source of buil­
ding this database have been different corpora 
of Estonian, and in working with corpora the 
question of whether we are dealing with diffe­
rent meanings of a word in case of its concrete 
occurrences or not arises constantly. So we got 
interested in the possibility to use some objec­
tive methods here. 

Our task was all-words task. This choice is 
explained with our "practical" interests explai­
ned above. 

A large amount of work was done to provide 
training data where disambiguation was done 
manually. The same kind of work had to be 
done with test data, of course. The description 
of this work is given below. Let us note already 
here that this work appeared to be very useful 
and informative for us as builders of Estonian 
WordNet (EstWN). 

And let us stress that this was our first at­
tempt of WSD at all. 

2 Corpora and lexicon 

The test and training texts come from Corpus 
of the Estonian Literary Language (CELL), the 
1980-s. We used this part of the corpus, that 
was morphologically disambiguated, initially for 
the syntactic analysis. 

The morphological analysis was made with 
ESTMORF (Kaalep, 1997). Lemma and word 
class in the output of the program are relevant 
to our task, but it is impossible to get them 
without morphological disambiguation, because 
of frequent homonymy among word forms. 

All training texts and most of test texts (5 
of 6 total) are fiction. One of the test texts is 
from newspaper. Six training and six test files 
provided for the task contain about 2000 tokens 
each. More information about the texts used in 
the task is in Table 1. 

Table 1: Statistics on training and test corpora 
Corpus Training Test 
Total words 12162 11440 
Words to disambiguate 5854 5650 
of them being 

verbs 2431 2191 
nouns 3423 3459 

2.1 Lexicon 

The Estonian part of EuroWordNet1 served as 
the lexicon. Like other wordnets, Est WN is 
a lexical-semantic database, the basic unit of 
which is concept. Concepts are represented as 
synonym sets ( synsets) that are linked to each 
other by semantic relations. The description of 

1 http:/ jwww.hum. uva.nl;- ewn/ 



Est WN is given in the final document of Eu­
roWordNet (Vider et al., 1999). 

Est WN is supposed to cover the Estonian 
base vocabulary in its initial version. The base 
vocabulary will be determined by statistical 
analysis of the reference corpus. Even so it is 
not always easy (nor appropriate) to stop enco­
ding words with frequencies below a certain th­
reshold. For this reason we expect Est WN to 
cover more than just the base vocabulary. 

Still the Est WN is rather small, there were 
9436 synsets, 13277 words and 16961 senses (li­
terals) in it when the disambiguation was done. 
That makes about 1.28 senses per word as ave­
rage. 

Most of synsets are connected with hypero­
nym-hyponym relations building corresponding 
hierarchies. 

2.2 Procedure 

Four linguists disambiguated the texts, each 
text was disambiguated by two persons. Only 
nouns and verbs were disambiguated, as ente­
ring adjectives into Est WN is in the very begin­
ning. The sense number was marked according 
to sense number in EstWN. If the word was mis­
sing from the Est WN, "0" was marked as sense 
number, and if the word was in EstWN, but 
missed the appropriate sense, "+ 1" was mar­
ked. 

If inconsistencies were met, they were discus­
sed until agreement was achieved. On about 
28% of the cases the disambiguators had diffe­
rent opinions. 

One of the problems that the disambiguators 
ran into concerned dividing words into diffe­
rent senses in Est WN. It turned out as over­
differentiation-word meaning marked as too 
specific, or over-generalisation--word meanmg 
marked as too general. 

2.3 How much the lexicon covers 

Not all senses found in Est WN are represented 
in texts. Maximum number of senses per word 
found in texts is 13. This is more than app­
ropriate senses in lexicon (see Table 3), but we 
must remeber about the "+1" that disambigua­
tors had, if they found that there are not enough 
meanings in Est WN. Table 2 describes distri­
bution of senses in usage and Table 3 shows the 
top of lemmas according to number of senses. 
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Table 2: Distribution of lemmas according 1 

number of senses in texts 
Corpus Training Tesi 
Total number of lemmas 2340 226E 
Number of lemmas not in 819 94E 
lexicon 
Number of lemmas with 1 2040 2003 
sense in texts 
Lemmas with 2 senses lll 215 183 
texts 
Lemmas with 3 senses Ill 51 50 
texts 
Lemmas with 4 senses in 17 17 
texts 
Lemmas with more than 4 17 15 
senses in texts 

Table 3: Comparison of richest words in sense 
POS No of senses Lemma No of senses 

in text in lexicon 
verb 13 saama 12 
verb 10 pidama 12 
noun 10 asi 11 
verb 9 olema 9 
verb 9 kiiima 23 
verb 7 votma 7 
verb 7 panema 11 
verb 7 nagema 7 
verb 7 min em a 17 
verb 7 leidma 8 
noun 7 elu 7 

It would be the best, if all words to disambi­
guate were in the lexicon with all their possibl~ 
meanings. Apparently this presumption is not 
met. 

The number of compounds in Estonian is in­
definite. It is quite easy for a writer to in­
vent new compounds that are not in any dic­
tionary, but nevertheless are easily understood 
by readers. That is one reason, why there are 
so many sense numbers "0" in the texts. About 
46% of words that are not in EstWN, are com­
pounds. 

Another remarkable class of words not in 
lexicon are proper names, as there are no pro­
per names in EstWN. There are 17.5% of words 
proper names. 

If we will postpone phrasal verbs and some 
strange words that contain hyphens (about 



7 %) , it leaves us with about half thousand 
words to check why they are not in EstWN. 

But why are there missing senses (tagged 
with "+1")? The reason is simply historical: 
such words were included into EstWN as sy­
nonyms of some base vocabulary word and the 
other senses of them are not considered yet. 

2.4 Phrases and multi-word units 

The initial format of text was as it came 
from ESTMORF and semantic disambiguation: 
every word on separate line, followed by an adi­
tional line of morphological analysis and sense 
number, with multi-word phrase marked if word 
was part of it. The task to convert into Senseval 
XML format seemed trivial at first, but phrases 
turned out to be problematic. Unfortunately 
enough, all the story about phrases is concer­
ning the training corpus only, because in test 
corpus the multi-word phrases were unmarked. 

Estonian is a flective language with a free 
word order and that makes it complicated to 
figure out all phrases. The elements of a ph­
rase can be scattered around the sentence in an 
unpredictable order. 

In the initial texts, the disambiguators mar­
ked down the whole phrase on the line where 
the phrase occured. They were not told to mark 
it on each line, where the non-disambiguatable 
parts of the phrase were, and it happened that 
the phrase was not marked on the line, where 
the head of the phrase was. The algorithm of 
calculating head or satellite took into account 
the part of speech and the form. For verb phra­
ses, if both components were verbs, declinable 
form of verb infinitive was marked as satellite. 
For noun phrases, substantive makes head and 
adjective satellite. If both words are substanti­
ves, head is the second one ... well, mostly. 

However, it is known that expressions tend to 
contain frozen forms, including inflectional en­
dings. For example, one may not say "*Human 
Right" or "*Humans Right". "Human Rights" 
is the only correct expression and should be ad­
ded into thesauri in such form. Phrasal verbs 
like "ax a maksma" (to pay off) and idiomatic 
verbal expressions like "end tiikkideks naerma" 
(to laugh oneself into pieces) represent a situa­
tion that is different from the occasion desc­
ribed above: the verb part may inflect freely, 
but the other word(s) are frozen forms. He­
reby, even if we have determined what is phrase 
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or collocational multi-word unit, we still have a 
question~ are they commonly used and should 
we add them into the lexicon. 

Multiword expressions are included into 
Est WN if they build up a conceptual unit and 
are commonly used as lexical units. 

3 Results 
There were two systems to solve the task on 
Estonian. The results are in Table 4. Table 5 
shows the recall and precision of the COMMO­
NEST baseline 

Table 4: Estonian all-words fine-grained scoring 
results 

System Precision Recall Attempted 
JHU 0.67 0.67 100 
est-semyh 0.66 0.66 100 

' 
Table 5: COMMONEST baseline for Estonian 
all-words task ' 

Data Recall Precision 
Overall 0.85 0.73 
Polysemous 0.69 0.51 

As this is the first attempt to disambiguate 
Estonian nouns and verbs in text, there is no 
comparison data. These results will set the level 
that future systems will try to outgo. 

4 Conclusions 
Results of WSD of corpus texts turned to be 
a good way to add missing synsets and sen­
ses into our word net. There were significant 
inconsistencies in opinions of these people, who 
disambiguated the texts. This shows us the 
most problematic entries in EstWN, the need 
to reconsider the borders of meaning of some 
concepts. By now, the last version of EstWN 
contains 9524 synsets, 13344 words and 17076 
senses. 

For an inflectional language like Estonian, 
morphological analysis is extremely important 
and morphological and semantic disabiguation 
can help each other. 
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Abstract 

In this paper we give an overall description 
of the Italian lexical sample task for 
SENSEV AL-2, together with some general 
reflections about on the one hand the 
overall task of lexical-semantic annotation 
and on the other about the adequacy of 
existing lexical-semantic reference 
resources. 

Introduction 

In this paper we give an overall description of the 
Italian lexical sample task for SENSEV AL-2. In 
the first two sections, the corpus and reference 
lexicon used are illustrated; the last section 
contains some general reflections on the basis of 
the Senseval experience about on the one hand, 
the overall task of lexical-semantic annotation and 
on the other, about the adequacy of existing 
lexical-semantic reference resources. 

Dictionary and Corpus 

The dictionary and corpus used for the Italian 
lexical sample task were provided by the 
resources developed in the framework of the SI­
TAL project1• The data had not been adapted in 
order to be used for the Senseval task, apart from 
the necessary format conversions. A common 

1 SI-TAL ('Integrated System for the Automatic 
Treatment of Language') is a National Project, 
coordinated by Antonio Zampolli at the 'Consorzio 
Pis a Ricerche' and involving several research centers 
in Italy, aiming at developing large linguistic resources 
and software tools for the Italian written and spoken 
language processing. 
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encoding format (XML) proved to facilitate re-use 
and sharing of the data. 

The lexical sample corpus 

The Italian lexical sample corpus (test data only) 
consisted of about 3900 instances for 83 lexical 
entries (46 nouns, 21 verbs, and 16 adjectives), 
with an average of 47 contexts per entry. 
The lexical samples were taken from the SI-TAL 
Italian Syntactic-Semantic Treebank (ISSP), 
which was still under development when the 
Senseval task was organized. This fact implied as 
a main disadvantage of the ISST material that 
corpus instances were associated with very little 
context. For each instance, the context 
corresponded to the sentence containing the target 
word and in our experience sometimes this proved 
to be not enough for a WSD task. 
The ISST consists of two sub-components: a 
generic and a domain-specific (financial) corpus, 
of about 215,000 and 90,000 tokens, respectively. 
The annotated material comprises instances of 
newspaper articles, representing everyday 
journalistic Italian language. As far as annotation 
is concerned, the ISST has a three-level structure: 
two levels of syntactic annotation (a constituency­
based and a functional-based annotation level) and 
a lexical-semantic level of annotation. ISST is 
supposed to be used in different types of 
applications, ranging from training of grammars 
and sense disambiguation systems, to the 
evaluation of language technology systems. 
For its use in the SENSEV AL-2 task, only the 
semantic annotation was used, even if it is 

2 See Monternagni et al. (2000a) and Monternagni et al. 
(2000b). 



conceivable that a system could make use of the 
syntactic information as well. 
In the lSST, this was performed manually using 
the ItalWordNet lexicon (henceforth IWN, see 
Roventini et al. 2000) as a reference resource (see 
below for a description). Semantic annotation 
consisted in assigning to each full word or 
sequence of words corresponding to a single unit 
of sense (such as compounds, idioms, etc.) a given 
sense number (referring to a specific synset) taken 
from IWN, plus specific features created for the 
annotation task to account for idioms, compounds 
and multi-words, figurative uses, evaluative 
suffixation, foreign words, proper nouns and 
titles, among the others. From this point of view, 
the semantic annotation of the corpus enriches the 
information available in the lexical resource. 
However, in order to comply with the 
SENSEV AL-2 lexical sample format, the only 
semantic information used was the sense number 
of lSST, corresponding to the sense number of 
IWN synset variants, while the supplementary 
features had to be discarded. This fact obviously 
resulted in a loss of the overall semantic 
information available. 
For instance, the semantic annotation gave no 
information about the specific domain or about 
possible metaphoric senses. 
Although the original lSST contained multiwords 
expressions, no one of them was included in the 
Sensevallexical sample. 
The selection of the lemmas has been carried out 
starting from the analysis of part of the words 
chosen for the English lexical sample, since we 
wanted to share a minimal overlapping core with 
the English list, in order to make the final results 
more comparable in a multilingual perspective". 
At the end, the overlap between English and 
Italian consisted of only 8 entries, unfortunately.3 

The criteria for the selection were the polysemy of 
the word in the lexicon, the frequency, and the 
actual occurrence in the annotated resource with 
more than one meaning. 
The average polysemy was of 5 senses per word 
( 5 for the nouns subset, 6 for the verbs and 3 for 
the adjectives). 
The average frequency turned out to be rather 
low, since the Italian treebank from which the 
lexical sample was extracted was still not 
complete and we had to select the most frequent 
words with at least two senses in the lexicon and 
used at least in two of their senses in the annotated 

3 The entries that are in connnon were: arte-art, 
chiamare-call, colpire-hit, giocare/gioco-play, 
lavorare/ lavoro-work, sensa-sense, trovare-find. 

corpus. This led to select mainly words with 
quite high polysemy and rather generic sense~ 

For instance, only 12 of the 46 nouns had also 
concrete sense. 
More importantly, since we had at our disposal : 
rather low number of occurrences, no training dat: 
were available for the Italian task. This makes th1 
results for the Italian task hardly comparable wit! 
those which used similarly structured data, such a: 
the Spanish, Swedish, Basque and Korean tasks 
as all of them had training data available. This i~ 
particularly significant in evaluating the results fo1 
the Italian task if we consider that the two system~ 
participating to the task were supervised anc 
needed sense-tagged training instances of eacr 
word. For the next Senseval, a larger annotated 
corpus will be available and hence a training 
corpus will be provided. 

The reference lexicon. 

As it was said before, the occurrences provided 
for the WSD lexical sample task were annotated 
according to the lexical-semantic database 
ItalWordNet, developed within the framework of 
the Sl-TAL Project4. 
ItalWordNet is an extension of the Italian wordnet 
built during the EuroWordNet project (Vossen, 
1999). 
The IWN database is constituted by: 
i) a generic wordnet containing about 64,000 

word senses corresponding to about 49,000 
synsets; 

ii) a (generic) Inter lingual-Index (ILl) which is 
an unstructured version of WordNet 1.5, also 
used in EWN to link wordnets of different 
languages; 

iii) a terminological wordnet, containing about 
5,000 synsets of the economic-financial 
domain; 

iv) a terminological ILl, to which the 
terminological wordnet is linked; 

v) the Top Ontology, a hierarchy of language­
independent concepts, built within EWN and 
partially modified in rwN to account for 
adjectives (Alonge et al., 2000). Via the ILls, 
all the concepts in the generic and specific 
wordnets are directly or indirectly linked t.o 
the Top Ontology; 

vi) the Domain Ontology, containing a set of 
domain labels. Via the ILls, all the concepts 
in the generic and specific wordnets are 

4 ItalWordNet is a joint effort between the Consorzio 
Pisa Ricerche and IRST (Istituto per la Ricerca 
Scientifica e Tecnologica), Trento, Italy. 



directly or indirectly linked to the Domain 
Ontology. 

For the 83 lexical entries we provided to the 
competitors a hierarchical basic data structure: all 
the senses of the lemma organized in groups of 
synonyms (synset) plus their direct hyperonyms 
and a brief Italian definition. 
We also provided a set of semantic relations 
(belonging to the set of Euro(/Ital)WordNet 
relations: hyponymy, role/involved, 
holo/meronymy, derivational relations etc.), but 
we didn't supply the target entries of the relations 
(and all their semantic and ontological 
information) since we provided only a portion of 
the whole wordnet5. 

All the entries were provided with equivalence 
relations to at least one record of the 
Euro WordNet Inter lingual Index and with the link 
to the EuroWordNet Top Concepts. 
The entries have been used as they were in the 
wordnet, without making any adjustment specific 
for the task at hand. Although the domain 
information, so useful in a WSD task, is available 
in the model (only with few labels), none of the 
provided entries had it, because it has not been 
systematically codified and also because almost 
all the entries were quite generic. This was a main 
disadvantage for at least one of the two systems 
competing for the Italian Senseval task. 
We are now in the process of evaluating whether a 
linking between ItalWordNet and SIMPLE6 would 
be feasible; such a linking could allow 
ItalWordNet to inherit the rich domain 
information available in the SIMPLE database. 
We didn't consider the POS-tagging a part of the 
task and we provided as corpus instances only 
those with the same POS as the previously 
selected lexical items, i.e. we eliminated 
occurrences of homographs belonging to different 
parts of speech. 

Results for the Italian lexical sample task 

Only two systems took part in the Italian task, 
namely the IRST and JHU systems. 
The results for fine, mixed and coarse-grained 
WSD are illustrated in the following tables: 

System Precision Recall Attempted 
IRST 0.406 0.389 95.783% 
JHU 0.353 0.353 100% 
Table 1: Fme-gramed sconng 

5 The whole of the new version of IWN could be 
obtained through ELRA. 
6 See Lenci et al. (2000) 
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System Precision Recall Attempted 
IRST 0.482 0.461 95.783% 
JHU 0.421 0.421 100% 
Table 2: M1xed-gramed scormg 

System Precision Recall Attempted 
IRST 0.483 0.463 95.783% 
JHU 0.423 0.423 100% 
Table 3: Coarse-gramed sconng 

The low scores are mainly due to the lack of 
training data and of domain information. It is also 
possible that for some entries of the lexicon the 
subtlety of sense distinctions contributed to low 
performance of the systems, as it's shown by 
better results obtained with the coarse-grained 
sconng. 

General remarks 

Starting from the SENSEV AL-2 experience, we 
would like to make a few general remarks, both 
about the adequacy of available lexical-semantic 
reference resources for WSD tasks and about the 
overall task oflexical-semantic annotation. 
One of the well-known problems of WordNet is 
the fine-grainedness of its entries in terms of sense 
distinction. This is true also for the Italian net, 
even if maybe at a lower level: a brief analysis of 
the entries highlights the presence of some very 
subtle distinctions among the senses. Actually, 
during the SI-TAL project, corpus annotators set 
up a specific annotation strategy for handling 
cases where synsets are numerous and reflect fine­
grained sense distinctions not easily mappable to 
the corpus contexts. The strategy allowed the 
assignment of multiple senses connected through 
logical operators of conjunction (when IWN 
senses cannot be distinguished) vs. disjunction 
(when the ambiguous context does not allow a 
choice among the different IWN senses). 
Nonetheless, in the Italian lexical sample used for 
Senseval, there are about only 140 cases of 
multiple key assignment out of about 3900 corpus 
instances. 
This suggests that vague or too fine-grained 
distinctions are still unproblematic for humans, 
but may become problematic for machines. It 
could be useful to investigate what kind of sense 
distinctions are hardest for systems to make, and 
whether or not systems have problems with the 
same senses that human annotators have problems 
with. 
When a stable version of the annotated resource is 
available, we will be able to start a more detailed 
analysis of the results of the annotation. 



It will be possible, for example, to evaluate the 
impact of the presence of figurative/rhetorical 
nuances of a sense in the corpus or to consider the 
quality and types of the multi words that, found in 
the corpus, have been proposed to the IWN 
lexicographers in order to have them added to the 
lexicon. 
But, above all, by analysing the level of 
confidence in the sense assignment, it will be 
possible to evaluate the correctness/suitability of 
the sense distinction in those cases that generated 
doubts in the human annotators. This kind of 
analysis would be particularly useful under the 
perspective of the organization of future Senseval 
tasks. 
Another issue to inquiry is whether the adoption 
of the wordnet model and the use of the synsets as 
information core can lead to a proliferation of 
word meanings according to the kind of synonyms 
which may replace a given word in a context?. 
Apart from this, however, it is a fact that use of 
wordnet or wordnet-like resources significantly 
correlates with an overall worsening in the 
performance of WSD systems compared with the 
previous results obtained using traditional 
dictionaries. This certainly is an issue to reflect 
upon. 
Other, more general considerations concern the 
issue of semantic annotation in general. It does 
not seem correct to talk about the "right sense 
distinction", and to think at the word sense as a 
task-independent information (Kilgarriff, 1997): 
the greater vs. lesser granularity depends also on 
the task/domain/situation and in principle there is 
no upper or lower limit to sense granularity. 
It seems that there are areas of meaning that 
cannot be easily encoded at the lexical-semantic 
level of annotation: sense interpretation may 
require appeal to e.g. extra-linguistic (world) 
knowledge which cannot be encoded/captured at 
the lexical-semantic level of description. We refer 
here to metaphors even extended to entire 
sequences and not limited to the single word; to 
words acqumng a specific sense, strictly 
dependent on the context, that cannot be encoded . 
at the lexical-semantic level; or to the complexity 
and variety of nuances implied e.g. by a verb, 
according to the type of direct object co-occurring 
with it. Not all these shifts of meaning can or 

7 This is the case of the verb dire (to say/to tell) which 
has the following synsets, among others, in IWN: 
dire, enunciare, proferire (utter, mouth, etc.) 
spiegare, dire (explain, tell) 
dire,far sapere (tell, let it be known). 

32 

must be captured through lexical-semant 
annotation. 
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Abstract 
This paper reports an overview of the 
SENSEVAL-2 Japanese dictionary task. It was 
a lexical sample task, and word senses are de­
fined according to a Japanese dictionary, the 
Iwanami Kokugo Jiten. The Iwanami Kokugo 
Jiten and a training corpus were distributed to 
all participants. The number of target words 
was 100, 50 nouns and 50 verbs. One hundred 
instances of each target word were provided, 
making for a total of 10,000 instances for eval­
uation. Seven systems of three organizations 
participated in this task. 

1 Introduction 
In SENSEVAL-2, there are two Japanese tasks, 
a translation task and a dictionary task. This 
paper describes the details of the dictionary 
task. 

First of all, let me introduce an overview of 
the Japanese dictionary task. This task is a 
lexical sample task. Word senses were defined 
according to the Iwanami Kokugo Jiten (Nishio 
et aL, 1994), a Japanese dictionary published by 
Iwanami Shoten. It was distributed to all par­
ticipants as a sense inventory. Training data, 
a corpus consisting of 3,000 newspaper articles 
and manually annotated with sense IDs, was 
also distributed to participants. For evaluation, 
we distributed newspaper articles with marked 
target words as test documents. Participants 
were required to assign one or more sense IDs 
to each target word, optionally with associated 
probabilities. The number of target words was 
100, 50 nouns and 50 verbs. One hundred in­
stances of each target word were provided, mak­
ing for a total of 10,000 instances. 

In what follows, Section 2 describes details 
of data used in the Japanese dictionary task. 
Section 3 describes the process to construct the 
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gold standard data, including the analysis of 
inter-tagger agreement. Section 4 briefly intro­
duces participating systems and their results. 
Finally, Section 5 concludes this paper. 

2 Data 
In the Japanese dictionary task, three data were 
distributed to all participants: sense inventory, 
training data and evaluation data. 

2.1 Sense Inventory 

As described in Section 1, word senses are de­
fined according to a Japanese dictionary, the 
Iwanami Kokugo Jiten. The number of head­
words and word senses in the I wanami Kokugo 
Jiten is 60,321 and 85,870, respectively. 

Figure 1 shows an example of word sense de­
scriptions in the Iwanami Kokugo Jiten, the 
sense set of the Japanese noun "MURI." 

MURI 
1. lack of reasonableness 

1-a. something not to be rational, not to be sen­
sible [kimi ga okoru no wa MURI mo nai 
(It is natural for you to be angry)] 

1-b. to do something compulsorily [ sigoto no 
MURI de byouki ni naru (I become ill from 
overwork)] 

Figure 1: Sense set of "MURI" 

As shown in Figure 1, there are hierarchical 
structures in word sense descriptions. For ex­
ample, word sense 1 subsumes 1-a and 1-b. The 
number of layers of hierarchy in the I wanami 
Kokugo Jiten is at most 3. Word sense dis­
tinctions in the lowest level are rather fine or 
subtle. Furthermore, a word sense description 
sometimes contains example sentences including 
a headword, indicated by italics in Figure 1. 

The Iwanami Kokugo Jiten was provided to 
all participants. For each sense description, a 



corresponding sense ID and morphological in­
formation were supplied. All morphological in­
formation, which included word segmentation, 
part-of-speech (POS) tag, base form and read­
ing, was manually post-edited. 

2.2 Training Data 

An annotated corpus was distributed as the 
training data. It was made up of 3,000 news­
paper articles extracted from the 1994 Mainichi 
Shimbun, consisting of 888,000 words. The an­
notated information in the training corpus was 
as follows: 

• Morphological information 

The text was annotated with morphologi­
cal information (word segmentation, POS 
tag, base form and reading) for all words. 
All morphological information was manu­
ally post-edited. 

• UDC code 

Each article was assigned a code represent­
ing the text class. The classification code 
system was the third version (INFOSTA, 
1994) of Universal Decimal Classification 
(UDC) code (Organization, 1993). 

• Word sense IDs 

Only 148,558 words in the text were anno­
tated for sense. Words assigned with sense 
IDs satisfied the following conditions: 

1. Their FOSs were noun, verb or adjec­
tive. 

2. The Iwanami Kokugo Jiten gave sense 
descriptions for them. 

3. They were ambiguous, i.e. there are 
more than two word senses in the dic­
tionary. 

Word sense IDs were manually annotated. 
However, only one annotator assigned a 
sen~e ID for each word. 

2.3 Evaluation Data 

The evaluation data was made up of 2,130 news­
paper articles extracted from the 1994 Mainichi 
Shimbun. The articles used for the training and 
evaluation data were mutually exclusive. The 
annotated information in the evaluation data 
was as follows: 

• Morphological information 

The text was annotated with morphologi­
cal information (word segmentation, POE 
tag, base form and reading) for all words 
Note that morphological information in thE 
training data was manually post-edited: 
but not in the evaluation data. So partici­
pants might ignore morphological informa­
tion in the evaluation data. 

• UDC code 

As in the training data. each article was 
assigned a UDC code 

• Word sense IDs (gold standard data) 

Word sense IDs were annotated manually 
for the target words 1. Note that word 
sense IDs in the evaluation and training 
data were given in different ways: (1) a 
sense ID was assigned for each word by at 
least two annotators in the evaluation data, 
while by only one annotator in the training 
data, (2) only 10,000 instances in the arti­
cles were annotated with sense IDs in the 
evaluation data, while all words were an­
notated which satisfied the conditions de­
scribed in 2.2 in the training data. 

3 Gold Standard Data 
Except for the gold standard data, the data de­
scribed in Section 2 have been developed by 
Real World Computing Partnership (Hasida et 
al., 1998; Shirai et al., 2001) and already re­
leased to public domain 2 . On the other hand, 
the gold standard data was newly developed for 
the SENSEVAL-2. This section presents the 
process of preparing the gold standard data, and 
the analysis of inter-tagger agreement. 

3.1 Sampling Target Words 

When we chose target words, we considered the 
following: 

• POSs of target words were either nouns or 
verbs. 

• Words were chosen which occurred more 
than 50 times in the training data. 

1They were hidden from participants at the contest. 
2Notice that the training data had been released to 

the public before the contest began. This violated the 
SENSEVAL-2 schedule constraint that answer submis­
sion should not occur more than 21 days after down­
loading the training data. 
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Table 1: Number of Target Words 

Da Db De all 
10 20 20 50 nouns (9.1/1.19) (3.7 /0.723) (3.3/0.248) (4.6/0.627) 

verbs 10 20 20 50 
(18/1.77) (6.7 /0.728) (5.2/0.244) (8.3/0.743) 

20 
~ 

40 40 100 
all (14/1.48) (5.2/0. 725) ( 4.2/0.246) (6.5/0.685) 

(average polysemy j average entropy) 

• The relative "difficulty" in disambiguating 
the sense of words was considered. Diffi­
culty of the word w was defined by the en­
tropy of the word sense distribution E(w) 
in the training data. Obviously, the higher 
E(w) was, the more difficult the WSD for 
w was. 

We set up three word classes, Da (E(w) ~ 
1), Db (0.5 ~ E(w) < 1) and De (E(w) < 
0.5), and chose target words evenly from 
them. 

Table 1 reveals details of numbers of target 
words. Average polysemy (i.e. average num­
ber of word senses per headword) and average 
entropy are also indicated. 

One hundred instances of each target word 
were selected from newspaper articles, making 
for a total of 10,000 instances. 

3.2 Manual Annotation 

Six annotators assigned the correct word sense 
IDs for 10,000 instances. They were not experts, 
but had knowledge of linguistics or lexicography 
to some degree. The process of manual anno­
tating was as follows: 

Step 1. Two annotators chose a sense ID for 
each instance separately in accordance with 
the following guidelines: 

• Only one sense ID was to be chosen for 
each instance. 

• Sense IDs at any layers in hierarchical 
structures could be assignable. 

• The "UNASSIGNABLE" tag was to 
be chosen only when all sense IDs 
weren't absolutely applicable. Other­
wise, choose one of sense IDs in the 
dictionary. 
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Table 2: Inter-tagger Agreement 

Da Db De (all) 
nouns 0.809 0.786 0.957 0.859 
verbs 0.699 0.896 0.922 0.867 

all 0.754 0.841 0.939 0.863 

Step 2. If the sense IDs selected by 2 annota­
tors agreed, we considered it to be a correct 
sense ID for an instance. 

Step 3. If they did not agree, the third anno­
tator chose the correct sense ID between 
them. If the third annotator judged both of 
them to be wrong and chose another sense 
ID as correct, we considered that all 3 word 
sense IDs were correct. 

According to Step 3., the number of words for 
which 3 annotators assigned different sense IDs 
from one another was a quite few, 28 (0.3%). 

Table 2 indicates the inter-tagger agreement 
of two annotators in Step 1. Agreement ratio 
for all 10,000 instances was 86.3%. 

4 Results for Participating Systems 
In the Japanese dictionary task, the following 7 
systems of 3 organizations submitted answers. 
Notice that all systems used supervised learning 
techniques. 

• Communications Research Laboratory and 
New York University (CRL1 "" CRL4) 
The learning schemes were simple Bayes 
and support vector machine (SVM), and 
two kinds of hybrid models of simple Bayes 
and SVM. 

• Tokyo Institute of Technology (Titech1, 
Titech2) 
Decision lists were learned from the train­
ing data. The features used in the decision 
lists were content words and POS tags in a 
window, and content words in example sen­
tences contained in word sense descriptions 
in the Iwanami Kokugo Jiten. 

• Nara Institute of Science and Technology 
(Naist) 
The learning algorithm was SVM. The fea­
ture space was reconstructed using Princi­
ple Component Analysis(PCA) and Inde­
pendent Component Analysis(ICA). 
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Figure 2: Results 

Figure 3: Mixed-grained scores for nouns and 
verbs 

[[iDa •Db rnDc I 

Figure 4: Mixed-grained scores for word classes 

The results of all systems are shown in Fig­
ure 2. "Baseline" indicates the system which 
always selects the most frequent word sense ID, 
while "Agreement" indicates the agreement ra­
tio between two annotators. All systems outper­
formed the baseline, and there was no remark­
able difference between their scores (differences 
were 3 % at most). 

Figure 3 indicates the mixed-grained scores 
for nouns and verbs. Comparing baseline sys­
tem scores, the score for verbs was greater than 
that for nouns, even though the average entropy 
of verbs was higher than that of nouns (Table 1). 
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The situation was the same in CRL systems, bt 
not in Titech and Naist. The reason why them 
erage entropy was not coincident with the scor 
of the baseline was that the entropy of som 
verbs was so great that it raised the average er 
tropy disproportionately. Actually, the entrop 
of 7 verbs was greater than the maximum er 
tropy of nouns. 

Figure 4 indicates the mixed-grained score 
for each word class. For word class De, ther 
was hardly any difference among scores of a: 
systems, including Baseline system and Agree 
ment. On the other hand, appreciable differenc 
was found for Da and Db. 

5 Conclusion 
This paper reports an overview of th 
SENSEVAL-2 Japanese dictionary task. Th 
data used in this task are available on th 
SENSEVAL-2 web site. I hope this valuabl, 
data helps all researchers to improve their WSI 
systems. 
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Abstract 
This paper reports an overview of SENSEVAL-2 
Japanese translation task. In this task, word 
senses are defined according to translation dis­
tinction. A translation Memory .. (TM) was 
constructed, which contains, for each Japanese 
head word, a list of typical Japanese expressions 
and their English translations. For each target 
word instance, a TM record best approximating 
that usage had to be submitted. Alternatively, 
submission could take the form of actual target 
word translations. 9 systems from 7 organiza­
tions participated in the task. 

1 Introduction 
In written texts, words which have multiple 
senses can be classified into two categories; 
homonyms and polysemous words. Generally 
speaking, while homonymy sense distinction is 
quite clear, polysemy sense distinction is very 
subtle and hard. English texts contain many 
homonyms. On the other hand, Japanese texts 
in which most content words are written by 
ideograms rarely contain homonyms. That is, 
the main target in Japanese WSD is polysemy, 
which makes Japanese WSD task setup very 
hard. What sense distinction of polysemous 
words is reasonable and effective heavily de­
pends on how to use it, that is, an application 
ofWSD. 

Considering such a situation, in addition to 
the ordinary dictionary task we organized an­
other task for Japanese, a translation task, in 
which word sense is defined according to trans­
lation distinction. Here, we set up the task as­
suming the example-based machine translation 
paradigm (Nagao, 1981). That is, first, a trans­
lation memory (TM) is constructed which con­
tains, for each Japanese head word, a list of typ­
ical Japanese expressions (phrases/sentences) 
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involving the head word and an English trans­
lation for each (Figure 1). We call a pair of 
Japanese and English expressions in the TM as 
a TM record. Given an evaluation document 
containing a target word, participants have to 
submit the TM record best approximating that 
usage. 

Alternatively, submissions can take the form 
of actual target word translations, or transla­
tions of phrases or sentences including each tar­
get word. This allows existing rule-based ma­
chine translation (MT) systems to participate 
in the task, and we can compare TM based sys­
tems with existing MT systems. 

For evaluation, we distributed newspaper ar­
ticles. The number of target words was 40, and 
30 instances of each target word were provided, 
making for a total of 1,200 instances. 

2 Construction of Translation 
Memory 

The translation memory (TM) was constructed 
in two steps: 

1. By referring to the KWIC (Key Word 
In Context) of a target word, its typical 
Japanese expressions are picked up by lex­
icographers. 

2. The Japanese expressions are translated by 
a translation company. 

KWIC was made from the nine years vol­
ume of Mainichi Newspaper corpus. They are 
morphologically analyzed and segmented into 
phrase sequences, and then the 100 most fre­
quent phrase uni-grams, hi-grams (two types; 
the target word is in the first phrase or the sec­
ond phrase) and tri-grams (the target word is 
in the middle phrase) are provided to lexicogra­
phers (Figure 2). 



m€I:i muri 
'- It is impossible to participate. 

4-tJ> G f@iiUflO)fiJJtHd:~:f!!ti 
4-@JO)?i~l: fd:~:f!!tJ~ d5 ~ 
1&7'J~~~ 0) :t~:f!!fd:t~ ].,~ 
-1fi:~!J!O)t~v~1Jii 
~:f!!:a:IJ:tl~ 

It is impossible to make use of the library in this hour. 
This bill is hard to pass. 
It is no wonder he got angry. 
the most natural way 

~:f]!t~~ 
~!J!t~Jm 1_,)~ G 

to work too much 
unreasonable demand 
passing by force 

~:f!!~t, ~:a: f@ ~ to commit a forced double suicide 

Figure 1: An example of Translation Memory. 

Phrase uni-gram Phrase bi-gram 
597 "' ~ 
551 ~:f_!!tJ~ 

151 "" ~ l 0 19 L:. 1 7 ;: 0 

138 ~:f]!tJ~ ~~0 14 c'"C:t ~:f!!o 6 ::1<66~0)fj: ~@fJ\ ~~0 
416 ~:f!!~t:l 
413 ~!J!l: 
403 ~:f!!:a: 
351 ~!J!o 

106 ~:f}! :fJ f~ Vlo 13 L:. C fj: ~:f}! C 5 ;: c l: fd: ~:f!!fJ\ G ~ :f!!E87'J! 
5 ~< O):fJ ~@fj: f~Vl 0 101 ~:f_!! t~ < 10 ::1<66~0)fj: ~@tJ~ 

67 ~!J!O) t~vl 10 e:--c:t ~:f!!J e: 5 fi1J~fd: ~:f!!~L.,~C: J}.'"Cvl~o 
4 G '"C :t ~:f!!fd: t~ v~o 56 ~:f_!!tJ\ ~~J c 9 1_,)'50)fd: ~@tJ~ 

Figure 2: An example of KWIC (numbers indicate phrase frequency). 

The lexicographers pick up a typical expres­
sion of the target word from the KWIC. If its 
sense is context-independently clear, the expres­
sion is adopted as it is. If its sense is not clear, 
some pre/post expressions are supplemented by 
referring original sentences in the newspaper 
corpus. 

Then, we asked a translation company to 
translate the Japanese expressions. As a re­
sult, a TM containing 320 head words and 6920 
records was constructed (one head word has 
21.6 records on average). The average number 
of words of a Japanese expression is 4.5. 

3 Gold Standard Data and the 
Evaluation of Translations 

As a gold standard data of the task, 40 target 
words were chosen out of 320 TM words. Con­
sidering the possible comparison of the trans­
lation task and the dictionary task, 40 target 
words were fully overlapped with 100 target 
words of the dictionary task. 

In the Japanese dictionary task, target words 
are classified into three categories according 
to the difficulty (difficult, intermediate, easy), 
based on the entropy of word sense distri­
bution in the training data of the dictionary 
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task(Shirai, 2001). 40 target words of the tran: 
lation task consists of 20 nouns and 20 verbs: 
difficult nouns and verbs, 10 intermediate nom 
and verbs, and 5 easy nouns and verbs. 

For each target word, 30 instances were ch< 
sen from Mainichi Newspaper corpus (in tot. 
1,200 instances) and they are also overlapp€ 
with the dictionary task. Since the dictionar 
task uses 100 instances for each target wor< 
the translation task used 1st, 4th, 7th, ... 90t 
instances of the dictionary task. 

As a gold standard data, zero or more aJ 
propriate TM records were assigned to each ii 
stance by the same translation company. At 
propriate TM records were classified into tb 
following three classes: 

© : A TM record which can be used t 
translate the instance. POS, tense, plura 
singular, and subtle nuance do not nece: 
sarily match. 

0 : If the instance is considered alone, tb 
English translation is correct, but usin 
the TM record in the given context is nc 
so good, for example, making very round 
about translation. 



6. : If the instance is considered alone, the 
English translation is correct, but using the 
TM record in the given context is inappro­
priate. 

Out of 1,200 instances, 34 instances (2.8%) 
were assigned no TM records (there was no ap­
propriate TM record). To one instance, on aver­
age, 6.6 records were assigned as©, 1.4 records 
as 0, and 0.1 records as 6, in total8.1 records. 
If a system chooses a TM record randomly as 
an answer, the accuracy becomes 36.8% in case 
that all of ©, 0 and 6. records are regarded 
as correct, and 29.0% in case that only © is re­
garded as correct (they are the baseline scores 
used in the next section). 

In the gold standard data construction, 90 
instances (9 words x 10 instances) were dealt 
with by two annotators doubly, and then their 
agreement were checked. For each instance one 
record is chosen randomly from annotator B's 
answers, and it was checked whether it is con­
tained in annotator A's answers (annotator A 
made the whole gold standard data). The agree­
ment was 86.6% in case that all of ©, 0 and 
6. records are regarded as correct, and 80.9% in 
case that only© is regarded as correct. 

In the case that the submission is in the 
form of translation data, translation experts 
(the same company as constructed the TM and 
the gold standard data) were asked to rank the 
supplied translation ©, 0 or X. This evalua­
tion does not pay attention to the total transla­
tion, but just the appropriateness of the target 
instance translation. 

4 Result 
In the Japanese translation task, 9 systems from 
7 organizations submitted the answers. The 
characteristics of the systems are summarized 
as follows: 

• AnonymX, Anonym Y 
Commercial, rule-based MT systems. 

• CRL-NYU (Communications Research 
Laboratory & New York Univ.) 
TM records are classified according to 
the English head word, and each cluster 
is supplemented by several corpora. The 
system returns a TM record when the 
similarity between a TM record and an 
input sentence is very high. Otherwise, it 

returns the English head word of the most 
similar cluster by using several machine 
learning techniques. 

• Ibaraki (Ibaraki Univ.) 
A training data was constructed manually 
from newspaper articles, 170 instances for 
each target word. Features were collected 
in 7-word window around the target word, 
and decision list method was used for learn­
ing. 

• Stanford-Titechl (Stanford Univ. & Tokyo 
Institute of Technology) 
The system selects the appropriate TM 
record based on the character-bigram­
based Dice's coefficient. It also utilized the 
context of the other target word instances 
in the evaluation text. 

• AnonymZ 
A sentence (TM records for learning, and 
an input for testing) is morphologically an­
alyzed and converted into a semantic tag 
sequence, and maximum entropy method 
was used for learning. 

• ATR 
The system selects the most similar TM 
record based on the cosine similarity be­
tween context vectors, which were con­
structed from semantic features and syn­
tactic relations of neighboring words of the 
target word. 

• Kyoto (Kyoto U niv.) 
The system selects the most similar 
TM record by bottom-up, shared-memory 
based matching algorithm. 

• Stanford-Titech2 (Stanford Univ. & Tokyo 
Institute of Technology) 
The system selects the appropriate TM 
record based on the case-frame-based sim­
ilarity, using NTT Goi-Taikei thesaurus. 

The results of all systems are shown in Fig­
ure 3. The left bar charts indicate the accuracy 
based on the lenient evaluation (©, 0 and 6. 
in TM selection and © and 0 in MT are re­
garded as correct); the right bar charts indicate 
the accuracy based on the strict evaluation ( © 
is only regarded as correct both in TM selection 
and MT). Note that since the TM does not have 
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Figure 3: Result of the Japanese translation 
task. 
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Figure 4: Scores for nouns and verbs. 

a hierarchical structure, there is no evaluation 
options such as fine, coarse, and mixed. 

Figure 4 shows scores for nouns and verbs 
separately, and Figure 5 shows scores for dif­
ficult/intermediate/easy words. Both of them 
were evaluated by the lenient criteria. 

In these figures, "Agreement" and "Baseline" 
were as described in the previous section. When 
the system judges that there is no appropri­
ate TM record for an instance, it can return 
"UNASSIGNABLE". In that case, if there is 
no appropriate TM record assigned in the gold 
standard data, the answer is regarded as cor­
rect. 

Among TM selection systems, systems using 
some extra learning data outperformed other 
systems just using the TM. The comparison be­
tween TM selection systems and MT systems 
is not easy, but the result indicates the effec­
tiveness of the accumulated know-how of MT 
systems. However, the performance of the best 
TM selection system is not so different from MT 
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systems, which indicates the promising future oJ 
TM based techniques. 

5 Conclusion 
This paper described an overview of SENSEVAL· 
2 Japanese translation task. The data used ir 
this task are available at SENSEVAL-2 web site. 
We hope this valuable data helps improve WS:C 
and MT systems. 
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Abstract 

In this paper we describe the structure, organisa­
tion and results of the SENSEVAL exercise for Span­
ish. We present several design decisions we taked for 
the exercise, we describe the creation of the gold­
standard data and finally, we present the results 
of the evaluation. Twelve systems from five differ­
ent universities were evaluated. Final scores ranged 
from 0.56 to 0.65. 

1 Introduction 

In this paper we describe the structure, organisation 
and results of the Spanish exercise included within 
the framework of SENSEVAL-2. 

Although we closely follow the general architec­
ture of the evaluation of SENSEVAL-2, the final 
setting of the Spanish exercise involved a number 
of choices detailed in section 2. In the following sec­
tions we describe the data, the manual tagging pro­
cess (including the inter-tagger agreement figures), 
the participant systems and the accuracy results (in­
cluding some baselines for comparison purposes). 

2 Design Decisions 

2.1 Task Selection 

For Spanish SENSEVAL, the lexical-sample variant 
for the task was chosen. The main reasons for this 
decision are the following: 

• During the same tagging session, it is easier and 
quicker to concentrate only on one word at a 
time. That is, tagging multiple instances of the 
same word. 

• The all-words task requires access to a full dic­
tionary. To our knowledge, there are no full 
Spanish dictionaries available (with low or no 
cost). Instead, the lexical-sample task required 
only as many dictionary entries as words in the 
sample task. 
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2.2 Word Selection 

The task for Spanish is a "lexical sample" for 39 
words1 (17 nouns, 13 verbs, and 9 adjectives). See 
table 1 for the complete list of all words selected 
for the Spanish lexical sample task. The words can 
belong only to one of the syntactic categories. The 
fourteen words selected to be translation-equivalents 
to English has been: 

• Nouns: arte (=art), autoridad (= authority), 
canal ( = channel), circuito ( = circuit), and nat­
uraleza ( = nature). 

• Verbs: conducir (=drive), tratar (=treat), and 
usar (=use). 

• Adjectives: ciego (=blind), local(= local), nat­
ural (= natural), simple (= simple), verde (= 
green), and vital(= vital). 

2.3 Corpus Selection 

The corpus was collected from two different sources: 
"El Peri6dico" 2 (a Spanish newspaper) and LexEsp3 

(a balanced corpus of 5.5 million words). The length 
of corpus samples is the sentence. 

2.4 Selection of Dictionary 

The lexicon provided was created specifically for the 
task and it consists of a definition for each sense 
linked to the Spanish version of EuroWordNet and, 
thus, to the English WordNet 1.5. The syntactic 
category and, sometimes, examples and synonyms 
are also provided. The connections to EuroWord­
Net have been provided in order to have a common 
language independent conceptual structure. Neither 
proper nouns nor multiwords has been considered. 
We have also provided the complete mapping be­
tween WordNet 1.5 and 1.6 versions4 • Each dictio­
nary entry have been constructed consulting the cor-

1The noun "arte" was not included in the exercise because 
it was provided to the competitors during the trial phase. 

2The working corpus of the HERMES project 
CICYT TIC2000-0335-C03-02. More details at 
http:/ /http:/ /terral.ieec.uned.es/hermes. 

3Provided by LEXESPIII project DGICYT APC 99-0105 
4 http:/ /www.lsi.upc.es/ rvnlp/mapping.html 



pus and multiple Spanish dictionaries (including the 
Spanish WordNet). 

2.5 Annotation procedure 

The Spanish SENSEVAL annotation procedure was 
divided into three consecutive phases. 

• Corpus and dictionary creation 

• Annotation 

• Referee process 

All these processes have been possible thanks to 
the effort of volunteers from three NLP groups from 
Universitat Politecnica de Catalunya5 (UPC), Uni­
versitat de Barcelona6 (UB) and Universidad Na­
cional de Educaci6n a Distancia7 (UNED). 

2.5.1 Corpus and Dictionary Creation 
The most important and crucial task was carried 
out by the UB team of linguists, headed by Mariana 
Taule. They were responsible for the selection of the 
words, the creation of the dictionary entries and the 
selection of the corpus instances. First, this team se­
lected the polysemous words for the task consulting 
several dictionaries including the Spanish WordNet 
and a quick inspection to the Spanish corpus. For 
the words selected, the dictionary entries were cre­
ated simultaneously with the annotation of all occur­
rences of the word. This allowed the modification of 
the dictionary entries (i.e. adapting the dictionary 
to the corpus) during the annotation and the elimi­
nation of unclear corpus instances (i.e. adapting the 
corpus to the dictionary). 

2.5.2 Annotation 
Once the Spanish SENSEVAL dictionary and the 
annotated corpus were created, all the data was de­
livered to the UPC and UNED teams, removing all 
the sense tags from the corpus. Having the Spanish 
SENSEVAL dictionary provided by the UB team as 
the unique semantic reference for annotation both 
teams performed in parallel and simultaneously a 
new annotation of the whole corpus. Both teams 
where allowed to provide comments/problems on the 
each of the corpus instances. 

2.5.3 Referee Control 
Finally, in order to provide a coherent annotation, a 
unique referee from the UPC team collate both an­
notated corpus tagged by the UPC and the UNED 
teams. This referee was not integrated in the UPC 
team in the previous annotating phase. The referee 
was in fact providing a new annotation for each in­
stance when occurring a disagreement between the 
sense tags provided by the UPC and UNED teams. 

5 http://www.lsi.upc.es/.-vnlp 
6 http://www.ub.es/ling/labing.htm 
7http://rayuela.ieec.uned.es/ 
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3 The Spanish data 
3.1 Spanish Dictionary 

The Spanish lexical sample is a selection of higl 
medium and low polysemy frequent nouns, verbs an 
adjectives. The dictionary has 5.10 senses per wor 
and the polysemy degree ranges from 2 to 13. Noun 
has 3.94 ranging from 2 to 10, verbs 7.23 from 4 t 
13 and adjectives 4.22 from 2 to 9 (see table 1 fo 
further details). 

The lexical entries of the dictionary have the fol 
lowing form: 

< HEADWORD># 
<POS># 
< SENSENUMBER ># 
<GLOSS: EXAMPLEs># 
SIN:< SINONYMWORDs ># 
<SYNSETNUMBERs># 

Figure 1: Dictionary entry format 

For instance, the dictionary for noun headwor' 
arte ( = art) is: 

arte#NCMS#1#Actividad humana o producto d 
tal actividad que expresa simb6licamente un as 
pecto de la realidad: el arte de la musica; el art 
precolombino #SIN:?#00518008n/02980374n7 

arte#NCMS#2#Sabiduria, destreza o habilida• 
de una persona en una actividad o con 
ducta determinada: tiene mucho arte bai 
lando; despleg6 todo su arte para convencerl 
#SIN:?#03850627n# 

arte#NCMS#3#Aparato que sirve par, 
pescar#SIN: ?#02005 770n# 

3.2 Spanish Corpus 

We adopted, when possible, the guidelines propose1 
by the SENSEVAL organisers (Edmonds, 2000). Fo 
each word selected having n senses we provided a 
least 75 + 15n instances. For the adjective popular ; 
larger set of instances has been provided to test per 
formance improvement when increasing the numbe 
of examples. These data has been then ramdoml: 
divided in a ratio of 2:1 between training and tes 
set. 

The corpus was structured following the standan 
SENSEVAL XML format. 

3.3 Major problems during annotation 

In this section we discuss the most frequent and reg 
ular types of disagreement between annotators. 

In particular, the dictionary proved to be not suf 
ficiently representative of the selected words to b1 
annotated. Although the dictionary was built fo 
the task, out of 48% of the problems during the sec 
and phase of the annotation where due to the lacl 



of the appropriate sense in the corresponding dictio­
nary entry. This portion includes 5% of metaphori­
cal uses not explicitly described into the dictionary 
entry. Furthermore, 51% of the problems reported 
by the annotators were concentrated only on five 
words (pasaje, canal, bomba, usar, and saltar). 

Selecting only one sentence as a context during 
annotation was the other main problem. Around 
26% of the problems where attributed to insufficient 
context to determine the appropriate sense. 

Other sources of minor problems included differ­
ent Part-of-Speech from the one selected for the 
word to be annotated, and sentences with multiple 
meanings. 

3.4 Inter-tagger agreement 

In general, disagreement between annotators (and 
sometimes the use of multiple tags) must be inter­
preted as misleading problems in the definition of 
the dictionary entries. The inter-tagger agreement 
between UPC and UNED teams was 0.64% and the 
Kappa measure 0.44%. 

4 The Systems 
Twelve systems from five teams participated in the 
Spanish task. 

• Universidad de Alicante (UA) combined a 
Knowledge-based method and a supervised 
method. The first uses WordNet and the second 
a Maximum Entropy model. 

• John Hopkins University (JHU) presented a 
metalearner of six diverse supervised learning 
subsystems integrated via classifier. The sub­
systems included decision lists, transformation­
based error-driven learning, cosine-based vector 
models, decision stumps and feature-enhanced 
naive Bayes systems. 

• Stanford University (SU) presented a met­
alearner mainly using Naive Bayes methods, 
but also including vector space, n-gram, and 
KNN classifiers. 

• University of Maryland (UMD) used a margin­
based algorithm to the task: Support Vector 
Machine. 

• University of Manitoba (d6-lO,dX-Z) presented 
different combinations of classical Machine 
Learning algorithms. 

5 The Results 
Table 1 presents the results in detail for all systems 
and all words. The best scores for each word are 
highlighted in boldface. The best average score is 
obtained by the JHU system. This system is the 
best in 12 out of the 39 words and is also the best 
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for nouns and verbs but not for adjectives. The SU 
system gets the highest score for adjectives. 

The associated agreement and kappa measures for 
each system are shown in Table 2. Again JHU sys­
tem scores higher in both agreement and Kappa 
measures. This indicates that the results from the 
JHU system are closer to the corpus than the rest of 
participants. 

6 Conclusions and Further Work 
Obviously, an in deep study of the strengths and 
weaknesses of each system with respect to the re­
sults of the evaluation must be carried out, including 
also further analysis comparing the UPC and UNED 
annotations against each system. 

Following the ideas described in (Escudero et al., 
2000) we are considering also to add a cross-domain 
aspect to the evaluation in future SENSEVAL edi­
tions, allowing the training on one domain and the 
evaluation on the other, and vice-versa. 

In order to provide a common platform for evalu­
ating different WSD algorithms we are planning to 
process the Spanish corpus tagged with POS using 
MACO (Carmona et al., 1998) and RELAX (Padro, 
1998). 
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words p e s MF UA su JHU UMD d6 d1 d8 d9 dlO dX dY dZ 

actuar v 155 6 0.28 0.27 0.60 0.56 0.45 0.25 0.27 0.40 0.36 0.35 0.22 0.61 0.22 
apoyar v 210 4 0.64 0.63 0.70 0.68 0.67 0.64 0.63 0.67 0.64 0.66 0.66 0.64 0.64 
apuntar v 191 8 0.47 0.55 0.55 0.65 0.53 0.49 0.49 0.51 0.51 0.55 0.49 0.47 0.49 
autoridad n 122 6 0.49 0.68 0.50 0.53 0.47 0.50 0.56 0.56 0.47 0.62 0.47 0.62 0.50 
bomba n 113 2 0.71 0.27 0.70 0.68 0.73 0.78 0.71 0.79 0.80 0.74 0.78 0.59 0.80 
brillante a 256 2 0.52 0.63 0.76 0.83 0.76 0.81 0.76 0.81 0.76 0.78 0.73 0.78 0.78 
canal n )56 5 0.33 0.34 0.63 0.68 0.16 0.49 0.59 0.56 0.51 0.56 0.56 0.46 0.59 
ciego a 114 4 0.54 0.71 0.69 0.62 0.62 0.64 0.55 0.57 0.60 0.60 0.60 0.55 0.57 
circuito n 123 4 0.34 0.43 0.59 0.57 0.37 0.49 0.55 0.61 0.31 0.53 0.53 0.29 0.49 
claro a 204 7 0.83 0.82 0.88 0.82 0.83 0.83 0.85 0.85 0.83 0.86 0.85 0.85 0.85 
clavar v 131 9 0.44 0.50 0.64 0.48 0.64 0.61 0.68 0.64 0.52 0.61 0.57 0.57 0.57 
conducir v 150 9 0.35 0.35 0.43 0.44 0.46 0.41 0.43 0.43 0.35 0.41 0.37 0.41 0.41 
copiar v 147 8 0.32 0.42 0.55 0.45 0.47 0.45 0.40 0.42 0.53 0.43 0.38 0.62 0.42 
corazon n 146 5 0.36 0.23 0.53 0.77 0.68 0.66 0.74 0.79 0.53 0.77 0.64 0.68 0.62 
corona n 119 4 0.45 0.53 0.80 0.70 0.53 0.55 0.62 0.57 0.55 0.57 0.55 0.53 0.55 
coronar v 244 6 0.32 0.49 0.65 0.10 0.65 0.55 0.62 0.61 0.64 0.61 0.59 0.41 0.62 
explotar v 133 6 0.32 0.49 0.56 0.56 0.56 0.46 0.39 0.41 0.49 0.41 0.44 0.61 0.41 
gracia n 160 6 0.30 0.28 0.79 0.74 0.61 0.69 0.66 0.79 0.59 0.72 0.70 0.70 0.80 
grano n 78 3 0.44 0.37 0.32 0.50 0.45 0.36 0.50 0.32 0.32 0.45 0.36 0.64 0.36 
hermano n 135 5 0.61 0.74 0.58 0.74 0.72 0.70 0.74 0.74 0.70 0.75 0.70 0.74 0.74 
local a 139 3 0.74 0.84 0.78 0.89 0.75 0.76 0.84 0.85 0.73 0.84 0.78 0.82 0.82 
mas a n 131 5 0.45 0.39 0.63 0.68 0.61 0.54 0.54 0.61 0.56 0.66 0.56 0.41 0.59 
natural a 137 6 0.25 0.34 0.48 0.60 0.45 0.36 0.41 0.40 0.31 0.47 0.41 0.38 0.41 
naturaleza n 167 10 0.44 0.45 0.66 0.59 0.54 0.64 0.70 0.66 0.52 0.68 0.57 0.64 0.59 
operacion n 142 5 0.35 0.71 0.60 0.55 0.49 0.43 0.45 0.40 0.57 0.45 0.47 0.60 0.47 
organo n 212 4 0.52 0.73 0.83 0.81 0.73 0.70 0.64 0.64 0.70 0.64 0.64 0.53 0.68 
partido n 159 2 0.55 0.81 0.84 0.86 0.81 0.74 0.74 0.74 0.67 0.75 0.72 0.67 0.77 
pasaje n 112 4 0.39 0.83 0.44 0.56 0.34 0.39 0.39 0.39 0.32 0.56 0.41 0.29 0.39 
popular a 661 3 0.65 0.77 0.90 0.83 0.75 0.77 0.78 0.80 0.71 0.77 0.77 0.68 0.75 
programa n 142 6 0.49 0.36 0.49 0.64 0.49 0.49 0.64 0.55 0.47 0.40 0.40 0.49 0.45 
sal tar v 137 14 0.15 0.51 0.49 0.57 0.51 0.16 0.35 0.32 0.11 0.54 0.32 0.65 0.30 
simple a 217 5 0.61 0.67 0.11 0.63 0.65 0.68 0.70 0.72 0.65 0.72 0.67 0.67 0.65 
tabla n 119 3 0.51 0.88 0.73 0.66 0.71 0.66 0.59 0.73 0.76 0.68 0.73 0.59 0.76 
to car v 236 12 0.31 0.51 0.61 0.66 0.59 0.41 0.51 0.49 0.39 0.47 0.42 0.34 0.42 
tratar v 192 13 0.21 0.39 0.46 0.60 0.56 0.27 0.39 0.37 0.30 0.43 0.30 0.24 0.34 
usar v 167 4 0.68 0.77 0.73 0.79 0.70 0.70 0.68 0.70 0.70 0.64 0.70 0.70 0.70 
veneer v 183 8 0.63 0.72 0.69 0.62 0.69 0.69 0.72 0.71 0.69 0.71 0.69 0.71 0.69 
verde a 109 9 0.37 0.48 0.61 0.52 0.64 0.58 0.58 0.61 0.61 0.67 0.48 0.55 0.67 
vital a 256 4 0.45 0.65 0.68 0.77 0.68 0.54 0.67 0.68 0.51 0.66 0.47 0.53 0.51 
NOUNS n 2336 4 0.45 0.55 0.63 0.66 0.59 0.58 0.61 0.61 0.55 0.62 0.58 0.56 0.60 
VERBS v 2276 7 0.40 0.51 0.59 0.60 0.58 0.47 0.5. 0.51 0.48 0.52 0.47 0.54 0.48 
ADJS a 2093 4 0.58 0.66 0.73 0.72 0.68 0.66 0.68 0.70 0.63 0.71 0.64 0.65 0.67 
TOTAL T 6705 5 0.48 0.56 0.64 0.65 0.61 0.56 0.59 0.60 0.55 0.61 0.56 0.57 0.57 

Table 1: Evaluation of Spanish words. p stands for Part-of-Speech; e for the total number of examples 
(including train and test sets); s for the number of senses; MF for the Most Frequent Sense Classifier and 
the rest are the system acronyms. 

words UA su JHU UMD d6 d7 d8 d9 dlO dX dY dZ 
Agreement 0.51 0.63 0.65 0.61 0.55 0.57 0.59 0.53 0.59 0.55 0.51 0.57 
Kappa 0.20 0.34 0.47 0.20 0.13 0.19 0.23 0.06 0.24 0.15 -0.03 0.15 

Table 2: Agreement and Kappa measures 
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Abstract 

In this paper we describe the organisation 
and results of the SENSEVAL-2 exercise for 
Swedish. We present some of the 
experiences we gained by participating as 
developers and organisers in the exercise. 
We particularly focus on the choice of the 
lexical and corpus material, the annotation 
process, the scoring scheme, the motivations 
for choosing the lexical-sample branch of 
the exercise, the participating systems and 
the official results. 

Introduction 

Word sense ambiguity is a potential source for 
errors in human language technology 
applications, such as Machine Translation, and it 
is considered as the great open problem at the 
lexical level of Natural Language Processing 
(NLP). There are, however, several computer 
programs for automatically determining which 
sense of a word is being used in a given context, 
according to a variety of semantic, or defining 
dictionaries as demonstrated in the SENSEV AL-l 
exercise; (Kilgarriff and Palmer, 2000). The 
purpose of SENSEV AL is to be able to say which 
programs and methods perform better, which 
worse, which words, or varieties of language, 
present particular problems to which programs; 
when modifications improve performance of 
systems, and how much and what combinations 
of modifications are optimal. Specifically for 
Swedish, we would also like to investigate to 
what extent sense disambiguation can be 
accomplished and the potential resources 
available for the task. We would thus be creating 
a framework that can be shared both within the 
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exercise and for future evaluation exercises of 
similar kind, national and international. 

1 Choice of Task 

Three tasks were identified for SENSEVAL-2, 
namely: the lexical-sample, the all-words and 
the 'in a system' tasks. In the lexical sample task, 
first, we sample the lexicon, then we find 
instances in context of the sample words and the 
evaluation . is carried out on the sampled 
instances. In the all-word task a system will be 
evaluated on its disambiguation performance on 
every word in the test collection. Finally, in the 
third type of task, a. word sense disambiguation 
(WSD) system is evaluated on how well it 
improves the performance of a NL system (MT, 
IR etc). The reasons we chose the lexical-sample 
task for Swedish are summarised below: 

1. Cost-effectiveness of annotation: it is easier 
and quicker for the human annotators to 
sense-tag multiple occurrences of one word 
at a time, particularly when robust 
interactive means are utilized (Section 3); 

2. The lexical-sample reduces the work of 
preparing training data since only a subset of 
the sense inventory is used; 

3. More systems can/could (eventually) 
participate; 

4. The all-words task requires access to a full 
dictionary, which is problematic from the 
copyright point of view, since industrial 
partners were also allowed to participate; 
and, as Kilgarriff and Palmer (2000) noted: 

5. Provided that the sample is well chosen, the 
lexical sample strategy would be more 
informative about the current strengths and 
failings of sense disambiguation research 
than the all-words task. 



2 Development Process 

In this section we will give a concise description 
of how the whole exercise (for Swedish) was set 
up, putting more emphasis on some of the main 
ingredients of the work, i.e. sampling, resources, 
annotation and scoring. 

A number of likely participants were invited 
to express their interest and participate in the 
Swedish SENSEVAL (summer, 2000). A plan for 
selecting the evaluation material was agreed in 
Sprakdata, and human annotators were set on the 
task of generating the training and testing 
material. The material was released to the 
participants at the end of April 2001 and during 
the second week of June, 2001 the results were 
returned for scoring. The Swedish SENSEV AL 
material was divided into three parts and 
released in stages: 

• 

• 

• 

Trial data: freezing and showing the data 
formatting conventions (lexicon & corpus); 
Training data: the finalised sense inventory 
and portion of the 'gold standard'; 
Evaluation data: the rest of the 'gold 
standard', untagged. 

2.1 Dictionary and Corpus 

At least three lexical resources were candidates 
for the Swedish lexicon-sample task. These were 
the Swedish versions of the WordNet 
(http://www.ling.lu.se/projects/Swordnet) and the 
Swedish SIMPLE (http://spraakdata.gu.se/simple/), 

as well as the Gothenburg Lexical Data 
Base/semantic Database (GLDB/SDB) 
(http://spraakdata.gu.se/lb/gldb.html). We chose the 
GLDB/SDB. The creation of a Swedish version 
of WordNet, a resource that is extensively used 
for the semantic annotation of texts in other 
languages, is under development and had (up to 
that point) limited coverage, while the SIMPLE 
lexicon, although available, has limited coverage 
(in principle it could be used and it is linked to 
the GLDB/SDB). However, a draWback of the 
Swedish SIMPLE is that very fine-grained sub­
senses are not adequately described (or not 
described at all) in the material. GLDB/SDB is a 
generic defining dictionary of 65,000 lemmas 
available and developed at our department and 
became the final choice for the lexical inventory. 
(see Allen, 1999[1981] for a description of the 
model utilized in the dictionary). 
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For the textual material we chose the 
Stockholm-Umea Corpus (SUC), Ejerhed et al. 
(1992). The particular corpus was chosen for 
three main reasons. It is available to the research 
community; it is considered the "standard 
reference" corpus for contemporary writte~ 
Swedish; and, third, it is the corpus utilised in 
the SemTag project (next section). 

2.2 Sampling 

There is no standard method for sampling the 
lexical data. However, certain features were 
considered. These were: frequency, polysemy, 
part-of-speech and distribution of senses. Words 
were chosen based not so much on intuition, but 
rather on their frequency and polysemy. Still, it 
was hard to find a balance between these two 
features since high frequency words tend to be 
monosemous in a corpus, while highly 
polysemous words tend to have few senses in a 
corpus. In the case that a word was frequent and 
polysemous we tried to provide more data 
(context), than for words that were less frequent. 
Part-of-speech information was consulted for the 
decision of choosing more nouns in the sample 
(highest portion in the GLDB/SDB), than verbs 
(less than nouns, but more than adjectives in the 
GLDB/SDB) and adjectives (which are fewer 
than nouns and verbs in GLDB/SDB). We chose 
a sample of words where the amount of senses 
was evenly distributed, i.e. lemmas (dictionary 
entries) with 2-7 lexemes (senses) and 1-23 
cycles (subsenses). 

2.3 SemTag 

Creating a sense-annotated reference corpus is a 
laborious task. Therefore, we developed the 
majority of the test and reference material within 
an ongoing project highly relevant for our 
mission, namely SemTag (Lexikalisk betydelse 
och anviindningsbetydelse - "Lexical Sense and 
Sense in Context", financed by the Swedish 
Council for Research in the Humanities and 
Social Sciences (HSFR)); see Jarborg (1999). In 
brief, the purpose of the project is to create a 
large sample of sense-annotated corpus (several 
hundreds of thousands of words), which can be 
used among other things for: 

• measuring the performance of automatic 
methods for WSD; 



• testing, in practice and on a large scale, the 
validity of the lemma-lexeme model 
implemepteq in GLDB/SI)13; 

• the improvement of lexicographic 
descriptions, and the production of (new 
and) more fine-grained senses in 
GLDB/SDB; 

• the adjustment of the definitions in 
GLDB/SDB to better fit the textual use; 

• describing new words, not covered by the 
content of the GLDB/SDB; 

• producing material, adequate for training 
supervised methods to sense 
disambiguation. 

2.4 Corpus/Sense Inventory 

Table 1 shows information on the sense 
inventory, the amount of corpus instances 
(training/testing) and the distribution of senses 
and sub-senses (Lexemes/Cycles) in the material 
for the twenty nouns (N), fifteen verbs (V) and 
the five adjectives (A). The total amount of 
training and testing corpus instances was: 
8716/1525. The average polysemy in the sample 
is 3,517,6 for lexemes and cycles respectively. 

! Corpus ! Lexemesl ! 

Word I POS Instances i Cycles 
I 

barn/1 N 656/115 I 316 
betydelse/1 N 295/52 2/1 
farg/1 N 110/19 4/ll 
konst/1 N 77/13 316 
kraft/1 N 152127 4/11 
kyrka/1 N 154/27 2/3 
kiinsla/1 N 142/25 2/4 
ledning/1 N 9l/16 4/1 
makt/1 N 128/22 3/4 
massa/1 N 93116 613 
mening/1 N 168/29 4/1 
natur/1 N 90/16 3/4 
program/1 N 139/24 4110 
rad/1 N 145/25 4/3 
rum/1 N 223/39 317 
scen/1 N 101117 417 
tillfalle/1 N ll7/20 2/4 
uppgift/1 N 174/30 2/3 
vatten/1 N 285/50 2/3 
amne/1 N 198/34 4/4 
betyda/1 v 198/35 4/4 
flytta/1 v 188/33 2/4 
fylla/2 v 96117 4111 
roija/1 v ~45/61 5/19 
forklara/1 v 169/30 2/9 
galla/1 v 843/148 4/6 
handla/1 v 250/44 415 
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hora/1 i v 523/92 5114 
mrua/1 v 96/16 217 
skjuta/1 v 79/14 6115 
spela/1 v 267/47 6/23 
vanta/1 v 248/43 3/15 
viixa/1 v 203/36 2/9 
oka/1 v 436177 2/2 
oppna/1 v 147/25 4/16 
bred/1 A 103/18 311 
klar/1 A 307/54 4/11 
naturlig/1 A 139/24 4/5 
stark/1 A 352/62 5111 
oppen A 189/33 7/21 

Table 1. Data for the Swedish Lexical Sample 

3 Annotation 

The annotation was carried out interactively 
using a concordance-based interface (developed 
in SemTag) and which interacts with the corpus 
and the dictionary; (see 
http:/ I svens ka. gu.se/ -svedk!S ENS EV AUi mages/semt 
ag.gif for a screenshot of this tool). Due to our 
limited financial resources only two professional 
lexicographers and a trained Phd student were 
involved in the tagging process, which was 
preferred to (untrained) students doing the 
annotation. High replicability between the 
human annotators was observed (>95%). The 
uncertain cases were not used in the training or 
testing material, while the provided dictionary 
descriptions for the 40 lemmas were revised 
(extended and/or modified) prior to their release. 

4 Scoring 

Prior to SENSEV AL, evaluating WSD 
performance was based solely on the exact 
match criterion, which is not consider a "fair" 
metric, and has a lot of drawbacks (e.g. it does 
not account for the semantic distance between 
senses when assigning penalties for incorrect 
labels, and it does not offer a mechanism to offer 
partial credit; cf Resnik & Yarowsky (2000)) 
Instead, in SENSEVAL-2 three scoring policies 
are adopted: 

1. Fine-grained: answers must match exactly 
2. Coarse-grained: answers are mapped to 

coarse-grained senses and compared to the 
gold standard tags, also mapped to coarse­
grained ones (sense map is required; see 
below) 

3. Mixed-grained: if a sense subsumption 
hierarchy is available, then the mixed-



grained scoring gives some credit to 
choosing a more coarse-grained sense than 
the gold standard tag, but not full credit 
(also using a sense map; see below). 

A "sense map" containing a complete list of all 
sense-ids involved in the evaluation was 
provided in order to perform the two last types 
of scoring policies. Each line in the sense map 
included sense subsumption information and 
contained a list of the subsumer senses and 
branching factors. 

5 Participants and Results 

Five groups showed interest in participating in 
the Swedish task (eight systems in total). Table 2 
provides information for the participating 
systems, while their average performance is 
given in Table 3, the score in parenthesis 
concerns: Verbs/Noun/ Adjectives. All systems 
returned answers for all instances, thus precision 
equals recall, all used supervised methods and 
all systems scored lower on the adjectives and 
higher on the nouns. 

Group 
(Systems) 

Uppsala Univ. 
(PWE,3) 

Linkoping Univ. 
(LIU, 1) 

Goteborg Univ. 
(Spnlkdata, 2) 

John Hopkins 
Univ. (JHU, 1) 
Maryland Univ. 
(UMD, 1) 

System 

JHU 
PWE-Vote 
Spnlkdata-ML 
PWE-Simple 
UMD 
LIU 
PWE-Disj 
Sprakdata­
Overlap 

Method 
Contact 

Person(s) 
TBL-tranade T. Lager, 
Pro log word N. Zinovjeva 
experts 
Multilevel L. Ahrenberg, 
decision list M. Merkel, 
approach M. Andersson 
Machine D. Kokkinakis 
learning & 
feature overlap 
--- D. Yarowsky 

Support vector P. Resnik, J. Stevens, 
machine C. Cabezas 

Table2. Participants 

Results 
Fine-Grained I Mixed-Grained 

70,1(63,4n6,9/51,8) . 74,7(70,9n9,8/59,5) 
63,0(58,5/72,7/48,7) 68,6(65,9n5,0/57,9) 
62,0(57 ,sm ,3/48,2) 68,2(66,1n4,9/54.4) 
61 '1 (55,4173,2/43,5) 66,8(63,2n5,7/51 ,7) 
61 '1(56,4ni ,4/45,5) 65,6(61 ,7173,6/54,3) 
56,5(47 ,8n 1 ,6/40,8) 61 ,6(54,7 173,3/49,6) 
54,0(46,3/67,7/38,4) 60,7(55,3ni,0/47,5) 
46,0(36,6/57,8/43,1) ' 55,8(47,8/65,7/53,8) 

Table 3. Results. Overall Precision followed by 
precision for (Verb/Noun/Adective) instances 
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Conclusion 

The process of WSD is a complex, controversial 
matter, but relevant for a number of NLP 
applications. Our contribution to the exercise 
will eventually sharpen the focus of WSD in 
Sweden; the material developed in SENSEVAL-2 
can be used as benchmark for other researchers 
that need to measure their system's WSD 
performance against a concrete reference point 
(although the dictionary is limited). We think 
that WSD opens up exciting opportunities for 
linguistic analysis, contributing with very 
important information for the assignment of 
lexical semantic knowledge to polysemous and 
homonymous content words. The existence of 
sense ambiguity (polysemy and homonymy) is 
one of the major problems affecting the 
usefulness of basic corpus exploration tools. In 
this respect, we regard WSD as a very important 
process when it is seen in the context of a wider 
and deeper NLP system. 
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1 Introduction: Why Domains 
Matter in Sense Disambiguation 

An important aspect of sense disambiguation is 
the wider semantic space (domain, topic) in 
which the ambiguous word occurs. This may be 
most clearly illustrated by some cross-lingual 
examples, as they would appear in (machine) 
translation. Consider for instance the English 
word housing. In a more general "sense", this 
translates in German into Wohnung. In an 
engineering setting however it translates into 
Gehiiuse. Also verbs may be translated 
differently (i.e. have a different sense) according 
to the semantic space in which they occur. For 
instance, English warming up translates into 
erhitzen in a more general sense, but into 
aufwiinnen in the sports domain. 

Because of the apparent relevance then of 
domains or topics on sense disambiguation, a 
panel was organized at SENSEV AL-2 to discuss 
some current and previous work in this area. The 
paper presents a more extended overview based 
on the relevant literature, besides giving a 
summary of the discussion that developed after 
the panel presentations. 

2 Domains, Topics and Senses 

2.1 Subject Codes 

A semantic space may be indicated in . a 
dictionary by use of a so-called "subject code". 
In LDOCE for instance, subject codes like MD, 
for the medical domain, or ML, for meteorology 
are used to define which senses of a word are 
used in which domains. Three of the senses of 
the word high for instance correspond to three 
different domains: music (a high tone), drugs 
(the experience of being high) and meteorology 
(a high pressure area). 
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Subject codes can be used to detect the topic of 
a text segment by simply counting their 
frequency over all content words (Walker and 
Amsler 1986). At the same time, however, 
subject codes can be used in sense 
disambiguation by constructing topic specific 
context models (Guthrie et. al 1991). Such 
"neighborhoods" can be constructed by taking 
into account all words in the definitions and in 
sample sentences of all words in the dictionary 
that share the same subject code. For instance, 
the word bank has the following neighborhoods 
for the financial and medical domains: 

write safe sum 
account person put 
take money order 
keep pay supply 
paper draw cheque 

Table 1: Financial neighborhood of bank 

medicine product hold 
origin place human 
treatment blood hospital 
use store 
organ comb 

Table 2: Medical neighborhood of bank 

Using subject codes in sense disambiguation has 
been shown to be fruitful, relative to using other 
sources of knowledge. As reported in 
(Stevenson and Wilks 1999), the performance of 
using only subject codes (79% precision) was 
much better than that of using only dictionary 
definition words (65%), or selection restrictions 
(44%). Given these results it seems worthwhile 
to identify also the semantic space of WordNet 
synsets more explicitly by the introduction of 
subject codes (Magnini and Cavaglia 2000). 
This allows for grouping together synsets across 
part-of-speech, as in the medical domain 



(doctor#l, hospital#!; operate#?) and across sub­
hierarchies, as in the sports domain (life_form#l: 
athlete# I; physical_object#l: game_equipment#l; 
act#2: sport#l; location#!: playing_field#l). 

2.2 Topic Signatures and Variation 

The topic specific context models as constructed 
by (Guthrie et al. 1991) can be viewed as 
"signatures" of the topic in question. Such topic 
signatures can, however, be constructed even 
without the use of subject codes by generating 
them (semi-) automatically from a lexical 
resource and then validating them on topic 
specific corpora (Hearst and Schi.itze 1993). 

An extension of this idea is to treat 
senses, or rather WordNet synsets, as topics for 
which a signature can be constructed. One 
approach to this is to retrieve relevant 
documents through search engines on the web 
by defining queries for each synset (Agirre et al. 
2000, Agirre et al. 2001). For instance, the 
following query can be defined for the first 
W ordN et sense of boy: 

#1 (boy AND (altar boy OR ball boy OR ... ) 
#2 AND NOT (man OR ... OR broth of a boy OR 
#3 son OR ... OR mama's boy OR 
#4 nigger OR ... OR black) 

The document collections retrieved are then 
analysed and a list of the most relevant words 
for each synset is generated as its topic 
signature. Examples (abridged) for the first three 
senses of boy are: 

Sense 1 Sense 2 Sense 3 
child gay human 
Child reference son 
person tpd-results Human 

Constructing topic signatures for senses implies 
that a dominant sense can be identified given a 
certain topic or domain. This may be true for 
clearly ambiguous words (i.e in the case of 
homonymy). For instance, sentence will be 
dominant in the judicial sense in the law domain 
and in the syntactic sense in the linguistics 
domain. However, for words with related senses 
(i.e in the case of systematic polysemy) the topic 
signatures will overlap, as with the results on 
boy in sense 1: young male person and sense 3: 
son. This has been shown also from a somewhat 
different viewpoint in reaction to (Gale et al. 
1992), in which it was stated that one sense will 

be uniquely used within a discourse (which we 
can equate with a topic or domain for our 
purposes here). Instead, many words have 
overlapping senses that will be used 
simultaneously throughout one discourse 
(Krovetz 1998). 

The main question that remains now is, 
what exactly constitutes a discourse I subject I 
topic I domain? We can get closer at answering 
this question by looking at some empirical sense 
disambiguation results that involve a variation 
of topic. More specifically, we can observe 
some effects of topic variation by training a 
sense disambiguation system on one topic and 
applying it to another .. For instance, training on 
Wall Street Journal while testing on SemCor and 
vice versa shows a degrading of 12% and 19% 
in precision (Escudero et al. 2000). On the other 
hand, applying context information 
(collocations) extracted from Wall Street Journal 
to a financial text in SemCor shows significantly 

· higher precision than on texts in other domains 
in SemCor (Martinez and Agirre 2000). 

Th~se results therefore suggest that a 
discourse I subject I topic I domain corresponds 

' to a larger or smaller chunk of text (a corpus, a 
text or a text segment) with a homogeneous 
distribution of senses and corresponding 
collocations. 

2.3 Tunip.g 

· But even with a clearly defined domain, it is far 
from certain that any general sense inventory 
will be appropriate. "The usual scenario . . . has 
been that the word senses are taken from a 
general purpose dictionary, . . . whereas the 
material to be disambiguated is . . . Wall Street 
Journal. So, the profiles [Signatures, 
Collocations] .. . will be for general English 
senses according to the WSJ ... " (Kilgarriff 
1998). Instead, a general sense inventory needs 
to be tuned to the domain at hand. This involves 
selecting only those senses that are most 
appropriate for the domain, as well as extending 
the sense inventory with novel words (terms) 
and novel senses, specific to the domain (Basili 
et al. 1997; Cucchiarelli and Velardi 1998; 
Turcato et al. 2000; Buitelaar and Sacaleanu 
2001; Vossen 2001). 
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According to the method described in 
(Cucchiarelli and Velardi 1998), a domain 
specific sense inventory that is balanced (even 
distribution of words to senses) and at the right 



level of abstraction (ambiguity vs. 
generalization) can be selected automatically 
given the following criteria: "Generality", 
"Discrimination Power", "Domain Coverage" 
and "Average Ambiguity." Applying these 
criteria in a quantitative way to a general sense 
inventory (i.e the WordNet hierarchy) and a 
given domain specific corpus automatically 
selects a set of relevant categories (i.e. top level 
synsets). For instance, this me~hod selects 
following categories for the financial domain: 

person, individual, ... 
instrumentality, ... 
written_communication, ... 
possession, ... 

Only senses that are subsumed by these 
categories are included in the domain specific 
sense inventory. For instance, for the word 
stock, only 5 out of 16 senses are selected: 

#1 capital > asset > possession 
#2 support > device > instrumentality 
#4 document > ... > written_communication 
#5 accumulation > asset > possession 
#6 ancestor> relative> person,individual 

Senses that are discarded include: 

#7 soup> ... 
#9 plant_part > ... 
#12 lineage,line,line_of_descent > ... 
#14 lumber, timber> ... 

The method described above uses a top down 
approach that propagates the domain relevance 
of certain top level synsets down through the 
(WordNet) hierarchy. A somewhat different 
approach would be to assign a domain relevance 
to each concept (i.e. word sense, synset) from 
the bottom up (Buitelaar and Sacaleanu 2001). 
This method determines the domain specific 
relevance of (WordNet, GermaNet) synsets on 
the basis of the relevance of their constituent 
synonyms that co-occur within representative 
domain corpora. 

Next to selecting domain relevant 
concepts from the general sense inventory, novel 
terms (those not covered by the sense inventory) 
need to be accounted for also. This includes 
adding morphological and syntactic variants of 
known terms (Vossen 2001) as well as 
extending the inventory with semantically 
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related terms through classification and/or 
clustering. 

3 Panel Discussion 

In the panel presentations most of the issues 
discussed above were addressed. Central to the 
discussion were thefollowing two questions: 

• Is generic sense disambiguation possible? 
• Is sense disambiguation always necessary? 

The first question concerns the influence of the 
semantic space (topic, domain, etc.) on the 
disambiguation process. Unlike with PoS 
tagging, it seems hard and perhaps even 
theoretically impossible to define a 'general' 
training corpus and sense inventory for sense 
disambiguation. Instead, it seems necessary to 
tightly connect sense disambiguation to topic 
detection or text classifi..cation in order to 
recognize the wider semantic space of 
ambiguous words. The second question is 
concerned with the even more fundamental 
observation that sense disambiguation is 
unneccessary if one sense (or more than one, in 
the case of systematic polysemy) can be 
assigned unambiguously within a certain 
semantic space. The disambiguation problem 
then shifts towards an. appropriate modelling of 
such semantic spaces (i.e. domain modelling). In 
summary, it may not be feasible to separate 
sense disambiguation from the domain in which 
it operates, which in tum implies that modelling 
this domain is the first priority for sense 
disambiguation. In the discussion, however, 
several arguments were raised against such a 
view of sense disambiguation. 

First of all, such an approach drives us 
back to earlier domain specific methods. These 
were not very robust and required major efforts 
in adapting to new domains. As a counter 
argument to this point, it was noted that there 
are now many robust, machine-learning based 
methods available for lexical acquisition, which 
would allow for a rapid adaptation of the 
disambiguation resources to a new domain. The 
second main issue raised was that, from an 
evaluation point of view, it is important to 
evaluate the performance of different 
algorithms, independent from a specific domain 
or application. As a counter argument to this, the 
question was asked what such an evaluation 



would then prove. Sense disambiguation 
evaluated without a particular (application) 
domain can only show an artificial result which 
is hard to interpret and to generalize over. This 
is illustrated in particular by low interannotator 
agreement scores obtained when disambiguating 
without the context of a certain domain. 

The discussion did not reach a 
consensus on these points, although there was 
general agreement that future evaluation efforts 
in sense disambiguation should take applications 
(and hence certain domains) into account. The 
following table gives an overview of those 
teams that participated at SENSEV AL-2 and 
declared to be using domains, topical context or 
the ,One Sense per Discourse" heuristic. 

Team Domain Topical One Sense I 
Information Context Discourse 

Lexical Sample Task (English) 
IRST .; 

TALP .; .; 

BCU-EHU .; 

KUNLP .; 

All Words Task (English) 
IRST .; 

BCU-EHU .; 

Sheffield .; 

Sussex .; 

UCLA .; 

On the lexical sample task, KUNLP and TALP 
had both high precision and recall, while BCU­
EHU and IRST reached the highest precision of 
all participating systems, but at a low recall. On 
the all words task, all teams in the table scored 
average to low, except for IRST, which reached 
again a very high precision at a low recall. 

These results are unfortunately still 
inconclusive about the general merit of domain 
and topic information. Only the anomalous 
results· of IRST may indicate the advantage of 
domain information for reaching a high 
precision in sense disambiguation. 
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Abstract 
This paper describes two distinct attempts at the 
SENSEVAL-2 Japanese translation task. The first im­
plementation is based on lexical similarity and builds 
on the results of Baldwin (2001b; 2001a), whereas 
the second is based on structural similarity via the 
medium of parse trees and includes a basic model of 
conceptual similarity. Despite its simplistic nature, 
the lexical method was found to perform the bet­
ter of the two, at 49.1% accuracy, as compared to 
41.2% for the structural method and 36.8% for the 
baseline. 

1 Introduction 
Translation retrieval is defined as the task of, for 
a given source language (11) input, retrieving the 
target language (12) string which best translates it. 
Retrieval is carried out over a translation memory 
made up of translation records, that is 11 strings 
coupled with an 12 translation. A single transla­
tion retrieval task was offered in SENSEVAL-2, from 
Japanese into English, and it is this task that we 
target in this paper. 

Conventionally, translation retrieval is carried out 
by way of determining the 11 string in the trans­
lation memory most similar to the input, and re­
turning the 12 string paired with that string as a 
translation for the input. It is important to realise 
that at no point is the output compared back to the 
input to determine its "translation adequacy", a job 
which is left up to the system user. 

Determination of the degree of similarity between 
the input and 11 component of each translation 
record can take a range of factors into consideration, 
including lexical (character or word) content, word 
order, parse tree topology and conceptual similarity. 
In this paper, we focus on a simple character-based 
(lexical) method and more sophisticated parse tree 
comparison (structural) method. 

Both methods discussed herein are fully unsuper­
vised. The lexical method makes use of no exter­
nal resources or linguistic knowledge whatsoever. It 
treats each string as a "bag of character bigrams" 
and calculates similarity according to Dice's Coef­
ficient. The structural method, on the other hand, 
relies on both morphological and syntactic analysis, 
in the form of the publicly-available JUMAN (Kuro-
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hashi and Nagao, 1998b) and KNP (Kurohashi and 
Nagao, 1998a) systems, respectively, and also the 
Japanese Goi-Taikei thesaurus (Ikehara et al., 1997) 
to measure conceptual distance. A parse tree is 
generated for the 11 component of each translation 
record, and also each input, and similarity gauged 
by both topological resemblance between parse trees 
and conceptual similarity between nodes of the parse 
tree. 

Translation records used by the two systems were 
taken exclusively from the translation memory pro­
vided for the task. 

In the proceeding sections, we briefly review the 
Japanese translation task (§ 2) and detail our par­
ticular use of the data provided for the task (§ 3). 
Next, we outline the lexical method (§ 4) and struc­
tural method (§ 5), and compare and discuss the 
performance of the two methods (§ 6). 

2 Basic task description 

The Japanese translation task data was made up of 
a translation memory and test set. The translation 
memory was dissected into 320 disjoint segments 
according to headwords, with an average of 21.6 
translation records per headword (i.e. 6920 transla­
tion records overall). The purpose of the task was 
to select for a given headword which (if any) of the 
translation records gave a suitable translation for 
that word. The task stipulated that a maximum of 
one translation record could be selected for each in­
put (allowing for the possibility of an unassignable 
output, indicating that no appropriate translation 
could be found). Translations were selected by way 
of a translation record ID, and systems were not re­
quired to actually identify what part of the 12 string 
in the selected translation record was the translation 
for the headword. 

Translation records took the form of Japanese­
English pairings of word clusters, isolated phrases, 
clauses or sentences containing the headword, at an 
average of 8.0 Japanese characters1 and 4.0 English 
words per translation record. In some instances, 
multiple semantically-equivalent translations were 
given for a single expression, such as "corporation 

1 Ignoring punctuation but including each numeric digit as 
a single character. 



which is in danger of bankruptcy" and "unsound cor­
poration" for abunai kigyo; all such occurrences were 
marked by the annotator. For some other transla­
tion records, the annotator had provided a list of lex­
ical variants or a paraphrase of the Ll expression to 
elucidate its meaning (not necessarily involving the 
headword), or made a note as to typical arguments 
taken by that expression (e.g. "refers to a person"). 

In the test data, inputs took the form of para­
graphs taken from newspaper articles, within which 
a single headword had been identified for transla­
tion. The average input length was 697.9 characters, 
nearly 90 times the Ll component of each translation 
record. In its raw form, therefore, the translation 
task differs from a conventional translation retrieval 
task in that translation records and inputs are not 
directly comparable, in the sense that translation 
records are never going to provide a full translation 
approximation for the overall input. 

3 Data preparation 
In a:Japting the task data to our purposes, we first 
earned out limited normalisation of both the trans­
lation memory and test data by: (a) replacing all 
numerical expressions with a common NUM marker 
and (b) normalising punctuation. ' 

In order to maximise the disambiguating poten­
tial of the translation memory, we next set about 
automatically deriving as many discrete translation 
records as possible from the original translation 
memory. Multiple lexical variants of the same basic 
translation record (indexed identically) were gener­
ated in the case that: (a) a lexical alternate was 
provided (in which case all variants were listed in 
parallel); (b) a paraphrase was provided by the an­
notator (irrespective of whether the paraphrase in­
cluded the headword or not); (c) syntactic or seman­
tic preferences were listed for particular arguments 
in the basic translation record (in which case lexical 
~.rariants took the form of strings expanded by adding 
m each preference as a string). At the same time, 
for each headword, any repetitions of the same Ll 
string were completely removed from the translation 
record data. This equates to the assumption that the 
translation listed first in the translation memory is 
the most salient or commonplace. 

This method of translation record derivation re­
sulted in a total of 152 new translation records 
wh~reas the removal of duplicate Ll strings fo; 
a given headword resulted in the deletion of 670 
translation records; the total number of translation 
records was thus 6402, at an average of 20.0 trans­
lation records per headword. 

We experimented with a number of methods for 
abbreviating the inputs, so as to achieve direct com­
parability between inputs and translation records. 
First, .we extracted the clause containing the head­
word mstance to be translated. This was achieved 
through a number of ad hoc heuristics driven by the 
analysis of punctuation. These clause-level instances 
served as the inputs for the str·uctur·al method. We 
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then further "windowed" the inputs for the lexical 
method, by allowing a maximum of 10 characters to 
either side of the headword. No attempt was made 
to identify or enforce the observation of word bound­
aries in this process. 

4 The lexical method 
As stated above, the lexical method is based on 
character-based indexing, meaning that each string 
is naively treated as a sequence of characters. Rather 
than treat each individual character as a single seg­
ment, however, we chunk adjacent characters into 
bigrams in order to capture local character contigu­
ity. String similarity is then determined by way of 
Dice's Coefficient, calculated according to: 

sim1 (IN~,, T Ri) = 

2 x LeEIN,~,,TR; min (JreqiN,;,(e),freqTR,(e)) 

len(IN;;,) + len(TRi) 

where IN;,.. is the abbreviated version of the in­
put string IN m (see above) and T Ri is a transla­
tion record; each e is a character bigram occurring 
in either IN;,.. or TRi, freqiN* (e) is defined as the 
weighted frequency of bigram'" type e in IN;,.., and 
le~ (IN;,..) is the character bigram length of IN;,... 2 

B1gram frequency is weighted according to character 
type: a bigram made up entirely of hiragana charac­
t~rs (gener_ally used in functional words/ particles) is 
given a weight of 0.2 and all other bigrams a weight 
of 1. Note that Dice's Coefficient ignores segment 
order, and that each string is thus treated as a "bag 
of character bigrams". 

Our choice of the combination of Dice's Coef­
ficient, character-based indexing and character hi­
grams (rather than any other n-gram order or mixed 
n-gram model) is based on the findings of Baldwin 
(2001b; 2001a), who compared character- and word­
based indexing in combination with both segment 
order-sensitive and bag-of-words similarity measures 
and with various n-gram models. As a result of 
extensive evaluation, Baldwin found the combina­
tion of character bigram-based indexing and a bag­
of-words method (in the form of either the vector 
space model or Dice's Coefficient) to be optimal. 
Our choice of Dice's Coefficient over the vector space 
m?del is due to the vector space model tending to 
bhthely prefer shorter strings in cases of low-level 
character overlap, and the ability of Dice's Coeffi­
cient to pick up on subtle string similarities under 
such high-noise conditions. 

Given the limited lexical context in translation 
records (8.0_ Japanese characters on average), our 
method 1s highly susceptible to the effects of data 
sparseness. While we have no immediate way of rec­
onciling this shortcoming, it is possible to make use 
of_ t~e rich lexical context of the full inputs (i.e. in 
ong~nal paragraph form rather than clause or win­
dowed clause form). Direct comparison of the full 

2 freqTR;(e) and len(TRi) are defined similarly. 



inputs with translation records is undesirable as high 
levels of spurious matches can be expected outside 
the scope of the original translation record expres­
sion. Inter-comparison of full inputs, on the other 
hand, provides a primitive model of domain similar­
ity. Assuming that high similarity correlates with a 
high level of domain correspondence, we can apply 
a cross-lingual corollary of the "one sense per dis­
course" observation (Gale et al., 1992) in stipulat­
ing that a given word will be translated consistently 
within a given domain. By ascertaining that a given 
input closely resembles a second input, we can use 
the combined translation retrieval results for the two 
inputs to hone in on the optimal translation for the 
two. We term this procedure domain-based sim­
ilarity consolidation. 

The overall retrieval process thus involves: (1) 
carrying out standard translation retrieval based on 
the abbreviated input, (2) using the original test set 
to determine the full input string most similar to 
the current input, and (3) performing translation re­
trieval independently using the abbreviated form of 
the maximally similar alternate input. Numerically, 
the combined similarity is calculated as: 

simz(INm,TRi) = 0.5 (sim1(IN;;,,TRi) 

+max siml(INmJNn) sim1(IN~, T Ri)) 
no;im 

where INm is the current input (full form), IN:'n 
is the abbreviated form of INrn, sim1 is as defined 
above, and INn is any input string other than the 
current input. Note that the multiplication by 0.5 
simply normalises the output of sim2 to the range 
[0, 1]. For each input INrn, the ID for that transla­
tion record which is deemed most similar to IN m is 
returned, with translation records occurring earlier 
in the translation memory selected in the case of a 
tie. 3 

5 The structural method 
The structural method· contrasts starkly with the 
lexical method in that it is heavily resource­
dependent, requiring a morphological analyser, 
parser and thesaurus. It operates over the same 
translation memory data as the lexical method, but 
uses only the abbreviated forms of the inputs (to 
the clause level) and does not consider inter-input 
similarity. 

JUMAN (Kurohashi and Nagao, 1998b) is first 
used to segment each string (translation records and 
inputs), based on the output of which, the KNP 
parser (Kurohashi and Nagao, 1998a) is used to de­
rive a parse tree for the string. The reason for ab­
breviating inputs only as far as the clause level for 
the structural method, is to enhance parseability. 

3 Based on the observation that translation records are 
roughly ordered according to commonality. Ties were ob­
served 7.5% of the time, with the mean number of top-scoring 
translation records being 1.12. 

Further pruning takes place implicitly further down­
stream as part of the parse tree matching process. 

KNP returns a binary parse tree, with leaves cor­
responding to optionally case-marked phrases. Each 
leaf node is simplified to the phrase head and the 
(optional) case marker normalised (according to the 
KNP output). 

As for the lexical method, all translation records 
corresponding to the current headwQrd are matched 
against the parse tree for the input, and the ID of 
the closest-matching tree returned. In comparing a 
given pair of parse trees T 1 and T 2 , we proceed as 
follows in direction dE {up, down}: 

1. Set p1 to the leaf node containing the headword 
in T 1 , and similarly initialise p 2 in T 2 ; initialise 
n to 0 

2. Ifp~ =f.p~, return (n,O) 

3. If p} i- p], return (n, concepLsim(p},p})) 

4. Increment n by 1, set p1 and p2 to their respec­
tive adjacent leaf nodes in direction d within the 
parse tree; goto step 2. 

Here, p~ is the case marker associated with node pi, 
p} is the filler associated with node pi, and the =f. 
operator represents lexical inequality; concepLsim 
calculates the conceptual similarity of the two fillers 
in question according to the Goi-Taikei thesaurus 
(Ikehara et al., 1997). We do this by, for each sense 

· pairing of the fillers, determining the least common 
hypernym and the number of edges separating each 
sense node from the least common hypernym. The 
conceptual distance of the given senses is then de­
termined according to the inverse of the greater of 
the two edge distances to the hypernym node, and 
the overall conceptual distance for the two fillers as 
the minimum such sense-wise conceptual distance. 
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We match both up and down the tree structure 
from the headword node, and evaluate the com­
bined similarity as the sum of the individual ele­
ments of the returned tuples. That is, if an up­
ward match returned (i, m) and a downward match 
(j, n), the overall similarity would be (i + j, m + n). 
The translation output is the ID of the translation 
record producing the greatest such similarity, where 
( w, x) > (y, z) iff w > y or ( w = y 1\ x > z). 
As a result, conceptual similarity is essentially a tie­
breaking mechanism, and the principal determining 
factor is the number of phrase levels over which the 
parse trees match. In the case that there is a tie 
for best translation, the translation record with the 
longest Ll string is (arbitrarily) chosen, and in the 
case that this doesn't resolve the stalemate, a trans­
lation record is chosen randomly. In the case that all 
translation records score (0, 0), we deem there to be 
no suitable translation in the translation memory, 
and return unassignable. 

As mentioned in Section 2, crude selectional 
preferences (of the form PERSON or BUILDING) 
were provided on certain argument slots in trans-



Method 
Lexical 

Structural 
Baseline 

Accuracy 
49.1% 
41.2% 
36.8% 

Table 1: Results 

lation records. These were supported by semi­
automatically mapping the preference type onto the 
Goi-Taikei thesaurus structure, and modifying the 
i- operator to non-sense subsumption of the trans­
lation record filler by the input selectional prefer­
ence, in step 3 of the parse tree match algorithm. 
Selectional preferences were automatically mapped 
onto nodes of the same name if they existed, and 
manually linked to the thesaurus otherwise. 

6 Results and discussion 
The translation retrieval accuracy for the two meth­
ods is given in Table 1, along with a baseline accu­
racy arrived at through random translation record 
selection for the given headword. Note that as we 
attempt to translate all inputs, the presented accu­
racy figures correspond to both recall and precision. 

The most striking feature of the results is that 
the lexical method has a clear advantage over the 
structural method, while both methods outperform 
the baseline. Obviously, it would be going too far 
to discount structural methods outright based on 
this limited evaluation, particularly as the lexical 
method has undergone extensive testing and tuning 
over other datasets, whereas the structural method 
is novel to this task. It is surprising, however, that 
a technique as simple as the lexical method, requir­
ing no external resources and ignoring even word 
boundaries and word order, should perform so well. 

The main area in which the structural method fell 
short was unassignable inputs where no transla­
tion record displayed even the same case marking 
on the headword. Indeed 130 or 10.8% of inputs 
were tagged unassignable, despite them compris­
ing only 0.3% of the solution set. Note, however, 
that even for only those inputs where the struc­
tural method was able to produce a match, the lexi­
cal method significantly outperformed the structural 
method (50.2% vs. 45.4%, respectively). 

Conversely for the lexical method, at present, a 
translation record is selected irrespective of the mag­
nitude of the similarity value, and it would be a 
trivial process to implement a similarity cutoff, be­
low which an unassignable result would be re­
turned. Preliminary analysis of the correlation be­
tween the lowest similarity values and inputs anno­
tated as unassignable indicates that this method 
could be moderately successful (see Baldwin et al. 
(to appear)). 

The translation task was designed such that par­
ticipants didn't get access to annotated inputs until 
after the submission of final results, meaning that 
parameter settings and fine-tuning of techniques had 
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to be carried out according to intuition only. Post 
hoc evaluation of methods such as domain-based 
similarity consolidation suggests that it does have a 
significant impact on system performance (Baldwin 
et al., to appear), although even in its basic config­
uration (using clause inputs and no domain-based 
similarity consolidation), the lexical method is su­
perior to the structural method as presented herein. 

In conclusion, this paper has served to describe 
each of a lexical and structural translation retrieval 
method, as applied to the SENSEVAL-2 Japanese 
translation task. The lexical method modelled 
strings as a bag of character bigrams, but incor­
porated a number of novel techniques including 
domain-based similarity consolidation in reaching a 
final decision as to the translation record most sim­
ilar to the input. The structural method, on the 
other hand, compared parse trees and had recourse 
to conceptual similarity, but in a relatively rudimen­
tary form. Of the two proposed methods, the lexical 
method proved to be clearly superior, although both 
methods were well above the baseline performance. 
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Abstract 
We describe the University of Maryland's su­
pervised sense tagger, which participated in the 
SENSEVAL-2 lexical sample evaluations for En­
glish, Spanish, and Swedish; we also present un­
official results for Basque. We designed a highly 
modular combination of language-independent 
feature extraction and supervised learning us­
ing support vector machines in order to permit 
rapid ramp-up, language independence, and ca­
pability for future expansion. 

1 Introduction 
The SENSEVAL-2 exercise provided an unprece­
dented opportunity to explore word sense dis­
ambiguation (WSD) in a common evaluation 
framework for a large number of languages. In 
past work, we have focused on unsupervised 
methods for English, taking advantage of the 
WordN et hierarchy and sometimes also selec­
tional preferences between predicates and argu­
ments (Resnik, 1997; Resnik, 1999). In the cur­
rent exercise, however, WordNet-like sense hi­
erarchies were not necessarily going to be avail­
able for all languages, and the predominance 
of lexical selection tasks (rather than all- words 
tasks) suggested adopting a disambiguation ap­
proach capable of exploiting manually anno­
tated training data. These considerations mo­
tivated a system design based on supervised 
learning, where senses to be predicted did not 
need to be treated as part of a semantic hierar­
chy. 

Our design was also motivated by the role of 
semantic selection techniques in our longer term 
research agenda. In the context of our group's 
work on cross-language information retrieval 
and machine translation applications (Resnik et 
al., 2001; Cabezas et al., 2001), lexical selection 
- that is, choosing the right target-language 
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word given a source-language word in context 
- is a crucial task. Because the lexical selec­
tion problem is extremely similar to sense selec­
tion, and because this was our first foray into 
supervised methods, we took advantage of the 
opportunity to construct an architecture that 
will support both tasks. 

In the sections that follow, we lay out 
our system architecture, briefly summarize our 
SENSEVAL-2 results, and discuss our plans for 
future work. 

2 System Architecture 

UMD's system follows the classic supervised 
learning paradigm that, for WSD, is perhaps 
best exemplified by Yarowsky's (1993) work. 
Each word in the vocabulary is considered an 
independent classification problem. First, an­
notated training instances for the ambiguous 
word are analyzed so that each instance can 
be represented as a collection of feature-value 
pairs labeled with the correct category. Then, 
these data are used for parameter estimation 
within a supervised learning framework in or­
der to produce a trained classifier. Finally, the 
trained classifier is given previously unseen test 
instances and for each instance it predicts what 
the appropriate category label should be. 

2.1 Contextual Features 

We began by tokenizing all the training in­
stances using a simple language-specific tok­
enizer. Features were then defined in terms of 
the presence of tokens either within a wide con­
text or at a certain position to the right or left 
of the word being disambiguated. 

In detail, let T be the set of unique tokens 
found in the full set of training data (all train­
ing instances), plus the special token UNKNOWN, 
which replaces any token in test data that was 



never seen during training. Define F wide = T. 
A feature f E F wide will be considered present 
and have a non-zero value if f appears any­
where in the wide context of the word being 
disambiguated. For example, if we were disam­
biguating the word training that appears in the 
first sentence of this paragraph, using the entire 
paragraph as the wide context, then there would 
be non-zero values for features WE, BEGAN, and 
every other word in the paragraph. That is, 
features correspond to surrounding words.1 

Let£ = {L3,L2,Ll,Rl,R2,R3}, signifying 
the locations "three tokens to the left", "two to­
kens to the left", ... , "three tokens to the right", 
and define Fcolloc = {l:t ll E £ and t E T}. A 
feature l:t E Fcolloc will be considered present 
and have a non-zero value if token t appears 
at position l relative to the word being disam­
biguated. For example, if we were disambiguat­
ing the word training that appears in the first 
sentence of this section, there would be non-zero 
values for the features L3 : tokenizing, L 2 : all, 
L1: the, L1: instances, L2 :using, and L3: a. 

2.2 Feature Weights 

The value associated with each feature is a 
weight indicating how useful the feature is likely 
to be in disambiguation, analogous to the term 
weights used in representing documents as fea­
ture vectors for information retrieval. 

In detail, let us designate the full feature set 
as F = Fwide U Fcolloc' and let N:F = j.Fj. 
Clearly some features are more useful than oth-
ers. For example, the feature into (word into 
appearing anywhere in the context) is unlikely 
to help distinguish among senses, although the 
feature R1: into (word into appearing one word 
to the right) might be useful for disambiguat­
ing among the senses of some verbs. In order to 
assign weights to features based on their likely 
utility, we follow a strategy similar to what is 
done in information retrieval, defining inverse 
category frequency (ICF), by analogy with in­
verse document frequency (IDF), as a function 
of how many distinct categories a feature ap­
pears with in training data. 

1 For SENSEVAL-2, we defined the surrounding context 
for wide contexts as being anywhere within the test in­
stance, because instances comprised only a sentence or 
two. In a more general setting the context could be de­
fined as a window of ±50 words, ±100 words, the entire 
document, etc. 
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Specifically, if we are disambiguating a word 
w with senses S = { s1, s2, ... , SNw}, then we de­
fine ICF wU) = -log( N ~/ N w) where N ~ is the 
number of distinct elements of S that ever co­
occur with feature f in the training data for 
word w. For example, if a word has five senses, 
and the feature L1 :the appears in some train­
ing instance for each of the five senses, then 
ICFw(LI :the) = -log(5/5) = 0, correctly in­
dicating that this feature is not at all useful 
for disambiguating among the five senses of this 
word. The lower N ~ is, the greater the value of 
the ICF wU) value and hence the greater weight 
accorded this feature. 

Training and test instances are represented as 
N :F-ary feature vectors: given a training or test 
instance for a word w, the vector representa­
tion is defined by vw[f] = ICF wU) if f E F is 
present, and zero otherwise. 

2.3 Learning Framework 

Once training and test instances are represented 
as feature vectors, it becomes possible to ex­
ploit any number of existing supervised learn­
ing algorithms. In general, such algorithms take 
a set {(vbci),(v2,c2), ... ,(vN,cN)} of training 
instances, and produce a classifier that takes a 
feature vector v as input and return a distri­
bution or confidence function over the possible 
categories. 

For SENSEVAL-2, we selected support vec­
tor machines (SVMs) as the supervised learn­
ing framework. We were motivated by the fact 
that SVMs have been shown to achieve high per­
formance and work efficiently in environments 
where there are very large numbers of features, 
and also by the existence of a good off-the­
shelf implementation, SVM-Light, available for 
research purposes (Joachims, 1999; Joachims, 
1998).2 

SVM learning is appropriate for binary clas­
sification tasks, rather than the multi-way clas­
sification needed for disambiguating among n 
senses. For each word in the lexical sample 
tasks, therefore, we constructed a family of 
SVM classifiers, one for each of the word's Nw 
senses. All positive training examples for a 

2 Hearst {1998) presents a collection of brief 
and illuminating discussions of SVMs; see 
http:/ fwww.computer.org/intelligent/ex1998/pdf/x4018.pdf. 
SVM-Light is available at http:/ Jwww-ai,cs.uni­
dortmund.de/ svm..light. 



Language I Precision (%) I Recall (%) I 
English (coarse) 64.3 64.3 
English (fine) 56.8 56.8 

I Spanish (fine) 62.7 62.7 

I Swedish (mixed) I 65.6 65.6 
I Swedish (fine) I 61.1 61.1 

I Basque (fine) I 70.3 70.3 

Table 1: UMD-SST lexical sample results 

sense Si of w were treated as negative training 
examples for all the other senses Sj, j f:. i. 

In the testing phase, we convert test instances 
for word w into feature vectors, and we then we 
run these vectors through the SVM classifiers 
for { St, s2, ... , SNw}· For each instance, we se­
lect the sense for which the SVM classifier's re­
sponse is most strongly "yes" (or, equivalently, 
most weakly "no"). 

3 SENSEVAL-2 Results 
Table 1 shows the performance of UMD's su­
pervised sense tagger (UMD-SST) for the lex­
ical sample tasks in four languages. The fig­
ures for English, Spanish, and Swedish are offi­
cial SENSEVAL-2 results; the figures for Basque 
are unofficial results kindly computed by the 
Basque task organizers after SENSEVAL-2 be­
cause our Basque responses were not submitted 
in time for official evaluation. 

In general, we were quite pleased with the re­
sults, particularly since this was our first time 
participating in SENSEVAL. UMD-SST turned 
in a solid performance in comparison with the 
baselines and other systems, with essentially 
no language-specific alterations necessary other 
than those required for tokenization. This en­
abled us to participate in system evaluation for 
more languages than any site except JHU. We 
consider this a good starting point for our fur­
ther investigations, which we now briefly de­
scribe. 

4 Future Work 
Using the current system as a starting point, 
we are engaged in three lines of further investi­
gation: linguistically richer contextual features, 
corpus-dependent expansion of feature vectors, 
and lexical selection via supervised learning. 

In our preliminary tests using training and 
development data, we experimented first with 
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using F wide as the feature set, and obtained sig­
nificant improvements when we added Fcolloc 
in order to capture collocations and other local 
contextual features. In our follow-up efforts we 
plan to use broad-coverage parsing to create a 
set of features augmented further by grammat­
ical relations, thus capturing collocations medi­
ated by syntactic structure. For example, al­
though our current feature vectors could not 
represent the presence of the word tagger as a 
nearby collocate of the word describe in the ab­
stract of this paper, syntactically richer repre­
sentations of this context for the verb describe 
would include the feature object='tagger'. 
Use of syntactic collocates will require broad­
coverage parsing in all the languages of inter­
est in order to identify grammatical relations; 
for this we will take advantage of our other 
work at Maryland on bootstrapping stochastic 
parsers for new languages using parallel corpora 
(Cabezas et al., 2001). 

In our preliminary efforts we were not sur­
prised to find that sparseness of data was 
a problem. Although we expect that some 
improvements may be obtained by collapsing 
across word variants - e.g. via morphologi­
cal equivalence classes or stemming - we also 
plan to focus our efforts on semantic expansion, 
using document expansion techniques we have 
developed in our research on cross-language in­
formation retrieval (Levow et al., 2001). We 
have implemented a variant of the architecture 
in which training contexts are used as queries 
to a comparable corpus in order to retrieve re­
lated documents. The features from these docu­
ments are then added to the context representa­
tions, providing semantically enhanced feature 
vectors. Evaluation of this approach using SEN­

SEVAL data is in progress. 

Our third avenue of investigation focuses on 
the use of our supervised WSD infrastructure 
to address problems of lexical selection in ma­
chine translation. Empirically, there is a close 
relationship between sense distinctions and pat­
terns of lexicalization across languages (Resnik 
and Yarowsky, 1999). And operationally, there 
is no real difference between labeling a word 
with a sense tag from a monolingual dictionary 
and labeling that word with a translation from a 
bilingual dictionary. Using WSD techniques for 
lexical selection primarily requires solving two 



problems. The first problem is acquisition of 
annotated training data, and in this case large 
corpora of translation-labeled words in context 
can be created by obtaining parallel corpora, 
performing word-level alignment, and labeling 
each word with its correspondent in the other 
language; this problem is already solved as part 
of our infrastructure for research on statistical 
machine translation (Cabezas et al., 2001). The 
second problem is one of scalability: the ap­
proach we have described requires a separate 
classifer for every sense (or, now, every possi­
ble word-level translation) of every source lan­
guage word. This remains an open issue, but we 
are optimistic about rapid developments in this 
area since scaling up to large vocabularies is a 
problem shared by everybody who wishes to use 
supervised WSD techniques in a broad-coverage 
setting. 

5 Conclusions 

University of Maryland's sense tagger repre­
sents a classic instance of the supervised learn­
ing approach. At the same time, we have made 
architectural choices that promote language in­
dependence, modularity, extensibility, and scal­
ability, and in a relatively short time period we 
succeeded in putting together an implementa­
tion that performs quite credibly among an im­
pressive collection of competitors. We are en­
couraged by the results and we look forward to 
participating in further SENSEVAL exercises. 
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Abstract 
We present the techniques used in the word sense 
disambiguation (WSD) system that was submitted 
to the SENSEVAL-2 workshop. The system builds a 
probabilistic network per sentence to model the de­
pendencies between the words within the sentence, 
and the sense tagging for the entire sentence is com­
puted by performing a query over the network. The 
salient context used for disambiguation is based on 
sentential structure and not positional information. 
The parameters are established automatically and 
smoothed via training data, which was compiled 
from the SemCor corpus and the WordNet glosses. 
Lastly, the One-sense-per-discourse ( OSPD) hypoth­
esis is incorporated to test its effectiveness. The re­
sults from two parameterization techniques and the 
effects of the OSPD hypothesis are presented. 

1 Problem Formulation 
WSD is treated in this system as a classification 
task, where the ith sense (W #i) of a word (W) is 
classified as the correct sense tag (M;), given the 
word W and usually some surrounding context. In 
the SENSEVAL-2 English all-words task, all ambigu­
ous content words (nouns, verbs, adjectives, and ad­
verbs) are to be classified with a sense tag from the 
WordNet 1.7 lexical database (Miller, 1990). For 
example, the words "great", "devastated", and "re­
gion" in the sentence "The great hurricane devas­
tated the region" are classified with the correct sense 
tags 2, 2, and 2, respectively. We will refer to this 
task using the following notation: 

M = Mbest(S) = arg maxP(MIS), (1) 

where S is the input sentence, and M is the se­
mantic tag assigned to each word. While a context 
larger than the sentence S can be and is used in our 
model, we will refer to the context asS. In this for­
mulation, each word W; in the sentence is treated as 
a random variable M; taking on the values {1 .. Ni}, 
where N; is the number of senses for the word W;. 
Therefore, we wish to find instantiations of M such 
that P(MIS) is maximized. 
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To make the computation of Mbest(S) 
more tractable, it can be decomposed into 
Mbest(S) ~ arg max(II;P(M;IS)), where it is 
assumed that each word can be disambiguated 
independently. However, this assumption does 
not always hold, since disambiguating one word 
often affects the sense assignment of another 
word within the same sentence. Alternatively, the 
process can be modeled as a Markov model, e.g., 
Mbest(S) ~ arg max(II;P(W;IM;) X P(M;IM;-I)). 
While the Markov model requires fewer param­
eters, it is unable to capture the long-distance 
dependencies that occur in natural languages. 
Although the first decomposition better captures 
these dependencies, computing P(M;IS) using the 
full sentential context is rarely used, since the 
number of parameters required grows exponen­
tially with each added context. Therefore, one 
can further simplify this model by narrowing the 
context to 2n number of surrounding words, i.e., 
P(M;IS) ~ P(M;IW;-n, ... W;-I, W;+I, ... Wi+n)· 
However, narrowing the context also discards 
long-distance relationships, making it closer to a 
Markov model. 

Without having to artificially limit the size of 
the context, another possible simplification is to 
make independence assumptions between the con­
text words. In the simplest case, every context is 
assumed to be independent from each other, i.e., 
P(M;IS) ~ IIxP(M;IWx), like a Naive Bayes classi­
fier. While the parameters can be simply established 
by a set of bi-grams, the independence assumption 
is often too strong and thus negatively affects accu­
racy. The difficulty is in choosing the context that 
would maximize the accuracy while allowing for re­
liable parameter estimation from training data. 

In our model, we aim to strike this balance by 
choosing the context words based on structural in­
formation, rather than positional information. The 
hypothesis is that an ambiguous word is probabilisti­
cally dependent on its structurally related words and 
is independent of the rest of the sentence. There­
fore, long-distance dependencies can still be cap­
tured, while the context is kept small. Further-



P(A,B,C,D,E,F)=P(AIB,C)xP(BID,F)xP(CID) 
xP(DIE)xP(E)xP(F) 

Figure 1: An example of a Bayesian network and 
the probability tables at each node that define the 
relationships between a node and its parents. The 
equation at the bottom shows how the distribution 
is represented by the network. 

more, each word is not classified independently of 
each other, but is computed as one single query that 
determines all of the sense assignments that result 
in the highest overall probability for the whole sen­
tence. Therefore, our model is a combination of the 
decompositions described above, by selectively mak­
ing independence assumptions on a per-word basis 
to best model P(MdS), while computing Mbest(S) 
in one query to allow for interactions between the 
word senses M;. 

1.1 Bayesian Networks 

This process is achieved by using Bayesian networks 
to model the dependencies between each word and 
its contextual words, and based on the parame­
terization, compute the best overall sense assign­
ments. A Bayesian network is a directed acyclic 
graph G that represents a joint probability distri­
bution P(X1 , ... ,Xn) across the random variables of 
each node in the graph. By making independence 
assumptions between variables, each node i is condi­
tionally dependent upon only its parents P A; (Pearl, 
1988): P(X1, ... ,Xn) = II;P(X;IPA;). By using this 
representation, the number of probabilities needed 
to represent the distribution can be significantly re­
duced. Figure 1 shows an example Bayesian net­
work representing the distribution P(A,B,C,D,E,F). 
Instead of having one large table with 26 parameters 
(with all Boolean nodes), the distribution is repre­
sented by the conditional probability tables (CPTs) 
at each node, such as P(B I D, F) at node B, re­
quiring a total of only 24 parameters for the whole 
distribution. Not only do the savings become more 
significant with larger networks, but the sparse data 
problem becomes more manageable as well. The 
training set no longer needs to cover all permuta­
tions of the feature sets, but only smaller subsets 
dictated by the sets of variables of the CPTs. 

In our model using Bayesian networks for WSD, 
each word is represented by the random variable 
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M; as a node in G. We then find a set of par­
ents P A; that M; depends on, based on struc­
tural information. Using this representation, the 
number of parameters is significantly reduced. If 
the average number of parents per node is 2, and 
if the average number of senses per word is 5, 
then the joint distribution across the whole sentence 
P(M1 , .. , MN) is represented by the Bayesian net­
work with ~ s(2+I) * N parameters. This is in con­
trast to a full joint distribution table that would con­
tain 5N entries, which is obviously intractable for 
any sentence of non-trivial length N. Bayesian net­
works also facilitate the computation of the instanti­
ations for M; such that P(M1 , •. , MN) is maximum. 
Instead of looking for the maximum row in the table 
with 5N entries, this computation is made tractable 
by using Bayesian networks. Specifically, this query, 
called Maximum A Posteriori (MAP), can be com­
puted in 0(5w), where w < < N and indicates the 
connectiveness of G. 

Using the same notation above, the process of 
a whole-sentence word sense disambiguation using 
probabilistic networks can be described as the fol­
lowing: 

~ arg maxii;(P(M;IMPA;)P(M;IW;, WpA.)). (2) 

The first approximation is based on our hypoth­
esis of a word's sense is dependent only on struc­
turally related words. It is further decomposed in 
the second term to minimize the sparse data prob­
lem. This process consists of three major steps: 1) 
defining the structure of the Bayesian network G, 
2) quantifying the network with probabilities from 
training data (P(M;!W;, WpAJ), and finally, 3) an­
swering the query of the most probable word sense 
assignments (arg maxii;( ... )). 

2 Network Structure 
The first step in constructing a Bayesian network 
is to determine its structure G, which defines each 
node's dependency relationship with the rest of the 
network. In our model, we are making these inde­
pendence assumptions based on the structural re­
lationships between words. Specifically, given the 
sentence S and its parse tree, we automatically con­
struct a graph G by first creating a node M; for each 
word W;. This process is best illustrated by the ex­
ample shown in Figure 2. For each node M;, an edge 
is added to node Mx, where Mx is the head word of 
a verb phrase (board -+ approved), the target of the 
modifier M; (today's-+ meeting), or the preposition 
Mx where M; is the target or a constituent of the 
prepositional phrase (approved -+ at). One can see 
that if the parse tree is known, the construction of 
network G is straight-forward. For SENSEVAL-2, the 



Figure 2: An example of a Bayesian network repre­
senting the inter-dependencies between the words of 
the sentence "The board approved its acquisition by 
ABC Co. of New York at today:s meeting." 

parse trees provided in Treebank format were used 
to build the Bayesian networks' structure. 

Once the structure of the Bayesian network is de­
termined: the context: i.e.: the parents P Ai: for each 
word is established. Using the same example: the 
context for the word "approved" is "board" and "ac­
quisition", and for "at" it is "approved': and "meet­
ing'). Our hypothesis is that these structurally re­
lated words: among all of the words within the sen­
tence, provide the best contextual information for 
sense disambiguation. That is, given that the par­
ents' word form WPA, and senses MPA, are known, 
the sense assignment for Mi is independent of all 
other words in the sentence. This is, of course, a 
simplification due to the constraint in minimizing 
the context. However, the use of Bayesian networks 
allows for easy expansion of context by establish­
ing more edges between nodes or adding new nodes, 
provided that the parameters can be determined re­
liably. 

3 Establishing the Parameters 
Once G is determined, the CPTs at each node 
need to be quantified. Using the same exam­
ple above, for the word "approved", its CPT 
P(appraved#ilboard#i, acquisition#i) would con­
tain 2 (number of senses for "approved") x 9 x 4 = 
72 entries. For a word without any parents, such as 
"today's'), its priors are used. 

While determining the network structure is rel­
atively simple, establishing accurate parameters is 
quite difficult, even with a small context such as 
ours. Due to the limited size of SemCor, our only 
labeled training data, we used additional sources 
to quantify and smooth these parameters. Primar­
ily we deployed the same techniques used in our 
Bayesian Hierarchical Disambiguator (BHD) model 
(Chao and Dyer, 2000), which uses Internet search 
engines to estimate parameters based on permuta­
tions of synonym words, a method first introduced 
by Mihalcea and Moldovan (1999). These param­
eters are then smoothed by training data obtained 
from SemCor. The details of BHD are omitted here 
due to space constraints. 

Although BHD was only used on adjective-noun 
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pairs, the same principles are used to quantify all of 
the CPTs in this model. While only one hierarchi­
cal network is needed to smooth the parameter for 
adjective-noun pairs, up to three hierarchical net­
works are used for each potential parent. Since the 
smoothing computation is very efficient, being linear 
in the depth of the network, these additions did not 
impact the speed of the model. The majority of the 
time was used to query the Internet search engine. 

The BHD model, however, did use additional 
training data that was collected from the Word­
Net glosses and manually annotated. While it re­
sulted in good accuracy, this was obviously not an 
option for SENSEVAL-2. Instead, the example sen­
tences from WordNet are extracted and first tagged 
by Brill's POS tagger (Brill, 1995). Then an ex­
perimental parser and our WSD system were used 
to parse and disambiguate the sentences to extract 
additional training data. For example, for the 6th 
sense of adjective "great", the pair "great#6 time" is 
extracted from the example sentence fragment "had 
a great time at the party" and automatically dis­
ambiguated. The labeled pair is then added to the 
training set for great#6. 

Lastly, the priors in this model are determined 
directly from SemCor's occurrence statistics and 
estimated using Maximum Likelihood Estimation 
(MLE). This is another simplification over the BHD 
model, where the priors were determined using the 
hundred most frequent adjective-noun pairs culled 
from the Internet and then manually classified. It is 
well known that MLE is inaccurate when the num­
ber of events are low, as is in this case when rarer 
senses often have only single occurrences. 

Nevertheless, we are able to address both of the 
manual steps used in the BHD model with auto­
mated processes. However, it is our belief that they 
are also the weakest part of our model and contribute 
the most to the errors. 

4 Querying the Network 
With both the structure G and the parameters 
established, the query we pose is to compute 
the instantiations for each random variable that 
would result in the highest joint probability, i.e., 
arg maxP(MiiS). This is computed easily using the 
Maximum A Posteriori (MAP) query. This was im­
plemented using the JointTree algorithm (Darwiche, 
1995) and can be computed in O(lclw) time, where 
lei is the size ofthe variable (number of senses), and 
w is the tree width. Given that our networks are 
sparsely connected, w is usually close to 3, the aver­
age number of parents + 1. 

The advantage of using the MAP query is that 
it computes variable instantiations that will maxi­
mize the overall probability across the whole sen­
tence, rather than the localized context. Further-



Model Precision Recall 

1 0.500 0.449 
2 0.475 0.454 
3 0.474 0.453 

Table 1: Precision/recall results of the three models 
submitted to SENSEVAL-2. 

more, the resulting instantiation and probability is 
guaranteed to be maximum. So given the indepen­
dence assumptions made on the context and the es­
timated parameters, MAP will always produce the 
most probable sense tagging for every word in the 
sentence. 

5 Beyond Sentential Context 
It is well known that word senses are often influ­
enced by contexts larger than the sentence, such as 
surrounding sentences or even the whole passage. 
We experimented with the One-sense-per-discourse 
(OSPD) hypothesis (Yarowsky, 1993) by applying 
the probabilities described in Stetina et al. (1998) 
to words that have previously appeared in the text 
and thus have been disambiguated. The only mod­
ification needed to our model described thus far is 
to apply OSPD probabilities, which is dependent on 
the distance between the sentences, to each sense 
of a re-occurring word before the MAP query. It is 
our observation that this incarnation of the OSPD 
hypothesis, chosen for its ease of implementation, 
tends to propagate erroneous sense tagging from ini­
tial sentences to the remainder of the passage. A 
better approach would be to determine the one sense 
that would maximize the consensus across the whole 
passage, as well as within each individual sentence. 
How this can be achieved efficiently in a probabilistic 
framework is currently being investigated. 

6 Evaluation 
For SENSEVAL-2, we submitted three models for 
comparison, which differ by their methods of pa­
rameter estimation. Model 2 uses the training data 
from SemCor and Hierarchical networks to smooth 
the parameters from Internet search engines. Model 
3 incorporates additional training data gathered au­
tomatically from the WordNet glosses. Lastly, model 
1 combines all training data, as well as the OSPD 
hypothesis. 

One can see that the model that uses all of the 
available data achieved best accuracy (model 1) but 
unfortunately also had the lowest recall due to the 
added complexity. Some highly polysemous words 
were omitted due to time and memory constraints. 
Between the 2 training sets, it was unfortunate that 
the addition of the automatically generated training 
set reduced the accuracy slightly, mainly due to the 
noisy data produced by our experimental system. 
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Nevertheless, we believe that there is a wealth 
of information contained within WordNet's glosses. 
Since one of our aims is to use as much automated 
processing as possible, we are focusing on improving 
the accuracy of the automatically generated train­
ing data. Our goal is that as the WSD accuracy 
of our system improves, so will the reliably of these 
automatically generated training data. Having im­
proved training data will further improve the sys­
tem's WSD accuracy, i.e., a bootstrapping system. 
We are at the initial stage of this process, but some 
fundamental problems such as reliable POS tagging 
and parsing of sentence fragments need to be ad­
dressed first. FUrthermore, parameter estimation 
based on Internet statistics might prove to be too 
noisy, so we are currently focusing on learning al­
gorithms such as Expectation Maximization to tune 
the parameters. Lastly, if our context is found to 
be too limited, additional features can be added to 
the Bayesian networks to improve the classification 
accuracy. 
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Abstract 

The approach presented in this paper for Word 
Sense Disambiguation (WSD) is based on a 
combination of different views of the context. 
Semantic Classification Trees (SCT) are 
employed over a short and a multi-level view 
of context, including rough semantic features, 
while a similarity measure is used in some 
particular cases to rely on a larger view of the 
context. We also describe our two-step 
approach based on HMM for the all-word task. 

Introduction 

In the tracks of SENSEV AL-l (Kilgarriff and 
Rosenzweig, 2000), the second edition of the 
word sense disambiguation evaluation campaign 
offers a new set of words to test improvements 
in the domain of WSD. It also includes a new 
task, aimed at disambiguating each word of a 
text. 
Our approach for the lexical sample task is 
based on three different views of the context, 
which allows us to consider more information 
for sense tagging. In order to deal with short­
range view of the context, we have chosen to 
use Semantic Classification Trees (SCT) (Kuhn 
and De Mori, 1995), which are binary decision 
trees. Moreover, based on our experience, we 
will show, that using rough semantic features as 
a higher-level view of the context yields 
substantial increases in perfom1ance. Finally, a 
similarity distance is employed in order to 
capture longer-range context information. 
The paper is organized as follows: in the first 
part (Section I), the work we have done on the 
lexical sample task is presented. This part 
includes a brief overview of the SCT approach 
(Section 1. 1) and we show how the coverage it 
yields could be increased while using more or 
less rough semantic features thanks to a 
multi-level view of the context (Section 1.2). In 
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Section 1.3, we propose to use a similarity 
measure like those used in document retrieval in 
order to select a sense among those proposed by 
the SCT systems. The second part (Section 2) is 
dedicated to the all-words task. A two-step 
approach based on a trisem-bisem model is 
presented (Section 2.1 ). Then, we propose to 
apply a special process on the most frequent 
words in the task (Section 2.2). In conclusion, 
the results for both tasks are presented. 

1 Lexical Sample Task 

The lexical sample task of SENSEV AL-2 is 
composed of 29 nouns, 29 verbs and 15 
adjectives in context. We decided to handle the 
totality of the words, and always assign one and 
only one sense to each test word 
(recall= precision). For training purpose, we 
used the corpus supplied for each word to be 
disambiguated. However, the number of training 
sentences supplied was greatly reduced 
compared to that of the first SENSEV AL exercise. 
By comparison, the average number of training 
sentences for the nouns in SENSEV AL-l data was 
about 410 sentences/word. Here, the average 
number of training sentences is only 121 
sentences/word. This difference leads us to 
believe that the present evaluation may be much 
harder than the previous one. The senses used 
for this evaluation come from the Wordnet 1.7 
pre-release (Miller et al., 1990). 

1.1 Applying SCT to WSD 

Y arowsky ( 1993) states that most clues for the 
purpose of disambiguation are present in a 
micro-context of 3 or 4 words. SCT seems to be 
an adequate approach to handle short contexts. 
Moreover, SCT, which are binary decision trees, 
penn it a simple interpretation of the results, by 
recovering the successive questions asked along 
each path from the root to a leaf. Kuhn and 



De Mori (1995) have shown that these extracted 
rules correspond to regular expressions. 
However, this approach requires a certain 
amount of data in order for the trees to be grown 
with reliable questions in its nodes. 
Relying on previous work in this field (Loupy 
et al., 2000), the training corpus was used to 
build one tree for each word to be 
disambiguated. While growing the trees, the list 
of possible questions is built at each node, 
taking into consideration the position of an 
element of the context (lemma in this case). The 
Gini impurity G(X) (Breiman et al., 1984) is 
then computed (formula 1) for each question in 
the list, in order to extract the one which 

generates the highest decrease in impurity /lG q 

(formula 2). 

G(X) = 1-LP(s I xt (1) 
SES 

Where P(s/X) is the probability of sense s 
given population X, 

Here Yesq and Noq correspond respectively to 
the population answering yes or no to the 

question q; p Yes q (respectively p No q ) is the 

proportion of population T answering yes 
(respectively no) to question q. 

A more detailed description of our approach to 
SCT can be found in Crestan and El-Beze 
(200 1 ). 
The data had to be pre-processed before they 
could be used. Motivated by conclusions drawn 
from recent work (see for example Loupy and 
El-Beze (2000)), the context was lemmatized, 
except for the word to be disambiguated. The 
determiners, possessive pronouns, adverbs and 
adjectives were removed, because they bring 
more noise to the tree growing process than they 
help capture relevant clues. However, some 
adjectives were preserved, when they were part 
of a compound noun, as in "short circuit". For 
the part-of-speech (POS) tagging process and 
lemmatization process, the Eng! ish Tree-Tagger 
(Schmid, 1994) was used. 

1.2 Rough semantic features as a multi-level 
view of context 

Regarding previous work using SCT, the 
novelty of our approach consists in the 
introduction of rough semantic features into the 
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context in order to increase the coverage of the 
trees. The process of tree growing can quickly 
suffer from lack of data. The ability of our 
system to view the context, not only as a 
succession of lemmas, but also as a multi-level 
view makes it more robust and reliable. 
We used the Semantic Classes (SC) proposed in 
Wordnet in order to improve the coverage of the 
trees. There are 26 SC associated with nouns 
(e.g. <noun.body> for body related nouns) and 
15 SC associated with verbs (e.g. <verb.motion> 
for motion related verbs). Because most of the 
adjectives and adverbs were removed during the 
pre-processing phase and because they have 
only one or two possible SC, their respective SC 
are not employed. 
During the SCT building process, there is now 
not just one question to ask at a given position in 
a training sentence, but n+ 1 (where n is the 
number of possible SC associated with a 
lemma). For example, the sentence sample m 
figure l leads to 16 possible questions if 
considering SC, and only 7 questions if 
considering only lemmas. 

04 
10 

_32 

=!~ ~ -~~ 
Yeltsin offer Rutskoi post of ~ president 

Figure l: Example of SC usage 

SC are added regardless of the POS. In the 
example above, the term offer can only be a 
verb, but we still associate with it the classes_ 04 
(noun.act) and _10 (noun.communication), which 
are associated with the noun-senses of offer. 
There are two reasons for this choice: First, in 
the case of erroneous POS tagging, we would 
not be able to characterize a sense using the 
adequate SC. Second, tests have shown that 
results obtained using POS related SC or all the 
SC are comparable. This last point could be 
explained by the aptitude of SCT to select the 
best questions. Therefore, SCT are able to 
partially disambiguate the local context at a 
coarse-grained sense level when enough data are 
available. Consequently, it seems useless to 
make assumptions about POS. 
Experiments carried on the SENSEV AL-l data, 
has shown an improvement of about 2.5% on 
nouns and about 3% on verbs when using the 
Semahtic Classes. 



1.3 Similarity measure for a long-range view of 
the context 

Experience has shown us that a window size of 
WS=3 is enough for disambiguation in many 
cases, but there are still numerous cases for 
which a larger · window size is required. 
However, if a larger window size can provide 
more information for sense detection, it may 
also add more noise. In order to cope with this 
drawback, a similarity measure is employed (a 
technique usually applied in the field of 
document retrieval), as a ruler to decide which 
sense seems the more likely, considering the 
whole sentence (Figure 2). Firstly, three 
different Window Sizes (WS) are considered and 
run through the appropriate SCT process 
(trained on the same WS). Secondly, for each 
sense proposed by the SCT systems (E1, E2, and 
E3), a pseudo-document is built with the 
corresponding sentences from the training 
corpus. Then, a similarity measure as those used 
in document retrieval is computed between the 
test sentence (WS=JSJ) and each of the pseudo­
documents (i.e. senses). Finally, only the sense 
having the best score is kept. The similarity 
measure used here is the Cosine measure (Salton 
and McGill, 1983). 
The analysis of the results has shown that 
monitoring several SCT based views of the 
context by using the here above described 
technique leads to an average precision 
improvement of about 2%. 

2 All-Words Task 

The second task proposed in SENSEV AL consists 
in tagging almost all the words of a text. This is 
a more difficult task because in the first one, 
only some words have to be studied, whereas the 
behavior of all words must be known in order to 
correctly tag an entire text. Hidden Markov 
Models (HMM) have shown their efficiency in 
many NLP domains: part-of-speech tagging (El­
Beze and Merialdo, 1999), speech recognition 
(Jelinek, 1998), etc. Moreover, they have been 
used in semantic disambiguation with some 
success (Loupy et al., 1998). Therefore, we 
decided to use this method for the all words 
task. 
The test corpus supplied is composed of 247 3 
words to be disambiguated out of 5836 words. 
All POS are represented: 1140 nouns, 544 verbs, 
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453 adjectives and 299 adverbs (according to the 
supplied TreeBank-tagged file). 

2.1 A coarse to fine-grained sense strategy 

In a previous experiment (Loupy et al., 1998), 
HMM were applied directly to disambiguate 
senses at fine-grained level using a 
unisem-bisem model, after training on the 
SemCor (Miller et al., 1993). However, even if 
this method achieves correct results (72% of 
correct assignation), it does not really improve 

Mr Portillo, however, keeps his cabinet post . 

E2 

Figure 2: Sense selection using a similarity 
measure 

over the unisem model. Therefore, it IS 

recognized that there are not enough data to 
correctly learn the transitions between senses. 
On the other hand, an HMM unisem-bisem 
model brings a slight improvement as compared 
to unisem alone when applied to a coarser 
semantic level, that is SC (Loupy et al., 1998). 
We adopt the following two-step strategy: 
• Firstly, determine the SC associated with 

each word in the text (formula 4) 

G = Arg Max[P(GI L)] 
G 0) 

= Arg Mgx[P(LIG)P(G)] 

where G is the set of possible coarse-grained 
semantic classes associated to the lemma L. 

• Secondly, assign the most probable fine­
grained sense according to the word and the 
previously retrieved SC (formula 5). 

S = Arg ~~x[P(S /G,L)] (5) 

where S is the set of possible senses 
associated with the lemma L and its possible 
semantic classes G. 



To cope with the well-known sparse data 
problem, some assumptions allow us to use a 
HMM (trisem-bisem model), in order to 
estimate P(G) (formula 6) and P(L/G) 
(formula 7). 

P(G) >=:j IT,l x P(g, /g,_ 2 ,g,_ 1 ) + (1- /i) xP(g, /g,_1 ) (6) 

and (7) 

In the same way, assumptions were made in 
order to estimate the probability P(SIG,L) 
(formula 8). 

P(S!G,L)~ f1P(s 1 1gi,li) (8) 

2.2 Using Lexical Sample Task Experience 

In view of our experience with the lexical 
sample task, we decided to take advantage of it. 
The most frequent words among those to be 
disambiguated in the all-words task and which 
were also present in the SENSEV AL-2 lexical 
sample task were extracted. For those words, the 
technique presented in Section 1 was applied. In 
this way, 4 verbs (call, develop, find and use) 
and 2 nouns (child and church) were 
disambiguated by the SCT-Cosine method, as 
described in Section 1.3. 

Results and Conclusion 

As mentioned in section I, the scores for the 
second edition of the lexical sample task are 
much lower than for the first edition (about 
20%). However, our system achieved 
satisfactory results comparing to other 
participants (see table 1) and even accessed the 
top-5 systems. The use of SC as a multi-level 
view of the context has generated significant 
improvements in the results. As well as, the 
combination of different window sizes using 
similarity measure on a larger context as a judge 
has shown noticeable improvements. 

Lexical Sample •· All-Words 
Precision Recall Precision Recall 

I Fine 61.3% 61.3% 61.8% 61.8% 
I Coarse 68.2% 68.2% 62.6% 62.6% 

Table 1: Results for fine and coarse-grained senses 

For the all-words task, our system has proven to 
be one of the bests, achieving an average 
precision/recall of 61.8%, and this, despite the 
absence of mapping between Wordnet 1.6 
senses used for training purpose (SemCor) and 
Wordnet I. 7 senses used as test references. 
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Abstract 

This paper describes the architecture and results of 
the TALP system presented at the SENSEVAL-2 
exercise for the English lexical-sample task. This 
system is based on the LazyBoosting algorithm 
for Word Sense Disambiguation (Escudero et al., 
2000), and incorporates some improvements and 
adaptations to this task. The evaluation reported 
here includes an analysis of the contribution of each 
component to the overall system performance. 

1 System Description 

The TALP system has been developed on the ba­
sis of LazyBoosting (Escudero et al., 2000), a 
boosting-based approach for Word Sense Disam­
biguation. In order to better fit the SENSEVAL-
2 domain, some improvements have been. made on 
the basic system, including: features that take into 
account domain information, an specific treatment 
of multiwords, and a hierarchical decomposition of 
the multiclass classification problem, similar to that 
of (Yarowsky, 2000). All these issues will be briefly 
described in the following sections. 

1.1 LazyBoosting 

The purpose of boosting-based algorithms is to find 
a highly accurate classification rule by combining 
many weak classifiers (or weak hypotheses), each 
of which may be only moderately accurate. The 
weak hypotheses are learned sequentially, one at a 
time, and, conceptually, at each iteration the weak 
hypothesis is biased to classify the examples which 
were most difficult to classify by the preceding 
weak hypotheses. The learned weak hypotheses are 
linearly combined into a single rule called the com­
bined hypothesis. 
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The particular algorithm used in our system to 
perform the classification of senses is the gener­
alized AdaBoost.MH with confidence-rated pre­
dictions (Schapire and Singer, 1999). This algo­
rithm is able to deal straightforwardly with mul­
ticlass multi-label problems, and has been previ­
ously applied, with significant success, to a num­
ber of NLP disambiguation tasks, including, among 
others: Part-of-speech tagging and PP-attachment 
(Abney et al., 1999), text categorization (Schapire 
and Singer, 2000), and shallow parsing (Carreras 
and Marquez, 2001). The weak hypotheses used in 
this work are decision stumps, which can be seen 
as extremely simple decision trees with one internal 
node testing the value of a single binary feature (e.g. 
"the word dark appears in the context of the word to 
be disambiguated?") and two leaves that give the 
prediction of the senses based on the feature value. 

The "Lazy" Boosting, is a simple modification of 
the AdaBoost.MH algorithm, which consists of re­
ducing the feature space that is explored when learn­
ing each weak classifier. More specifically, a small 
proportion of attributes are randomly selected and 
the best weak rule is selected only among them. 
This modification significantly increases the effi­
ciency of the learning process with no loss in ac­
curacy (Escudero et al., 2000). 

1.2 Feature Space 

Three kinds of information have been used to de­
scribe the examples and to train the classifiers. 
These features refer to local and topical contexts, 
and domain labels. 

More particularly, let " ... W-3 w-2 W-1 w w+l 

w+2 w+3 .. . "be the context of consecutive words 
around the word w to be disambiguated, and P±i 



( -3:S:i:S:3) be the part-of-speech tag of word W±i 1. 

Feature patterns referring to local context are the 
following 13: 

p:o;,3, P-2· P-1· P+1· P+2· P+3· W-2· W-1· W+l· 
W+2• (w-2, w_l), (w-1, w+l), and (w+l, w+2), 

where the last three correspond to collocations of 
two consecutive words. 

The topical context is formed by c1, ... , Cm, 

which stand for the unordered set of open class 
words appearing in a medium-size 21-word win­
dow centered around the target word. 

The more innovative use of semantic domain in­
formation is detailed in the next section. 

1.2.1 Domain Information 
We have enriched the basic set of features by adding 
semantic information in the form of domain labels. 
These domain labels are computed during a pre­
processing step using the 164 domain labels linked 
to the nominal part of WordNet 1.6 (Magnini and 
Cavaglia, 2000). 

For each training example, a program gathers, 
from its context, all nouns and their synsets with 
the attached domain labels, and scores them accord­
ing to a certain scoring function. The weights as­
signed by this function depend on the number of 
domain labels assigned to each noun and their rel­
ative frequencies in the whole WordNet. The re­
sult of this procedure is the set of domain labels that 
achieve a score higher than a certain experimentally 
set threshold, which are incorporated as regular fea­
tures for describing the example. 

1.3 Preprocessing and Hierarchical 
Decomposition 

We began this exercise by selecting a representa­
tive sample, containing the most frequent words 
of the SENSEVAL-2 training data, and applying 
the LazyBoosting system straightforwardly on this 
sample. The results achieved after a 1 O-f old cross­
validation procedure were very bad, mainly due to 
the fact that most of the words contain too many 
senses and too few examples per sense to induce 
reliable classifiers. With the aim of improving the 
performance of the learning algorithm, we have re­
duced the number of senses by performing a hier­
archical decomposition of the multiclass problem, 
following the idea of (Yarowsky, 2000). 

1 In this work, the English versions of MACO+ morphologi­
cal analyzer and RELAX part-of-speech tagger have been used 
for tagging (Carmona et al., 1998). 

72 

Two different simplifications have been carried 
out. Firstly, multiword training examples have been 
processed separately. During training, multiwords 
have been saved into a separate file. At test time, 
all examples found in this multiword file are auto­
matically tagged as multiwords. As an example, 
the word bar appears in the training set with 22 
labels. But only the 10 senses showed in the left 
table of figure 1 are single words. The remaining 
12 are multiwords which are considered unambigu­
ous (Yarowsky, 1993). 

Full senses 1st level 

Senses Exs. Senses Exs. 
bar%1:06:04:: 127 bar%1:06 199 
bar% 1:06:00:: 29 bar%1:14 17 
bar% 1:06:05:: 28 bar%1:10 12 
bar%1:14:00:: 17 
bar%1:10:00:: 12 2nd level 
bar%1:06:06:: 11 Senses Exs. 
bar%1:04:00:: 5 04" 127 
bar% 1 :06:02:: 4 00" 29 
bar%1:23:00:: 3 05:: 28 
bar% 1:17:00:: 1 06:: 11 

Figure 1: Sense treatment for word 'bar' 

Secondly, we have reduced the sense granularity, 
by hierarchically decomposing the learning process 
in two steps. In the first level, the learning algorithm 
is trained to classify between the labels correspond­
ing to the WordNet semantic files, and, addition­
ally the semantic-file labels with less than 10 train­
ing examples are automatically discarded. If less 
than two senses remain, no training is performed 
and, simply, the Most-frequent-sense Classifier is 
applied. 

As an example, for the word 'bar', in this first 
step the system is trained to classify between the 
labels of the top-right table of figure 1. Note that 
senses bar%1:04, bar%1:23 and bar%1:17 have 
been dropped out because there are not enough 
training examples. 

In the second level, one classifier is trained for 
each of the resulting semantic-file labels of the first 
step in order to distinguish between their particular 
senses. Note that the same simplifying rules of the 
previous level are also applied. For instance, the 
bottom-right table of figure 1 shows the labels for 
bar%]:06, where 02:: has been rejected. 

When classifying a new test example, the classi­
fiers of the two levels are applied sequentially. That 



is, the semantic-file classifier is applied first. Then, 
depending on the semantic-file label output by this 
classifier, the appropriate 2nd level classifier is se­
lected. The resulting label assigned to the test ex­
ample is formed by the concatenation of the outputs 
of both previous levels. 

In the official competition, labels 'U' and 'P' 
have been completely ignored. Thus, the examples 
labelled with these classes have not been considered 
during the training, and no test examples have been 
tagged with them. 

Despite the simplifying assumptions and the loss 
of information, we have observed that all these 
changes together significantly improved the accu­
racy on the training set. However, the components 
of the system were not tested separately due to the 
lack of time. Next section includes some evaluation 
about this issue. 

2 Evaluation 

The official results achieved by the TALP system 
are presented in table 1. The evaluation setting cor­
responding to these results contains all the modifi­
cations explained in the previous sections, including 
the hierarchical approach to all words. 

Accuracy 
fine-grained 59.4% 
coarse-grained 67.1% 

Table 1: Official results 

After the SENSEVAL-2 event, we added a very 
simple Named-entity Recognizer to the part-of­
speech tagger that was not finished at the time of 
the event, but the system continues ignoring the 'U' 
label. We also have evaluated which parts of the 
system contributed most to the improvement in per­
formance. 

Table 2 shows the accuracy results of the 
four combinations resulting from using (or not) 
domain-label features and hierarchical decomposi­
tion. These results have been calculated over the test 
set of SENSEVAL-2. 

On the one hand, it becomes clear that enrich­
ing the feature set with domain labels systematically 
improves the results in all cases, and that this dif­
ference is specially noticeable in the case of nouns 
(over 3 points of improvement). On the other hand, 
the use of the hierarchies is unexpectedly useless in 
all cases. Although it is productive in some partic­
ular words (3 nouns, 12 verbs and 5 adjectives) the 
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nouns 
without dom. with dom. 

fine coarse fine coarse 
not bier. 64.25 72.35 67.90 75.60 
bier. 63.00 71.10 64.31 71.49 

verbs 
without dom. with dom. 

fine coarse fine coarse 
not bier. 51.61 61.63 52.10 62.62 
bier. 50.28 60.80 51.11 61.96 

adjectives 
without dom. with dom. 

fine coarse fine coarse 
not bier. 66.17 66.17 68.90 68.90 
bier. 65.35 65.35 68.21 68.21 

Table 2: Fine/coarse-grained evaluation for differ­
ent settings and part-of-speech 

overall performance is significantly lower. A fact 
that can explain this situation is that the first-level 
classifiers do not succeed on classifying semantic­
file labels with high precision (the average accuracy 
of first-level classifiers is only slightly over 71%) 
and that this important error is dramatically propa­
gated to the second-level, not allowing the greedy 
sequential application of classifiers. A possible ex­
planation of this fact is the way semantic classes are 
defined in WordNet. Consider for instance work#1 
(activity) and work#2 (production), they seem quite 
close but a system trying to differentiate among se­
mantic files needs to distinguish among these two 
senses. On the other extreme, such a classifier 
should collapse house#2 (legislature) with house#4 
(family), which are quite different. Of course, join­
ing both situations makes a pretty hard task. 

Regarding multiword preprocessing (not in­
cluded in table 2), we have seen that is slightly use­
ful in all cases. It improves the non-hierarchical 
scheme with domain information by almost 1 point 
in accuracy. By part-of-speech, the improvement is 
about 1 point for nouns, 0.1 for verbs and about 2 
points for adjectives. 

In conclusion, the best results obtained by our 
system on this test set correspond to the application 
of multiword preprocessing and domain-labels for 
all words, but no hierarchical decomposition at all, 
achieving a fine-grained accuracy of 61.51% and a 
coarse-grained accuracy of 69.00%. We know that 
it is not fair to consider these results for compari­
son, since the system is tuned over the test set. Our 



aim is simply to fully inspect the TALP system to 
know which parts are useful for a real Word Sense 
Disambiguation system. 

3 Work in progress 

We think that the system presented in this paper still 
has a large room for improvement. Among all the 
research lines and developments that we are cur­
rently performing on the TALP system for WSD, 
we would like to mention the following: 

• Tuning the preprocessing procedure with im­
proved versions of the Named--entity Recog­
nizer and Domain taggers. 

• Studying in more detail the promising use of 
domain information in the feature set. 

• Enriching the set of features with the most rel­
evant features used by the SENSEVAL-2 sys­
tems, and using the Minipa? parser to obtain 
dependency and role information. 

• Exploring more appropriate ways of making 
the hierarchical decomposition, not based on 
semantic files, and improve the sequential ap­
plication of classifiers in order to reduce the 
cascade errors. 

• Using unlabeled data to obtain larger sets of 
accurate training data, especially for those 
words/senses with few training examples. 

4 Conclusions 

This paper has presented the main characteristics 
and current performance of the TALP system within 
the framework of SENSEVAL-2 English lexical­
sample task competition. 

The system is mainly based on LazyBoost­
ing (Escudero et al., 2000), which uses an improved 
version of the boosting algorithm AdaBoost.MH to 
perform the WSD classification problem. 

We used a common set of features including lo­
cal and topical context enriched with domain infor­
mation. We obtained better performance separating 
multiword examples and also adding domain infor­
mation. 

Due to the small number of examples for train­
ing, we also tried to concentrate evidence reduc­
ing the fine-grained sense distinctions of WordNet. 
We perform a hierarchical procedure grouping those · 

2 Available at http://www.cs.ualberta.car lindek. 
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senses belonging to the same semantic file, prepro­
cessing multiwords and ignoring 'U' label. After 
the competition, we have shown that the hierarchi­
cal decomposition fails to improve performance in 
this domain, while preprocessing of multiwords is 
quite useful. The improved system achieved a fine­
grained accuracy of 61.51% and a coarse-grained 
accuracy of 69.00%. 
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Abstract 

We have participated in the SENSEVAL-2 En­
glish tasks (all words and lexical sample) with 
an unsupervised system based on mutual infor­
mation measured over a large corpus (277 mil­
lion words) and some additional heuristics. A 
supervised extension of the system was also pre­
sented to the lexical sample task. 

Our system scored first among unsupervised 
systems in both tasks: 56.9% recall in all words, 
40.2% in lexical sample. This is slightly worse 
than the first sense heuristic for all. words and 
3.6% better for the lexical sample, a strong in­
dication that unsupervised Word Sense Disam­
biguation remains being a strong challenge. 

1 Introduction 

We advocate researching unsupervised tech­
niques for Word Sense Disambiguation (WSD). 
Supervised techniques offer better results in 
general but the setbacks, such as the problem 
of developing reliable training data, are very 
considerable. Also there's probably more to 
WSD than blind machine learning (a typical ap­
proach, although such systems produce interest­
ing baselines). 

Within the unsupervised paradigm, we are in­
terested in performing in-depth measures of the 
disambiguation potential of different sources of 
information. We have previously investigated 
the informational value of semantic distance 
measures in (Fermindez-Amor6s et al., ) . For 
SENSEVAL-2, we have turned to investigate pure 
coocurrence information as a source of disam­
biguation evidence. In essence, our system com­
putes a matrix of mutual information for a fixed 
vocabulary and applies it to weight coocurrence 
counting between sense and context character­
istic vectors. 
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In the next section we describe the process of 
constructing the relevance matrix. In section 3 
we present the particular heuristics used for the 
competing systems. In section 4 we show the 
results by system and heuristic and some base­
lines for comparison. Finally in the last sections 
we draw some conclusions about the exercise. 

2 The Relevance matrix 
2.1 Corpus processing 
Before building our systems we have developed 
a resource we've called the relevance matrix. 
The raw data used to build the matrix comes 
from the Project Gutenberg (PG) 1. 

At the time of the creation of the matrix the 
PG consisted of more than 3000 books of di­
verse genres. We have adapted these books for 
our purpose : First, language identification was 
used to filter books written in English; Then 
we stripped off the disclaimers. The result is a 
collection of around 1.3Gb of plain text. 

Finally we tokenize, lemmatize, strip punctu­
ation and stop words and detect numbers and 
proper nouns. 

2.2 Coocurrence matrix 

We have built a vocabulary of the 20000 most 
frequent words (or labels, as we have changed 
all the proper nouns detected to the label 
PROPER_NOUN and all numbers detected to 
NUMBER) in the text and a symmetric coocur­
rence matrix between these words within a con­
text of 61 words (we thought a broad context 
of radius 30 would be appropriate since we are 
trying to capture vague semantic relations). 

2.3 Relevance matrix 

In a second step, we have built another sym­
metric matrix, which we have called relevance 

1http://promo.net/pg 



matrix, using a mutual information measure be­
tween the words (or labels), so that for two 
words a and b, the entry for them would be 
~i)~~l), where P(a) is the probability of find­
ing the word a in a random context of a given 
size. P(a n b) is the probability of finding both 
a and b in a random context of the fixed size. 
We've introduced a threshold of 2 below which 
we set the entry to zero for practical purposes. 
We think that this is a valuable resource that 
could be of interest for many other applications 
other than WSD. Also, it can only grow in qual­
ity since at the time of making this report the 
data in the PG has almost doubled in size. 

3 Cascade of heuristics 
We have developed a very simple language in 
order to systematize the experiments. This lan­
guage allows the construction of WSD systems 
composed of different heuristics that are ap­
plied in cascade so that each word to be disam­
biguated is presented to the first heuristic, and if 
it fails to disambiguate, then the word is passed 
on to the second heuristic and so on. We can 
have several such systems running in parallel for 
efficiency reasons (the matrix has high memory 
requirements). Next we show the heuristics we 
have considered to build the systems 

• Monosemous expressions. 
Monosemous expressions are simply unam­
biguous words in the case of the all words 
English task. In the case of the lexical 
sample English task, however, the annota­
tions include multiword expressions. We 
have implemented a multiword term de­
tector that considers the multiword terms 
from WordNet's index.sense file and detects 
them in the test file using a multilevel back­
tracking algorithm that takes account of 
the inflected and base forms of the compo­
nents of a particular multiword in order to 
maximize multiword detection. We tested 
this algorithm against the PG and found 
millions of these multiword terms. 

We restricted ourselves to the multiwords 
already present in the training file since 
there are, apparently, multiword expres­
sions that where overlooked during manual 
tagging (for instance the WordNet expres­
sion 'the_good_old_days' is not hand-tagged 
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as such in the test files) 

• Statistical filter 

WordNet comes with a file, cntlist, literally 
'file listing number of times each tagged 
sense occurs in a semantic concordance' so 
we use this to compute the relative prob­
ability of a sense given a word ( approxi­
mate in the case of collections other than 
SemCor). Using this information, we elimi­
nated the senses that had a probability un­
der 10% and if only one sense remains we 
choose it. Otherwise we go on to the next 
heuristic. In other words, we didn't apply 
complex techniques with words which are 
highly skewed in meaning 2 . 

• Relevance filter 

This heuristic makes use of the relevance 
matrix. In order to assign a score to a 
sense, we count the coocurrences of words 
in the context of the word to be dis­
ambiguated with the words in the defini­
tion of the senses (the WordNet gloss to­
kenized, lemmatized and stripped out of 
stop words and punctuation signs) weight­
ing each coocurrence by the entry in the 
relevance matrix for the word to be disam­
biguated and the word whose coocurrences 
are being counted, i.e., if s is a sense of the 
word a whose definition is Sand C is the 
context in which a is to be disambiguated, 
then the score for s would be: 

L Rwafreq(w, C)freq(w, S)idf(w, a) 
wEC 

Where idf(w, a) = log !i.e, with N being 
the number of senses for word a and dw the 
number of sense glosses in which w appears. 
freq(w, C) is the frequency of word win the 
context C and freq ( w, S) is the frequency 
of w in the sense gloss S. 
The idea is to prime the occurrences of 
words that are relevant to the word being 

2 Some people may argue that this is a supervised ap­
proach. In our opinion, the cntlist information does not 
make a system supervised per se, because a) It is stan­
dard information provided as part of the dictionary and 
b) We don't use the examples to feed or train any pro­
cedure. 



disambiguated and give low credit (possi­
bly none) to the words that are incidentally 
used in the context. 
Also, in the all words task (where POS 
tags from the TreeBank are provided) we 
have considered only the context words 
that have a POS tag compatible with that 
of the word being disambiguated. By com­
patible we mean nouns and nouns, nouns 
and verbs, nouns and adjectives, verbs and 
verbs, verbs and adverbs and vice versa. 
Roughly speaking, words that can have an 
intra-phrase relation. 
We also filtered out senses with low values 
in the cntlist file, and in any case we only 
considered at most the first six senses of a 
word. 

• Enriching sense characteristic vectors 
The relevance filter provided very good re­
sults in our experiments with SemCor and 
SENSEVAL-1 data as far as precision is 
concerned, but the problem is that there 
is little overlapping between the defini­
tions of the senses and the contexts in 
terms of coocurrence (after removing stop 
words and computing idf) which means 
that the previous heuristic didn't disam­
biguate many words. 
To overcome this problem, we enrich the 
senses characteristic vectors adding for 
each word in the vector the words related 
to it via the relevance matrix weights. This 
corresponds to the algebraic notion of mul­
tiplying the matrix and the characteristic 
vector. In other words, if R is the relevance 
matrix and v our characteristic vector we 
would finally use Rv + v. 
This should increase the number of words 
disambiguated provided we eliminate the 
idf factor (which would be zero in most 
cases because now the sense characteristics 
vectors are not as sparse as before). When 
we also discard senses with low relative fre­
quency in SemCor we call this heuristic 
mixed filter. 

• back off strategies 
For those cases that couldn't be covered by 
other heuristics we employed the first sense 
heuristic. In the case of the supervised sys­
tem for the English lexical sample task we 

thought of using the most frequent sense 
but didn't implement it due to lack of time. 

4 Systems and Results 
• UNED-AW-U2 

We won't delve into UNED-AW-U system 
as it is very similar to this one. This is 
an (arguably) unsupervised system for the 
English all words task. The heuristics we 
used and the results obtained for each of 
them are shown in Table 1. 

Heuristic Att. Score Prec Rec 
Monosemous exp 514 45500 88.5% 18.4% 
Statistical filter 350 27200 77.7% 11.0% 
Mixed filter 1256 50000 39.8% 20.2% 
Enriched Senses 77 4300 55.8% 3.1% 
First sense 249 13600 54.6% 5.5% 
Total 2446 140600 57.5% 56.9% 

Table 1: Unsupervised heuristics for English all 
words task 

If the individual heuristics are used as stan­
dalone WSD systems we would obtain the 
results in Table 2. 

System Att. Score Prec Recall 
First sense 2405 146900 61.1% 59.4% 
UNED~AW-U2 2446 140600 57.5% 56.9% 
Mixed filter 2120 122600 57.8% 49.6% 
Enriched senses 2122 108100 50.9% 43.7% 
Random 2417 89191.2 36.9% 36.0% 
Statistical filter 864 72700 84.1% 29.4% 

Table 2: UNED-AW-U2 vs baselines 

In the lexical sample task, we weren't able to 
multiply by the relevance matrix due to time 
constraints, so in order to increase the coverage 
for the relevance filter heuristic we expanded the 
definitions of the senses with those of the first 
5 levels of hyponyms. Also, we selected the ra­
dius of the context to be considered depending 
on the POS of the word being disambiguated. 
For nouns and verbs we used 25 words radius 
neighbourhood and for adjectives 5 words at 
each side. 

• UNED-LS-U This is essentially the same 
system as UNED-AW-U2, in this case ap­
plied to the lexical sample task. The results 
are displayed in Table 3. 
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Heuristic Att. Score Prec Recall 
Relevance filt 3039 113617 37.3% 26.2% 
First sense 1285 60000 46.7% 13.9% 
Total 4324 173617 40.2% 40.2% 

Table 3: Unsupervised heuristics for English 
lexical sample task 

• UNED-LS-T 

This is a supervised variant of the previous 
systems. We have added the training ex­
amples to the definitions of the senses giv­
ing the same weight to the definition and 
to all the examples as a whole (i.e. defini­
tions are considered more interesting than 
examples) 

Heuristic Att. Score Prec Recall 
Relevance filt 4116 206150 50.1% 47.6% 
First sense 208 9300 44.7% 2.1% 
Total 4324 215450 49.8% 49.8% 

Table 4: Supervised heuristics for English lexi­
cal sample task 

5 Discussion and conclusions 

We've put a lot of effort into making the rele­
vance matrix but its performance in the WSD 
task is striking. The matrix is interesting and 
its application in the relevance filter heuristic is 
slightly better than simple coocurrence count­
ing, which proves that it doesn't discard rele­
vant words. The problem seems to lie in the 
fact that irrelevant words (with respect to the 
word to be disambiguated) rarely occur both in 
the context of the word and in the definition 
of the senses (if they appeared in the definition 
they wouldn't be so irrelevant) so the direct im­
pact of the information in the matrix is very 
weak. Likewise, relevant (via the matrix) words 
with respect to the word to be disambiguated 
occur often both in the context and in the defi­
nitions so the final result is very similar to sim­
ple coocurrence counting. 

This problem only showed up in the lexical 
sample task systems. In the all words systems 
we were to enrich the sense definitions to make 
a more advantageous use of the matrix. 

We were very confident that the relevance 
filter would yield good results as we have al-
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ready evaluated it against the SENSEVAL-1 and 
SemCor data. We felt however that we could 
improve the coverage of the heuristic enrich­
ing the definitions multiplying by the matrix. 
A similar approach was used by Yarowsky 
(Yarowsky, 1992) and Schiitze (Schiitze and 
Pedersen, 1995) and it worked for them. This 
wasn't the case for us; still, we think the re­
source is well worth researching other ways of 
using it. 

As for the overall scores, the unsupervised 
lexical sample obtained the highest recall of the 
unsupervised systems, which proves that care­
fully implementing simple techniques still pays 
off. In the all words task the UNED-WS-U2 had 
also the highest recall among the unsupervised 
systems (as characterized in the SENSEVAL-2 
web descriptions), and the fourth overall. We'll 
train it with the examples in Semcor 1.6 and see 
how much we can gain. 

6 Conclusions 
Our system scored first among unsupervised 
systems in both tasks: 56.9% recall in all words, 
40.2% in lexical sample. This is slightly worse 
than the first sense heuristic for all words and 
3.6% better for the lexical sample, a strong in­
dication that unsupervised Word Sense Disam­
biguation remains being a strong challenge. 
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Abstract 

This paper describes IITl, IIT2, and IIT3, 
three versions of a semantic tagging 
system basing its sense discriminations on 
WordNet examples. The system uses 
WordNet relations aggressively, both in 
identifying examples of words with 
similar lexical constraints and matching 
those examples to the context. 

1 Introduction 

The ability of natural language understanding 
systems to determine the meaning of words in 
context has long been suggested as a necessary 
precursor to a deep understanding of the context 
(Ide and Veronis, 1998; Wilks, 1988). 
Competitions such as SENSEV AL (Kilgarriff anp 
Palmer, 2000) and SENSEV AL-2 (SENSEV AL-2, 
2001) model the determination of word meaning 
as a choice of one or more items from a fixed 
sense inventory, comparing a gold standard 
based on human judgment to the performance of 
computational word sense disambiguation 
systems. 

Statistically based systems that train on tagged 
data have regularly performed best on these 
tasks (Kilgarriff and Rosenzweig, 2000). The 
difficulty with these supervised systems is their 
insatiable need for reliable annotated data, 
frequently called the "data acquisition 
bottleneck." 

The systems described here avoid the data 
acquisition bottleneck by using only a sense 
repository, or more specifically the examples 
and relationships contained in the sense 
repository. 

WordNet version 1.7 (Miller 1990; Fellbaum 
1998; WordNet, 2001) was chosen as the sense 
repository for the English Lexical Sample task 
(where systems disambiguate a single word or 
collocation in context) and the English All Word 
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task (where systems disambiguate all content 
words) of the SENSEV AL-2 competition. 
WordNet defmes a word sense (or synset) as a 
collection of words that can express the sense, a 
definition of the sense (called a gloss), zero or 
more examples of the use of the word sense, and 
a set of tuples that defme relations between 
synsets or synset words. 

2 General Approach 

This paper describes three systems that were 
entered in SENSEVAL-2 competition, IITl, IIT2, 
and IIT3. liT 1 and IIT2 were entered in both the 
English All Word task and the English Lexical 
Sample task. IIT3 was entered in the English 
All Word task only. All three systems use the 
same unsupervised approach to determine the 
sense of a target word: 

1. for each syntactically plausible sense, fmd 
the set of WordNet examples that appear in 
that synset or a related synset. 

2. for each example, compare the example to 
the context, scoring the quality of the match. 

3. choose the sense whose synset is 
responsible for the inclusion of the highest 
scoring example. 

Hereafter, target words identify the words to 
be disambiguated (so identified by the 
SENSEV AL-2 task). The context identifies the 
text surrounding and including a target word. 

2.1 Collecting Examples of a Sense 

The systems first collect a set of example 
sentences and phrases from WordNet for each 
synset matching a target word (or its canonical 
or collocational form). The set includes 
examples from the synset itself as well as those 
of related synsets. Table 1 lists the relations 
available in WordNet 1.7. The application of 
direct relations includes only the examples of the 
related synset (or synsets of related words). The 
transitive closure of relations additionally 



WordNet Relation Relation Application of 
Relation Type Operands Relation 
Antony_m Word Direct 

Hypemym Parent Synset Transitive Closure 
Hyponym Child Synset Direct 
Entailment Synset Transitive Closure 
Similarity Set Word Transitive Closure 
Member Child Synset Direct 

Stuff Child Synset Direct 
Part Child Synset Direct 
Has Parent Synset Transitive Closure 

Member 
Has Stuff Parent Synset Transitive Closure 
Has Part Parent Sy_nset Transitive Closure 
Holonym Parent Synset Transitive Closure 
Meronym Child Synset Direct 

PPL Word Transitive Closure 
See Also Word Direct 
Pertains Word Transitive Closure 
Attribute Synset Transitive Closure 

Verb Set Synset Not Used 
Group 

Table 1 
Use ofWordNet Relations 

includes examples from repeated application of 
the relation. That is, for the hypernym relation, 
examples from all ancestor synsets are included. 

Table 2 lists the examples identified for the 
synset for faithful - steadfast in affection or 
allegiance. WordNet 1.7 displays the synset as: 

faithful (vs. unfaithful) 
=> firm, loyal, truehearted, fast(postnominal) 
=>true 

Also See-> constant#3; true#!; trustworthy#!, 
trusty#! 

This faithful synset contributes 3 examples, 
the see also relation contributes examples for 
constant, true, and trustworthy, the similarity 
relation contributes the examples from the firm 
synset and the antonym relation contributes the 
unfaithfUl example. 

2.2 Comparing Examples to the Context 

Each example is compared to the context. 
Consider the first example in Table 2, a man 
constant in adherence to his ideals. Since each 
example contains a word being defmed, the 
systems consider that this word matches the 
target word, so constant is assumed to match 
faithfUl. Call this word the example anchor. 

The remaining words of the example are 
compared to the words surrounding the target 
word. The comparison begins with the word to 
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Synset 
Words Example 
constant a man constant in adherence to his ideals 

a constant lover 
constant as the northern star 

faithful . !years of faithful service 
_faithful employees 
we do not doubt that England has a faithful 
!patriot in the Lord Chancellor 

firm, loyal, "the true-hearted soldier ... ofTippecanoe"-
truehearted, Campaign song fur William Henry Harrison; 
fast a firm ally 

loyal supporters 
fast friends 

true true believers bonded together against all who 
disagreed with them 
the story is true 
"it is undesirable to believe a proposition when 
there is no ground whatever for supposing it 
true" - B. Russell; 
the true meaning of the statement 

trustworthy a trustworthy report 
an experienced and trustworthy traveling 
companion 

unfaithful an unfuithfullover 

Table 2 
Examples Relate to Synsetfaithful- steadfast 

in affection or allegiance 

the left of the example anchor followed by the 
word immediately to the right of the anchor, the 
second word to the left of the anchor, the second 
word to the right of the anchor, and so on. So 
the order of comparison of the example words is 
man, in, a, adherence, to, his, ideals. 

Each example word is compared to the 
unmatched context words in a similar sequence. 
So, for example, the example word man would 
first be compared to the word immediately to 
the left of the context word followed by the 
word to its left, and so on, until a match is 
found. 

Word matches also use the WordNet relations 
as described in Table I. Under parent relations, 
two words match if they have a common 
ancestor. Other transitive closure relations 
generate a match if either word appears in the 
other's transitive closure. The words also match 
if there is a direct relation between the words. 

2.3 Scoring the Match 

Once the words of an example have been 
ma!ched to the context, the result is scored. The 
score for all systems is computed as: 



Characteristic Description 
Distance Magnitude of the difference in the word 

position of the matching example and 
context words relative to the position of 
the example and qontext anchors 

Direction 1 if the example words adjacent to a 
Change word match context words both 

occurring before or after its matching 
context word, 0 otherwise. 

Lexical 0 for exact matches; 1 for matches based 
Proximity on non-parent relation matches; sum of 

the distances to the closest common 
ancestor for matches under parent 
relations 

Maximum and 0,0 for exact matches; 1,0 for matches 
Minimum based on non-parent relation matches; 
Lexical maximum and minimum distance to the 
Genemlization closest common ancestor for matches 

under parent relations 
Alignment Ratio of the matching phrase length to 
Skew the example length. 
Match Failure 1 for example words with no matching 

context word, 0 otherwise 

Table3 
Scoring Penalty CharactEristics 

i j 

The scoring function s generates a non-negative 
value for each example word wi, penalty 
characteristic c1 (Table 3), distance di of wi from 
the example anchor. In IITI, di is not 
considered, so a penalty calculation is 
independent of the word position in the example. 
In IIT2, di reduces penalties for wi further away 
from the example anchor. 

If an example anchor alignment with the 
context word is the only open-class match for an 
example, the example receives a zero score. 

Haynes (200 1) describes these calculations in 
more detail. 

A sense of a target word receives the 
maximum score of the examples related to that 
sense. The systems suggest the sense(s) with the 
highest score, with multiple senses in the 
response in the event of ties. (If a tie occurs 
because the same example was included for two 
senses, the other senses are eliminated, the 
common example is dropped from the example 
set of the remaining senses, and the sense scores 
are recomputed.) If no sense receives a score 
greater than zero, the first sense is chosen. 

IIT 1 and IIT2 match a context word 
independent of other sense assignment 
decisions. The IIT3 system (English All Word 
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Course Grained Fine Grained 
System Precision/Recall Precision/Recall 
!IT! Lexical Sample 34.1% I 33.6% 24.3% I 23.9% 
IIT2 Lexical Sample 34.6%134.1% 24.7% I 24.4% 
Baseline Lesk 33.1%133.1% 22.6% I 22.6% 
Best Non-Corpus 36.7%136.7% 29.3% I 29.3% 

Table 4 
SENSEV AL-2 English Lexical Sample Results 

Course Grained Fine Grained 
System Precision/Recall Precision/Recall 
I!Tl All Word 29.4%129.1% .. 28.7%/28.3% .. 
IIT2 All Word 33.5% I 33.2% * 32.8%/32.5% .. 
IIT3 All Word 30.1%129.7%* 29.4%/29.1%* 
Best Non-Corpus 46.0% I 46.0% 45.1%145.1% 

TableS 
SENSEV AL-2 English All Word Results 

task only) uses the IITI scoring algorithm for 
target words, but limits the senses of preceding 
context words to the sense tags already assigned. 

3 Results 

Table 4 and Table 5 show the results for IITl, 
IIT2 and IIT3 as well as that of the Lesk 
Baseline (English Lexical Sample task) and the 
best non-corpus based system, the CRL DIMAP 
system. The SENSEVAL-2 (2001) website 
presents the complete competition results as well 
as the CRL DIMAP and baseline system 
descriptions. 

The IITl and IIT2 performed better than the 
comparable baseline system but not as well as 
the best system in its class. The IIT3 approach 
improves on the performance of IITl by using 
its prior annotations in tagging subsequent 
words. 

Due to time constraints, the English All Word 
submissions only processed the first 12% of the 
corpus. The recall values marked * consider 
only those instances attempted. 

4 Discussion 

Many of the examples in WordNet were the 
result of lexicographers expanding synset 
information to clarify sense distinctions for the 
annotators of the Semcor corpus (Fellbaum, 
1998). This makes a compelling argument for 
the use of these WordNet examples to assist in a 
computational disambiguating process. 

The examples for rare word senses could be 
used to provide corpus-based statistical methods 
with additional evidence. Such an approach 
should help address the knowledge acquisition 
bottleneck. 



The implementation and results presented here 
do not seem to justify this optimism. There are 
several reasons, though, why the method should 
not be dismissed without further investigation: 

• The example sets were empty for a number 
of the candidate word senses. When this 
occurred, the system constructed a pseudo 
example by appending the WordNet gloss 
to the target word. This was sufficient for 
most collocation senses and some non­
collocation senses such as call as in calling 
a square dance (where the gloss includes 
square and dance, one of which is highly 
likely to occur in any use of the sense). 
Others such as day as in sidereal day or 
turn off (gloss cause to feel intense dislike 
or distaste) competed at a disadvantage. 

• The pattern matching and scoring methods 
were never tuned against any corpus data. 
This allowed the algorithm to have few 
competitors in the class of untrained 
systems, but scoring methods relied on 
intuition-founded heuristics. Such tuning 
should improve precision and recall. 

• The approach was developed to be used in 
tandem with statistical approaches. Further 
research is required before its additive 
value can be fully assessed. IIT3 would 
have done better to be based on IIT2 and an 
approach maximizing the scores for a 
sentence should do even better. 

• The best-matching example was chosen 
regardless of how bad a match was 
involved. The system also defaulted to the 
first sense encountered when all examples 
had a zero score. Using threshold score 
values may well provide substantial 
precision improvements (at the expense of 
recall). 

• Semantic annotation of the WordNet 
examples should improve the results. 

In addition, the following programming errors 
affected the precision and recall results: 

• The generated answers for many adjective 
senses (those with similarity relations)were 
incorrectly formatted and were therefore 
always scored as incorrect. For example, in 
the IITl entry for the English Lexical 
Sample, 7.1% of all annotations were 
incorrectly formatted. Scoring only the 
answers that were correctly formatted 
raises the course-grained precision for liT 1 
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to 36.7% and fme-grained precision to 
26.1 %, competitive with the course-grained 
performance of the best non-corpus system. 

• No annotations were generated for target 
words preceded by the word to. This 
results in recall j precision as seen in Table 
4 and Table 5. 

• In a few rare cases, the system identified 
the incorrect example word as the example 
anchor. One such occurrence was the 
synset art, fine art and the example a fine 
collection of art. The system considered it 
an example of the fine art collocation and 
chose fine as the anchor. 

5 Conclusion 

The approach presented here does not appear to 
be sufficient for a stand-alone word sense 
disambiguation solution. Whether this method 
can be combined with other methods to improve 
their results requires further investigation. 
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Abstract 
We report on the use of machine learning tech­
niques for word sense disambiguation in the 
English all words task of SENSEVAL2. The 
task was to automatically assign the appropri­
ate sense to a possibly ambiguous word form 
given its context. A "word expert" approach 
was adopted, leading to a set of da~:~~:~ifier~:~, each 
specialized in one single word form-POS combi­
nation. Experts eonsist of multiple classifiers 
trained on Semcor using two types of learn­
ing techniques, vi~. memory-based learning and 
rule-induction. Through optimi~ation by cross­
validation of the individual classifiers and the 
voting ~:~cheme for combining them, the be~:~t 

possible word expert was determined. Results 
show that especially mernory-ba..qed learning in 
a word-expert approach is a feasible method for 
unrestricted word-sense disambiguation, even 
with limited training data. 

1 Introduction 
We report on the use of machine learning, 
especially memory-ba~:~ed learning and da~:~~:~i­

fier combination, for word sense disambiguation 
(WSD) in the English all words task of SEN­
SEVAL2. WSD can be described as the prob­
lem of a..qsigning the appropriate sense to a given 
word in a given context. Machine learning tech­
niques show state-of-the-art accuracy on WSD, 
e.g. memory-based learning (Ng and Lee, 1996; 
Veenstra et al., 2000), deci~:~ion li~:~ts (Yarow~:~ky, 
2000), and combination method:,; (E~:~cudero ct 
al., 2000). 

Results of the first SENSEVAL exercise for 
English (Killgarriff and Rosenzweig, 2000), in 
which only a restricted set of words had to be 
disambiguated, showed that supervised learn­
ing systems outperform unsupervised ones , even 
when little corpu:,; training material wa:,; avail-

able. In our submission to SENSEVAL2. we in­
vestigated whether the supervised learning ap­
proach can be scaled to the all-words task. As a 
back-off for word-tag pairs for which no or not 
enough training data wa:,; available, we used the 
most fi·equent sense in the WordNetl.7 sense 
lexicon (Fellbaurn, 1998) as default classifier in 
the disambiguation process. Sense disambigua­
tion was mainly performed by a memory-based 
learning classifier. Also the use of rule induc­
tion was explored. F\trthermore, the outputs of 
these different classifiers were combined in order 
to study the usefulness of different voting strate­
gies. Results show that all classifiers outperform 
the WordNet baseline and that memory-based 
learning compares favorably to rule induction 
and different voting strategies. 

In the remainder of this paper, we first out­
line the sen~:~e-di~:~ambiguation architecture used 
in the experiments, and discuss the word ex­
pert approach and the optimization procedure. 
Then we report on the generalization accuracy 
achieved for the SENSEVAL2 test data. 

2 Experimental Setup 
2.1 Preprocessing 

In the experiments, the Semcor corpus included 
in WordNetl.6 was used as training eorpus. In 
the corpus, every word is linked to its appropri­
ate sense in the lexicon. Texts that were used 
to create the semantic concordances were ex­
tracted from the Brown Corpus and then linked 
to sense:,; in the WordNet lexicon. The training 
corpus consists of 409,990 wonlfonns, of which 
190,481 are sense-tagged. For each word fi.mn 
in the corpus, a lemma and a part of speech is 
gtven. 

The test data in the English all words task 
consist of three articles on different topics , with 
at total of 2,473 words to be sense-tagged. For 
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nation 111 ignoring its sense). In addition, we 
also took into account the frequency of a pos­
sible keyword in the complete training corpus 
Nkcorp· 

( I k) N ., kloc ( 1 ) 
P 8 ' = N~,loc: X l''l\ wr p 

A word is a keyword for a given sense if (i) the 
word occurs more than M1 times in that sense 
.s. where M 1 is a predefined minimum number 
of times and if (ii) p(slk) ~ M2 fi.n· that senses, 
where M 2 is some predefined mininmm proba­
bility. Due to time restrictions M1 was not op­
timi:6ed by cross-validation, but arbitrarily set 
to 3 and M 2 to 0.001. 

In addition to the keyword information ex­
tracted from the local context of the focus word, 
possible disambiguating content words were also 
extracted from the examples that accompany 
the different sense definitions for a given focus 
word in WordNet. For each combination of a 
word form, POS and sense, all content words 
were extracted and added to the input vector 
of the memory-based learner. Both the contex­
tual keywords and the example keywords were 
represented as binary features , with a value of 
1 when the keyword was present in the example 
and 0 if not3

. 

The third subcomponent of each word expert 
was trained with Ripper (Cohen, 1995), a rule 
learning algorithm, allowing both single-valued 
and set~vafued attributes. In our disambigua­
tion task, the ripper input vector contained lo­
cal context feature values (as the first TiMI3L), 
and a set-valued feature with all content words 
in a context of three sentences. 

3 Optimization and Voting 

In order to improve the predictions of the dif­
ferent single learning algorithms, algorithm pa­
rameter optimi:6ation was performed where pos­
sible. Furthermore, the possible gain in accu­
racy of different voting strategies was explored. 

3.1 Optimization 

For the first TiMBL memory-based learner, 
backward sequential selection (I3SS) (Aha and 

3Since no length limitations were taken into account 
·when building these vectors, they could gro-w very large. 
Therefore, a version of Til'viBL v.-as used that is opti­
mized for .sparse binary features, and allows a. positional 
representation of the active keyvmrds rather than a bi­
nary one, written by Ja.kub Zavrel. 

Dankert, 1994) was performed for each word 
fonn-POS combination. I3SS starts from the 
complete feature set and generates in each iter­
ation new subsets by discarding a feature. The 
feature string with the best performance is re­
tained. Furthermore, the use of different fea­
ture weighting possibilities was explored, viz. 
gain ratio weighting, information gain weight­
ing, chi-squared weighting and shared variance 
weighting. For each feature weighting possi­
bility, the k value, representing the number of 
nearest neighbours used for extrapolation, was 
varied between 1 and 19. Leave-one-out was 
used as testing method: testing was done on 
each instance of the training file, while the re­
mainder of the training file functioned as train­
ing material. 

Due to the siz;e of the feature vectors for 
the second memory-based learner, which takes 
content words from the surrounding sentences 
and from the example sentences in the Word­
Net definitions as input, no feature selection 
was pedi.n·med. For the same reasons, 10-fold 
cross-validation was used as testing method: the 
training data was split into 10 different parts 
and in each iteration, one part served as test 
set, while the remainder was used to train the 
classifier. The k value was varied ( 1-19), dif­
ferent weighting techniques (gain ratio weight­
ing, chi-s<inared weighting and log likelihood 
w~ighting) and different distance metrics (nmn­
ber of mismatches, number of matches, number 
of matches minus number of mismatches) were 
explored. 

For Ripper, the default parameter settings 
were used, due to time constraints and the slow­
ness of the cross-validation process. H)-fold­
cross-validation was used as testing method. 

3.2 Voting 

On the output of these three (optimi:6ed) classi­
fiers and the default WordNetl.7. most frequent 
sense, both majority voting and weighted vot­
ing was performed. In case of majority voting, 
each sense-tagger is given one vote and the tag 
with most votes is selected. In weighted vot­
ing, more weight is given to the taggers with 
a ltigher overall accuracy. In case of ties when 
voting over the output of 4 classifiers, the first 
decision (TiMI3L) was taken as output class. 
Voting was also performed on the output of the 
three learning classifiers without taking into ac-



I Classifier I no. WE I 

Default (WordNet1.7) 16 
TiMBL (context) 155 
TiMBL (keywords) 185 
.Ripper 16 
Majority Voting 33 
Weighted Voting 58 
Majority Voting (no WordNet) 53 
Weighted Voting (no WordNet) 52 

1 568 

Table 1: Best performing word experts on the 
Semcor train set 

count the WordNet class. Table 1 shows the 
best performing classifiers per word form-POS 
combination of the Semcor train set: both op­
timized memory-ba..<;ed learners outperform the 
other classifiers. 

4 Results 
Table 2 shows the accuracy of our disambigua­
tion system on the English all words test set. 
Since all 2,4 73 word forms were covered, no dis­
tinction is made between precision and recall. 
An accuracy of 63.61% and 64.54% were ob­
tained according to the fine-grained and coarse­
grained SENSEVAL2 scoring, respectively. Just 
as in the first SENSEVAL task for English (Kill­
garriff and Rosenzweig, 2000), top performance 
was f()r the nouns. All 86 "unknown" word 
forms, for which the test set annotators decided 
that no WordNetl.7 sense-tag was applicable, 
were obviously incorrectly classified. 

I key I fine% I coarse% 

noun (%1) UJ67 74.51 75.45 
verb (%2) 554 47.83 49.64 
adj. (%3- 465 62.58 63.44 
%5) 
adv. (%2) 301 73.42 73.42 
unkn. 86 0.00 0.00 

I total 1 2,473 1 63.61 1 64.54 

Table 2: Results on the SENSEVAL2 test data. 

5 Conclusion 
This paper reported on the architecture and the 
results of the CNTS-Antwerp automatic disam­
biguation system in the context of the SENSE­
VAL2 English all words task. Disambiguation 

per word form-POS pair is performed through 
the application of word experts trained on local 
context information and cross-validated on the 
limited available training data. Among these 
word experts, optimized memory-based learning 
proves to be more accurate than default Ripper 
rule-induction and various voting strategies. 
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Abstract 

The Stanford-CS224N system is an ensemble of sim­
ple classifiers. The first-tier systems are heteroge­
neous, consisting primarily of naive-Bayes variants, 
but also including vector space, memory-based, and 
other classifier types. These simple classifiers are 
combined by a second-tier classifier, which variously 
uses majority voting, weighted voting, or a maxi­
mum entropy model. Results from SENSEVAL-2 lex­
ical sample tasks indicate that, while the individual 
classifiers perform at a level comparable to middle­
scoring team's systems, the combination achieves 
high performance. In this paper, we discuss both 
our system and lessons learned from its behavior. 

1 Introduction 

The problem of supervised word sense disam­
biguation (wsD) has been approached using 
many different classification algorithms, includ­
ing naive Bayes, decision trees, decision lists, 
and memory-based learners. While it is un­
questionable that certain algorithms are better 
suited to the WSD problem than others (for a 
comparison, see Mooney ( 1996)), it seems to be 
the case that, given similar features as input, 
various algorithms do not behave dramatically 
differently. This was seen in the SENSEVAL-2 re­
sults where a large fraction of the systems had 
scores clustered in a fairly narrow region. 

We began building our system with 23 su­
pervised WSD systems, each submitted by a 
student taking the natural language processing 
course (CS224N) at Stanford University. Stu­
dents were free to imple1pent whatever WSD 

This paper is based on work supported in part by the 
National Science Foundation under Grants IIS-0085896 
and IIS-9982226, by an NSF Graduate Fellowship, and 
by the Research Collaboration between NTT Communi­
cation Science Laboratories, Nippon Telegraph and Tele­
phone Corporation and CSLI, Stanford University. 
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Combimnion Classitier 

First-tier Classifiers 

Figure 1: Organization of the system. 

method they chose. While most implemented 
variants of naive Bayes, some implemented a 
range of other methods, including n-gram mod­
els, vector space models, and even memory­
based learners. Although none of these systems 
alone would have produced more than middle­
level performance on the SENSEVAL-2 task, we 
decided to investigate how they would behave 
in combination. 

In section 2, we discuss the first-tier classifiers 
in greater depth and describe our methods of 
combination. Section 3 discusses performance, 
analyzing what benefit was found from combi­
nation, and when. We also discuss aspects of 
the component systems which substantially in­
fluenced overall performance. 

2 The System 
Figure 1 shows the high-level organization of 
our system. First, each of the 23 classifiers is 
run with 5-fold cross-validation on the train­
ing data. Classifiers are ranked, for each word, 
based on their held-out accuracy. In any given 
run of the system, for some k, the top k clas­
sifiers are kept, while lower-ranking classifiers 
are discarded. These remaining classifiers are 
combined by one of three methods. 

• Majority voting: The sense output by the most 
classifiers is chosen. Ties are broken in favor of 
the highest-ranked classifier. 



• Weighted voting: Each classifier is assigned a vot­
ing weight (see below) and adds that weight to the 
sense it outputs. The sense receiving the greatest 
total weight is chosen. 

• Maximum entropy: A maximum entropy classifier 
is trained (see below) and run on the (classifier, 
vote) outputs from the first tier. 

We consider k in the range {5, 7, 9, 11, 13, 15}, 
and so, once the ranking of the first- tier clas­
sifiers is set, there are 18 possible second-tier 
classifiers. 

We train and test each (k, method) pair 
on the training data, again with 5-fold cross­
validation. The classifier type and k-value 
which perform best on the held-out data are 
chosen. Once the (k, method) pair is chosen, 
all first-tier classifiers, as well as the parameters 
for the second-tier combinator, are retrained on 
the entire training corpus. Each target word 
is considered an entirely separate task, and dif­
ferent first- and second-tier choices can be, and 
are, made for each word. Table 1 shows what 
second-tier choices were made for each word. 

2.1 Combination Methods 

Our second-tier classifier takes training in­
stances of the forms= (s, s1 , ... , sk) where sis 
the correct sense and each Si is the sense chosen 
by classifier i. We initially planned to combine 
students' classifiers using only a maximum en­
tropy model. Such a model has a set of features 
fx(s) where each feature fx is true over a sub­
set of vectors s. A conditional maximum en­
tropy model with such features assigns, for any 
given choices Si, a distribution over the possible 
senses s. This distribution is of the form: 

P( I ) _ exp Lx "Axfx(s, s1, ... , sk) s s l ' . . . ' s k - -:cc-----=--=~-=-.::_:::_:._:__::_:____:___::_:..___ 

Lt exp Lx "Axfx(t, SI, ... 'Sk) 

The intent was to design the features to recog­
nize and exploit "sense expertise" in the individ­
ual classifiers. For example, one classifier might 
be trustworthy when reporting a certain sense 
but less so for other senses. However, there was 
nowhere near enough data to accurately esti­
mate parameters for such models.1 

In fact, we noticed that, for certain words, 
simple majority voting performed better than 

1 The number of features was not large, only one for 
each (classifier, chosen sense, correct sense) triple. How­
ever, most senses are rarely chosen and rarely correct, 
and so most features had zero or singleton support. 
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the maximum entropy model. It also turned 
out that the most complex features we could 
get value from were features of the form: 

fi(s, SI, · · ·, Sk) = 1 <=:=:? S =.Si 

However, with only these features, the maxi­
mum entropy approach reduces to a weighted 
vote; the s which maximizes the posterior prob­
ability P(sis1, ... , sk) also maximizes the vote: 

v(s) = Li Ai6(si = s) 
The indicators 6 are true for exactly one sense, 
and correspond to the simple fi defined above.2 

The sense with the highest vote value of v( s) will 
be the sense with the highest posterior proba­
bility P(sjs1, ... sk) and will be chosen. 

All three of our combination schemes can be 
seen as ways of estimating the weights Ai. For 
majority voting, we skip any attempt at statis­
tical estimation and simply assign each Ai to be 
1/ k. For the maximum entropy classifier, we 
estimate the weights by maximizing the likeli­
hood of a held-out set, using the standard liS 
algorithm (Berger et al., 1996). 

In weighted voting, we do something in be­
tween. We treat the <5 functions as probabilities, 
treat v ( s) as a mixture model, and do a single 
round of EM to update the Ai starting from uni­
form weights. As we move from majority voting 
to weighted voting to maximum entropy, the es­
timation becomes more sophisticated, but also 
more prone to overfitting. Since solving overfit­
ting is hard, while choosing between classifiers 
based on held-out data is relatively easy, this 
spectrum gives us a way to gracefully handle 
the range of sparsities in the training corpora 
for different words. 

2.2 Individual Classifiers 

While our first-tier classifiers implemented a va­
riety of classification algorithms, the differences 
in their individual accuracies did not primarily 
stem from the algorithm chosen. Rather, 
implementation details led to the largest 
differences. Naive-Bayes classifiers which chose 
sensible window sizes, or dynamically chose 
between window sizes tended to outperform 
those which chose poor sizes. Generally, the 
op_timal windows were either of size one (which 

2If the nth classifier en returns s as the sense, then 
6(sn = s) is 1, otherwise it is zero. 



detected syntactic or collocational cues) or of 
very large size (which detected more topical 
cues). Programs with hard-wired window sizes 
of, say, 5, performed poorly. Ironically, such 
middle-size windows were commonly chosen by 
students, but never useful; either extreme was 
a better design. 

Another implementation choice dramatically 
affecting performance, also for naive-Bayes, was 
the amount and type of smoothing. Heavy 
smoothing and smoothing which backed off con­
ditional distributions to the relevant marginal 
distributions gave good results, while insuf­
ficient smoothing or backing off to uniform 
marginals gave substantially degraded results. 3 

There is one significant way in which our first­
tier classifiers were likely different from other 
teams' systems. In the original class project, 
students were guaranteed that the ambiguous 
word would only appear in a single orthographic 
form. Since this was not true of the SENSEVAL-2 
data, we mapped the ambiguous words (but not 
their context words) down to a citation form. 
We suspect that this lost quite a bit of informa­
tion, since there is considerable correlation be­
tween form and sense, especially for verbs, but 
we made no attempt to re-engineer the student 
systems, and have not thoroughly investigated 
how big a difference this stemming made. 

3 Results and Discussion 

Table 1 shows the results per word, and table 2 
shows results by part-of-speech. A wide range 
of models are chosen, and the chosen model usu­
ally beats the best single classifier for that word, 
on average by 1.9%. The improvement over the 
globally best single classifier is even greater. 

Notably, if we use the test data as an oracle 
to chose the best combination method, rather 
than relying on held-out data, accuracy jumps 
by an average of 3.6%. This gap is dramati­
cally larger than the gap between the top scor­
ing systems for this SENSEVAL-2 task. While 
the knowledge of actual best performance is ob­
viously not available, one might suspect that a 
more sophisticated or better-tuned method of 

3In particular, there is a defective behavior with naive 
Bayes where, when one smoothes far too little, the cho­
sen sense is the one which has occurred with the most 
words in the context window. For skewed-prior data 
like the SENSEVAL-2 sets, this is invariably the common 
sense, regardless of what the context words are. 
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Figure 2: The accuracy of the various combina­
tion methods as the number of component systems 
changes. The best single classifier is chosen per word 
from held-out data and averaged. Chosen combina­
tion is also selected per word and averaged. 

choosing a final combination model might lead 
to significant improvement. 

Figure 2 shows how the three combination 
methods' average scores varied with the num­
ber of component classifiers used. A critical as­
pect of our system is that the first-tier classi­
fiers are very diverse, not only in implementa­
tion but also in performance. Initially, accuracy 
increases as added classifiers bring value to the 
ensemble. However, as lower-quality classifiers 
are added in, the better classifiers are steadily 
drowned out. The weighted vote and maxi­
mum entropy combinations are less affected by 
low-quality classifiers than the majority vote 
being able to suppress them with low weights: 
Still, majority vote was a good method to have 
around for words where weights could not be 
usefully set by the other methods. 

When combining heterogeneous classifiers, 
one would like to know when and how the 
combination will outperform the individuals. 
One factor is how complementary the mistakes 
of the individual classifiers are. We can mea­
sure this complementarity by averaging, over 
all pairs of classifiers, the fraction of errors 
that pair has in common. This gives average 
pairwise error independence. Another factor is 
the difficulty of the word being disambiguated. 
A high most-frequent sense baseline means 
that there is little room for improvement by 
combining classifiers. Figure 3 shows, for the 
overall top 7 first-tier classifiers, the absolute 
gain between their average accuracy and the 
accuracy of their majority. The x-axis is the dif­
ference between the pairwise independence and 
the baseline accuracy. The pattern is loose, but 
clear. The gain increases with complementarity 
and decreases with the baseline. 



Single Combination Oracle Chosen 
word base sngl vot7 wei? me7 best any used model 
art~n 41.8 58.2 53.1 54.1 52.0 58.2 74.5 58.2 we iS 
authority~n 33.7 70.7 70.7 70.7 68.5 76.1 92.4 72.8 wei5 
bar~n 39.7 72.2 61.6 64.9 70.2 71.5 86.8 65.6 me9 
begin-v 58.6 81.4 82.1 82.1 86.1 86.1 95.0 84.3 mel5 
blind-a 83.6 76.4 87.3 87.3 81.8 87.3 94.5 87.3 wei7 
bum-n 75.6 55.6 75.6 75.6 7!.1 75.6 9].] 64.4 me15 
call-v 25.8 25.8 31.8 30.3 24.2 33.3 65.2 25.8 me5 
carry·v 22.7 24.2 37.9 36.4 33.3 37.9 72.7 21.2 me15 
chair-n 79.7 82.6 81.2 81.2 82.6 82.6 84.1 82.6 me5 
channel-n 27.4 60.3 58.9 60.3 63.0 67.1 86.3 60.3 wei7 
child-n 54.7 79.7 54.7 54.7 78.1 78.1 89.1 75.0 me15 
church-n 53.1 73.4 75.0 75.0 75.0 76.6 90.6 75.0 rne5 
circuit-n 27.1 78.8 64.7 64.7 72.9 78.8 89.4 78.8 rne5 
collaborate-v 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 wei15 
colorless-a 65.7 62.9 62.9 65.7 65.7 68.6 85.7 62.9 vot7 
cool~a 46.2 53.8 55.8 55.8 48.1 59.6 84.6 48.1 rne5 
day-n 59.3 62.1 68.3 69.0 64.8 69.0 84.8 67.6 rne5 
detention-n 65.6 84.4 84.4 84.4 84.4 84.4 90.6 84.4 wei5 
tlevelop-v 29.0 29.0 34.8 34.8 34.8 42.0 69.6 33.3 votl3 
draw-v 9.8 24.4 31.7 24.4 24.4 31.7 43.9 24.4 me5 
dress-v 42.4 49.2 47.5 49.2 42.4 49.2 72.9 49.2 wei9 
drift-v 25.0 28.1 25.0 25.0 28.1 34.4 75.0 25.0 vot7 
drive-v 28.6 26.2 38.1 38.1 31.0 45.2 69.0 45.2 wei15 
dyke-n 89.3 92.9 92.9 92.9 92.9 92.9 96.4 92.9 vot5 
face-v 83.9 67.7 83.9 83.9 86.0 86.0 88.2 83.9 wei15 
faci!ity-n 48.3 67.2 67.2 69.0 63.8 74.1 91.4 65.5 wei15 
faithful-a 78.3 78.3 78.3 78.3 78.3 78.3 100 78.3 weil5 
fatigue-n 76.7 90.7 90.7 90.7 93.0 93.0 93.0 90.7 wei7 
feBling-n 56.9 49.0 56.9 56.9 60.8 60.8 88.2 56.9 wei9 
find-v 14.7 29.4 30.9 30.9 23.5 30.9 55.9 29.4 vot13 
fine-a 38.6 51.4 57.1 58.6 60.0 61.4 80.0 55.7 me5 
fit~a 51.7 82.8 89.7 89.7 79.3 89.7 96.6 89.7 wei9 
free-a 39.0 53.7 57.3 57.3 61.0 61.0 75.6 61.0 me9 
graceful-a 75.9 79.3 79.3 79.3 79.3 79.3 89.7 79.3 vot9 
green-a 78.7 83.0 83.0 83.0 85.1 85.1 92.6 84.0 rnel5 
grip-n 54.9 74.5 66.7 66.7 56.9 70.6 84.3 66.7 rne11 
hearth-n 75.0 62.5 75.0 62.5 62.5 75.0 87.5 75.0 vot15 
holiday-n 83.9 83.9 83.9 83.9 83.9 83.9 96.8 83.9 me15 
keep-v 37.3 47.8 38.8 50.7 47.8 52.2 68.7 47.8 me5 
1ady-n 69.8 77.4 79.2 79.2 77.4 79.2 83.0 79.2 wei7 
leave-v 31.8 40.9 42.4 45.5 37.9 45.5 75.8 43.9 votl5 
live-v 50.7 62.7 58.2 61.2 62.7 67.2 79.1 58.2 me15 
local-a 57.9 68.4 71.1 71.1 68.4 73.7 92.1 68.4 vot15 
rnatch-v 35.7 47.6 45.2 45.2 4.5.2 54.8 83.3 42.9 me15 
material-n 42.0 46.4 53.6 53.6 50.7 60.9 88.4 58.0 weill 
moutl-Hl 45.0 50.0 55.0 55.0 55.0 58.3 90.0 51.7 vot9 
nation-n 70.3 73.0 70.3 70.3 73.0 73.0 83.8 73.0 mel5 
natural-a 27.2 55.3 47.6 47.6 47.6 55.3 79.6 52.4 wei13 
nature-n 45.7 45.7 45.7 45.7 56.5 58.7 84.8 45.7 votS 
oblique-a 69.0 75.9 75.9 79.3 75.9 79.3 93.1 79.3 wei9 
play-v 19.7 37.9 39.4 40.9 37.9 45.5 68.2 40.9 wei7 
post-n 31.6 67.1 57.0 60.8 65.8 68.4 79.7 64.6 me13 
pull-v 21.7 25.0 28.3 25.0 30.0 35.0 71.7 33.3 rnell 
replace-v 53.3 53.3 53.3 53.3 53.3 55.6 88.9 53.3 vot7 
restraint-n 31.1 64.4 71.1 73.3 68.9 73.3 84.4 66.7 weill 
see-v 31.9 37.7 43.5 43.5 39.1 43.5 60.9 40.6 votl5 
sense-n 22.6 52.8 60.4 58.5 52.8 64.2 83.0 60.4 votll 
serve~v 29.4 54.9 60.8 62.7 58.8 66.7 76.5 56.9 vot15 
simple-a 51.5 54.5 51.5 51.5 54.5 54.5 83.3 53.0 rne5 
solemn-a 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 wei15 
spade-n 63.6 63.6 78.8 78.8 81.8 81.8 81.8 75.8 weil5 
stress-n 46.2 48.7 35.9 41.0 51.3 5!.3 89.7 51.3 me9 
strike-v 16.7 22.2 37.0 29.6 33.3 38.9 66.7 35.2 wei15 
train-v 30.2 54.0 54.0 54.0 52.4 60.3 84.1 55.6 weill 
treat-v 38.6 47.7 54.5 56.8 47.7 59.1 95.5 54.5 vot7 
turn-v 14.9 23.9 34.3 28.4 31.3 34.3 58.2 31.3 weill 
use·v 65.8 64.5 65.8 65.8 65.8 68.4 81.6 65.8 me9 
vital-a 92.1 92.1 92.1 92.1 92.1 92.1 92.1 92.1 wei15 
wander-v 80.0 80.0 82.0 82.0 80.0 82.0 82.0 80.0 mel5 
wash-v 25.0 66.7 33.3 58.3 50.0 58.3 83.3 25.0 vot15 
work-v 26.7 50.0 45.0 41.7 43.3 45.0 76.7 41.7 weil3 
yew-n 78.6 78.6 78.6 78.6 78.6 78.6 82.1 78.6 me15 

Table 1: Results by word. Single classifiers: base 
= most-frequent-sense baseline, sngl = best single 
first-tier classifier as chosen on held-out data for that 
word. Fixed combinations: vot = majority vote, wei 
= weighted vote, me = maximum entropy combina­
tion; all are shown for the top seven classifiers only. 
Oracle bounds: best = best combination system as 
measured on the test data, any = test cases where 
at least one first-tier classifier produced the correct 
answer. Actually chosen: model shows which model 
performed best according to held-out data, and used 
shows its performance, which were our results for 
the SENSEVAL-2 English lexical sample task. 
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Single Combination Oracle Chosen 
base sng! vot7 wei? me7 best any used 

I noun 
50.5 67.0 6fi.8 66.4 67.7 71.7 86.6 68.3 

adjective 57.8 67.1 68.0 68.4 67.8 71.1 86.7 68.6 
verb 40.2 49.8 52.8 53.0 52.1 56.8 76.9 52.3 

1 average 47.5 59.8 60.8 61.1 61.2 65.4 82.6 61.7 

Table 2: Results by part-of-speech, and overall. 
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Figure 3: Gain in accuracy of majority vote over 
the average component performance as (pair­
wise independence - baseline accuracy) grows. 

4 Conclusion 
We have demonstrated that the combination of 
a number of heterogeneous classifiers can lead 
to a substantial performance increase over the 
individual classifiers. Our system is robust to 
both the wide range of accuracy of the first-tier 
classifiers and to sparsity of training data when 
building the second-tier classifier. The system's 
overall accuracy is high, despite the medium 
level of accuracy of the component systems. 
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Abstract 

This paper describes the Sprakdata-ML 
system as used in the SENSEV AL-2 
exercise. The main focus of the paper is 
devoted to the process of feature extraction, 
preparation and organization of the test and 
training data. 

Introduction 

The methodology followed for sense 
disambiguation of the Swedish data by the 
Sprakdata-ML system is supervised, based on 
Machine Learning (ML) techniques, particularly 
Memory Based Learning (MBL). The MBL 
implementation we used originates from the 
university of Tilburg in a system called TiMBL; 
details can be found in Daelemans et al. ( 1999). 
Thus, our main contribution in this task has been 
the effort to try and isolate a set of features that 
could maximize the performance of the MBL 
software. However, it is rather difficult to give 
the exact number of features and examples 
required for an adequate description of a word's 
sense or which algorithm performs best. We 
think that there is space for improvement of our 
system's performance by better modeling of the 
available resources (e.g. context, annotations), 
choice of parameters and algorithms, a claim 
that we have not explored to its full potential, 
further exploration is required. Intelligent 
example selection for supervised learning is an 
important issue in ML, an issue that we have not 
fully explored. In previous experiments for a 
similar problem for Swedish, the algorithm that 
performed best in TiMBL was a variant of the k­
nearest neighbor (Mitchell, 1997) called IB 1, an 
algorithm that we also used in the exercise; 
(Kokkinakis & Johansson Kokkinakis, 1999). 
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1 Data Preparation (Train) 

To enhance the lexical disambiguation results 
using the available resources, we perform pre­
processing in both the dictionary and the text to 
be sense-disambiguated. This is motivated by 
the fact that by making certain normalizations 
and simplifications in the resources we 
(hopefully) contribute to the production of 
qualitatively better results. 

Initially, a text to be disambiguated is pre­
processed by a tokeniser, a sentence boundary 
identifier, an idiom1 and multiword identifier, a 
Name-Entity recogniser2, a part-of-speech 
tagger, a lemmatiser and a semantic tagger3. 
Then, the input texts are transformed to the 
specified format that the MBL requires, which is 
feature-vectors of a specific length and content. 
The vectors we use consist of 102 features, the 
last two being the id-number and class or sense 
assigned to the vector. Since we do not know in 
advance which features will be useful for each 
particular word and sense, we chose to include 
features from a number of different information 
sources. 

2 Vector Creation 

The vectors consisted of: (i) selected 
information gathered from the dictionary entries 
(5 features); (ii) near-context (5 features); (iii) 
annotations applied on the training corpus (5 

1 The idioms originate from the Gothenburg Lexical 
Data Base/Semantic Database (GLDB/SDB) 
(http://spraakdata.gu.se/lb/gldb.html) and were used 
for the recognition and marking of idioms in the 
test/training corpus (over 4,000 idioms). 
2 See http://spraakdata.gu.se/svedk/ne.html for a 
demo. 
3 The semantic tagger originates from work by 
Kokkinakis et al. (2000) and uses the SIMPLE 
semantic classes for annotation (only nouns). 



features); and (iv) information acquired from the 
lemmatised training corpus (85 features). 

The corpus instances and dictionary were in 
XML format. An example of a corpus instance 
(1) for the first sense of the noun barn 'child' and 
a fragment of its dictionary description (2) are: 

( 1) <instance id="barn.114"><answer 
instance="barn.114" senseid="barn_1_1" 
I> <context> ... forsoken sa att spiidbarnen 
sjalva kunde styra de retningar som de 
utsattes for under forsoket. !nom 
sprakforskningen betyder det att 
<head>barnen<lhead> kan paverka hur 
olika talljud presenteras. Nar de far ... 
</context> </instance> 

(2) <lemma-entry id="barn_1" form= "barn" 
pos="n" inflection="-et ="><lexeme id= 
"barn_1_1"><definition> manniska som ej 
vuxit fardigk/definition> <definition-ext>till 
kropp och sjal; under ngn aldersgrans som 
beror pa samman-hangek/definition-ext> 
<synt-example>kvinnor och - slapptes fria 
<lsynt-example><synt-example>- under 6 
ar kommer in gratis</synt­
example><Compound>spadbarn</compoun 
d> ... <cyc/e id=" barn_1_1_a"><trans>spec. 
om manniska som ej natt pubertetsalder, 
straff -myndighetsalder etc. </trans><synt­
example> annu nagot ar ar hon ett -</synt­
example><compound> barnarbete 
</compound><compound>barnavardsnamn 
d</compound><l cycle> ... <llexeme><lexe 
me> ... <cycle id=" barn_1_2_a"> <trans> 
av. utvidgat, spec. om foster </trans><synt-
example>hon ar med <lsynt-
example><valency>med </valency> 
<I cycle> ... <llexeme><l lemma-entry> 

2.1 Vector Creation (Dictionary) 

The modeling of the vectors was performed in 
stages. The first stage of the processing uses the 
information from the dictionary. For every sense 
and sub-sense we extracted five representative 
nouns from the definition (and the definition 
extension) by applying part-of-speech tagging, 
lemmatization and exclusion of a number of 
generic nouns from a stop-list e.g. manniska 
'human' (a). If the number of nouns were less 
than five, we completed the list with compounds 
(if available). 
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Furthermore, the syntactic examples were 
used as training corpus and were added to the 
training instances (b). The valency information 
(if any) was also used in the same way (c). 
Consequently the amount of training material 
increased with 1,296 "new" disambiguated 
instances. A "dummy" XXX instance-number 
was given in these cases. 

We did not put much effort on a more 
complex processing of the definitions since 
these are very short. The representations given 
below use the dictionary and corpus sample 
provided in (1) and (2). 

(a) <definition>manniska som ej vuxit 
fardigt<ldefinition><definition-ext>till 
kropp och sjal; under ngn aldersgrans som 
beror pa sammanhanget <!definition-ext> 
become: barn_1_1: kropp, sjal, aldersgrans 

(b) <synt-example>kvinnor och - slapptes 
fria<lsynt-example> 
become: <instance id="barn.XXX"> 
<answer instance="barn.XXX" senseid= 
"barn_1_1 "/> <context> kvinnor och 
<head>barn<lhead> slapptes fria 
<lcontext><linstance> 

(c) <valency>med -<!valency> 
become: <instance id="barn.XXX"> 
<answer instance="barn.XXX" senseid= 
"barn_1_2_a"/><context> med <head>barn 
</head> <lcontext><linstance> 

2.2 Vector Creation (Near Context) 

The second stage involved the use of the near­
context. Punctuation, auxiliary verbs and a 
number of other stop-words were removed and 
the surrounding tokens (±2) of each headword in 
the corpus were extracted (d). Only the lemma 
form of the headwords was used, and the context 
was not lemmatized: 

(d) <instance id="barn.114"><answer 
instance="barn.114" senseid= "barn_1_1" 
!><context>... sprakforskningen betyder 
€let att <head>barneR-</head> kaf! paverka 
l1tlf olika ... </context> <!instance> 
became: <instance id="barn.114"> 
<answer instance="barn.114" senseid=" 
barn_1_1 "l><context>sprakforskningen 
betyder <head>barn<lhead> paverka olika 
<context><linstance> 



2.3 Vector Creation (Global Features) 

During the third stage, the training corpus was 
processed by a n(\me-entity recognizer (e.g. 
HUMAN, TIME), an idiom identifier (IDIOM) and 
a semantic tagger (e.g. BIO, ETHNOS, 
PHENOMENON). The annotations produced by 
these tools were gathered in the form of a list of 
labels, and the five most frequent in the 
respective set of instances for each sense and 
sub-sense were used in the vectors. For example, 
for the sense barn_1_1 the five most frequent 
annotations found in all training instances were: 
BIO, ORGANIZATION-AGENCY, LOCATION, SITU 
and OCCUPATION-AGENT. 

2.4 Vector Creation (Global Context) 

Often, near-context cannot distinguish between 
different senses. In such cases it is useful to look 
at a larger context and extract keywords 
representative for each sense. We made a 
frequency list of all noun and verb occurrences 
for all corpus instances for each sense. From the 
produced lists, 85 keywords per sense were 
extracted by eliminating high frequency (a word 
occurred in more than X percent of the cases 
with the sense) and low frequency words (a 
word occurred at least Z times in the list). For 
the sense barn_1_1 the 85 keywords included: 

ansikte, ansvar, apparatur, arm, awikelse, 
barnmorska, barnomsorg, beredskap, 
betala, bild, detalj, dialog, djur, docka, 
erfarenhet, tel, f6restallning, f6rslag, ... 

After the collection and combination of the 95 
features common to a sense (stages i, iii, iv in 
Section 2, e1), a complete case for a sense was 
produced (e2): 

(e1) Lemma_SENSE: 5 words from the 
dictionary information, 5 "semantic" labels, 
85 representative words from the global 
context 

( e2) barn_1_1: kropp, sjii.l, smabarn, spadbarn, 
aldersgrans, 810, ORGANIZATION-AGENCY, 
LOCATION, SITU, OCCUPATION-AGENT, 
ansikte, ansvar, apparatur, arm, avvikelse, 
barnmorska, barnomsorg, ... 

We assume then, that .for each training instance 
the above list is "true" and we convert the 
training instances into vectors of 102 features, 
where the 95 positions of the features in each 
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vector were substituted with '1' keeping intact 
the near context. Thus, the truncated training 
instance in (f) was re-formatted to (g): 

(f) <instance id="barn.114"><answer 
instance="barn.114" senseid= "barn_1_1" 
l><context>sprakforskningen betyder 
<head>barn<lhead> paverka olika 
<context><linstance> 

(g) sprlliorskningen, betyder, <head> bam 
<!head>, paverka, olika, 1, 1, 1, 1, 1, 1, 
1, ... , bam.l14, bam_l_l. 

3 Data Preparation (Test) 

The test material consisted of 1,525 corpus 
instances in the same format as the previous 
training example, but without any designation of 
the correct senseid. The material was processed 
in a similar manner as the training one. The 
major difference lies in the fact that at the 
vector-creation stage we used the feature-vectors 
representative for a sense, example (e) 
previously, and we compared them with the 
features produced for each test instance. A 
feature at a specific position then was assigned 
'1' if the feature in the test occurred in the 
representative feature vector or '0' otherwise. 
For instance, the test instance in (h) was 
transformed, after processing, to a 102-feature­
vector. 

(h) <instance id="barn.114"><answer 
instance="barn.114" senseid= "??????" 
l><context>l jungfrukammaren innanf6r 
k6ket bodde en kokerska och en husa. [ Ett 
hus fyllt av minnen ] Huset ar fyllt av minnen. 
I fotoalbumen kan vi se farmor omgiven av 
sina sma vitkladda <head>barn<lhead> och 
pappa i sj6manskostym lutad mot en bj6rk. I 
farfars svarta, snidade skrivbord 
</context> <!instance> 

The class of the representative sense-vector that 
produced more '1 's for the test instance was 
chosen as the class of that instance. In (i) there 
are four '1 's which means that the specific test 
instance had four common features with the 
representative vector for sense barn_1_2_a, and 
less than four for all the other representative 
vectors for the rest of the senses for barn. Thus, 
the class for the test instance is assigned that 
sense (which may be altered by the MBL 
software during the nearest-neighbor 



calculation). Thus, the test instance in (h) was 
transformed to the format illustrated in (i). The 
four '1 's denote that there were four features in 
common with the representative vector for 
barn_1_2_a, the rest of the representative sense­
vectors for barn (e.g. barn_1_1_a, barn_1_1_b 
etc.) had less common features than four, and so 
barn_1_2_a was chosen: 

(i) sma, vitkladda, <head>barn</head>, pappa, 
i,O, 0, 0,0,0, 1, 0, 0, 0,0,0, 1, 1, 1, 0,0,0, 
0,0, 0,0,0,0, 0, 0,0,0,0, 0,0,0, 0, 0, 0,0, 
0,0, 0,0,0,0, 0,0,0,0,0, 0,0,0, 0,0, 0,0, 
0,0,0,0,0,0, 0, 0,0,0,0, 0,0,0, 0, 0, 0,0, 
0,0, 0,0,0,0, 0, 0,0,0,0, 0,0,0, 0, 0, 0,0, 
0, 0, 0, 0, 0, 0, barn.114, barn_1_2_a 

The training and test feature vectors were then 
fed to the TiMBL software, where the IB 1 
algorithm (nearest neighbor search) was used. 

4 Results 

Table 1 shows the evaluation of the test material. 
Since answers were provided for the whole 
material, precision and recall obtain the same 
value. Coarse-grain evaluation was not used, 
however coarse-grained is considered the least 
interesting of the three measures. 

INSTANCES FINE 

ADJECTIVES 191 48,2% 
NOUNS 616 71,3% 
VERBS 718 57,8% 
MOST FREQ. 

45,3% 
BASELINE 

WHOLE 1,525 62,0% 
SAMPLE 

Table 1. Official results for the 
Spril.kdata-ML system 

Conclusion 

MIXED 

54,4% 
74,9% 
66,1% 

68,2% 

The existence of sense ambiguity (polysemy and 
homonymy) is one of the major problems 
affecting the usefulness of basic corpus 
exploration tools. In this respect, we regard 
sense disambiguation as a very important 
process and component when it is seen in the 
context of a wider and deeper text-processing 
architecture. In this paper we have described a 
simple feature-vector extraction approach to 
sense disambiguation that was utilized in a MBL 
software. We do not believe that we have fully 
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exploited the capabilities of either the software 
or the way we can model the available resources. 
These issues will be investigated in the future, as 
well as the evaluation of the sense-tagger on an 
even larger scale. 
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Abstract 

We propose a translation selection system based 
on the vector space model. 

When each translation candidate of a word 
is given as a pair of expressions containing the 
word and its translation, selecting the transla­
tion of the word can be considered equivalent to 
selecting the expression having the most similar 
context among candidate expressions. The pro­
posed method expresses the context information 
in "context vectors" constructed from content 
words co-occurring with the target word. Con­
text vectors represent detailed information com­
posed of lexical attributes( word forms, semantic 
codes, etc.) and syntactic relations (syntactic 
dependency, etc.) of the co-occurring words. 

We tested the proposed method with the 
SENSEVAL-2 Japanese translation task. Preci­
sion/recall was 45.8% to the gold standard m 
the experiment with the evaluation set. 

1 Introduction 

The SENSEVAL-2 Japanese translation task de­
fines a sense of a Japanese word as an English 
translation. The same Japanese word in differ­
ent contexts may have different English trans­
lations; therefore, translation ambiguity arises. 

Translation Memory (henceforth TM) defin­
ing word senses were given to the task partic­
ipants. Each target word has translation pairs 
of Japanese and English expressions as word 
sense candidates1. The target word is marked 
in the Japanese expression, but the correspond­
ing part is unspecified in the English expression. 
Hence, selecting the most appropriate transla­
tion of the target Japanese word in the evalua­
tion expression can be considered to be equiv­
alent to selecting the expression with the most 
similar context in the TM. This is equivalent 
to the word sense disambiguation problem in a 
single language. 

1 Each target word has 21.6 pairs on average. 
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Generally, word sense disambiguation uses 
context information, such as the frequency of 
words that co-occur with the target word. 
The context information is learned from the 
correctly-annotated training corpora. However, 
no training corpus was given for the task and 
the given TM had shorter contexts because the 
TM expressions were rather incomplete. There­
fore, instead of learning the co-occurring words 
with the target word from the training corpora, 
we extract detailed information from the TM 
expressions as context information. We utilize 
the information of co-occurring words with the 
target word (context words) as shown below. 

• lexical attributes (word form, part-of­
speech, semantic codes on thesaurus, etc.) 

• syntactic relations to the target word (de­
pendency relation, etc.) 

We employed the vector space model, which is 
used for text retrieval (Salton and McGill, 1983) 
to calculate the similarity between the context 
word information of evaluation expressions and 
those of the TM. The detailed context informa­
tion are expressed as "context vectors." We use 
cosine values between context vectors as a mea­
sure of similarity. 

In this paper, we will explain first how to con­
struct "context vectors," and then show the ac­
curacy of the selection experiment to the correct 
data (gold standard). 

2 Translation Selection Using 
Context Vectors 

2.1 Context Vectors 

2.1.1 Concept 
We will explain how to construct a context vec­
tor from an expression e1 with the target word 
"rEI, (aida; interval)", as an illustration. 

Figure 1 shows the expression, which con­
tains the content words ":;Kpft} (fuuju; married 
couple)", "-f-1:lt (kodomo; child)", and "JiiitL 



Table 1: Context Vectors Construction 

Type ot syntactic relationship to the target word 
modifying target word modihed by target word 

target following all context 
in case relation: in case relation: 

word 
... 

words words wu NU NJ ... wu NU JVJ . .. 

( e1) 
fv:u.fu-no aida-ni kodomo-ga umarcru 

":}cfrm (/) rs~ f: ~itt "/J{ .ilEitL-0 (a baby is born to the couple)" 

kodomo fuufu 
¢ fuuju ¢ ¢ ¢ ¢ umareru ¢ aida ... kodomo 

umareru umareru ( 
(e2) 

shigoto-no aida-wo nutte mirnai-ni iku 
".f± $- (!) Fs~ ~ 'd;;. .-_;, l" J%1fv' f;: 1'1 < (to visit in hospital at the interval during one's work)" 

nutte shiqoto 

¢ shigoto ¢ ¢ nutte ¢ ¢ ¢ aida nutte ... mzmaz mimai 
iku iku 

( 
'-v-" '--v--"' ~ 

Amodifying_TW Amodified_by_TW : Atarget: · · · : ),follow 

The ratio of vector components for each word attribute 

6 ( umareru; be born)", and shows that the 
phrases containing these content words have 
some syntactic dependencies. 

We then prepare a table that enumerates all 
possible syntactic relations between target word 
and context words, as in Table 1. For each ex­
pression, we then insert corresponding words to 
the column for each syntactic relation. For ex­
ample, the row for e1 of Table 1 can be obtained 
by the enumeration of expression e1. If a syntac­
tic relation is applicable to several words, such 
as the relation "following words" in Table 1, all 
of them are enumerated in the same column. 
If no content word comes under the syntactic 
relation, it is assigned empty ( ¢). 

Each row of the table is designated a "context 
vector" Ce of a corresponding expression e. 

2.1.2 Calculation of Context Vectors 
In the preceding section, the table was explained 
as if it had context words in its elements, but 
"word attribute vectors" of context words are 
assigned to them practically. Hence, context 
vectors are the conjunctions of "word attribute 
vectors." Each word attribute vector aw of a 
word w expresses lexical attributes of w, such as 
POS or semantic code. Word attribute vectors 
have a fixed dimension number, and each ele-

( couple between child is born ) 
fuufu-no aida-ni kodomo-ga umareru 

Expression: ~~W (]) ~ (:: -=f-1~ f:J\ ~a::tL{) 
'---"' ........ '---"' j( 

Syntactic NO ~ 
D d . Nl GA epen enc1es: 

Figure 1: Syntactic Dependencies m Expres­
SIOn e 1 
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ment has a non-negative value. The procedure 
for constructing word attribute vectors will be 
described below in Section 2.1.3. 

When several context words fall under 
the same syntactic relation like kodomo and 
umareru as we can sec in the "following words" 
relation in Table 1, the word vectors assigned to 
the relation is calculated by selecting the max­
imum value for every vector component among 
values of all words in that relation. The calcu­
lation named vecmax is defined as follows: 

where 

vecmax ai = (b1, b2, ... , bn), 
z=l. .. m 

{ 
ai is a n-dimensional vector, 
aij is a j-th element of vector ai, and 
bj = _max aij· 

z=l. .. m 

When joining word attribute vectors into a 
context vector, each word attribute vector is 
given a weight in order to get a certain ratio of 
vector components for each syntactic relation. 
This is necessary to specify the degree of the 
contribution to the context vectors according to 
the type of syntactic relation. For example, as­
suming that the ratio of the vector components 
is specified using Asyn_rel ( syn_rel denotes a spe­
cific syntactic relation type) as shown in Ta­
ble 1, the context vector Ce1 of the expression 
e1 will be calculated as follows: 

EB Amodifying_TW · lafuuful EB 
afuufu 

aumareru 
EB Amodified_by_ TW · I I EB .. · 

aumareru 



Table 2: Constructing Word Attribute Vectors 

u-ma-re-ru 

afuufu = ( TJe_form TJ e_pron 0 0 
akodorno = ( 0 TJe_fonn 0 0 'T]e_pron 0 0 0 

a.umar·ertl == ( 0 0 TJe_fonn 0 0 'T]e_pron 0 7]po.s 

Type of syntactiC attriDute 
Semantic Coae 

N86 N85 N74 N72 N5 N4 

0 0 !1flJ? 7 7 Jf 
~ ~ ~· ~ ~ 

'!)_scm 
.,g 79 

0 0 0 0 0 0 

ffi \ aaida 
w /\target · -

1 
--

1 
EB · .. 

a aida 
vecmax ai 

iE { kodomo, umareru} 

I vecmax ail 
iE{ kodomo, umareru} 

EB Ajollow · 

EB >-au· 
vecmax ai 

iE {fuufu, kodomo, umareru} 

I vecmax ai ~-
iE {fuufu,kodomo, umareru} 

2.1.3 Word Attribute Vectors 
For lexical attributes, we prepare another table 
similar to that for context words described in 
the previous section. Table 2 shows that theta­
ble enumerates attributes for all words appear­
ing for each lexical attribute. For each word, 
values are assigned to the column correspond­
ing to the lexical attribute. The value zero is as­
signed to the column when the lexical attribute 
is not applicable to the word. In Table 2, the 
lexical attributes of each context word in ex­
pression e1 are expressed in each row. The row 
is called "word lexical attributes" aw of the cor­
responding word w. 

We employ the semantic codes of a Japanese 
thesaurus as the semantic attributes. A seman­
tic code may have superordinates because a the­
saurus represents semantic relations on the hi­
erarchical tree structure. For example, the word 
fuufu has semantic codes on seven levels, from 
"Noun 7 4'' on the leaf node to "Noun 1" on the 
top, in the thesaurus "Nihongo Goi Taikei (Ike­
hara et al., 1997)" that we used. We treat all 
semantic codes as semantic attributes of word 
attribute vectors, and assign values to the cor­
responding elements equally. 

Each lexical attribute of a word attribute vec­
tor should be assigned a value, the ratio of com­
ponent vectors for each word lexical attribute 
being the specific value Tfword_attr ( word_attr de-

N3 N2 'Nl P26 Pl7 Pl6 Pl ... 
;Jf :]!!' 7 0 0 0 0 0 

~ !jf1 ~ 0 0 0 0 0 
0 0 0 ~ 7f 7 ~ 0 

notes a specific word attribute type) in Table 2. 
Semantic attributes may have multiple compo­
nents to be assigned values, each component 
should be normalized by the number of the com­
ponents (See Table 2). 

2.2 Translation Selection 

To select an appropriate translation for an eval­
uation expression containing a target Japanese 
word, we need to compare the context vector of 
the evaluation expression with the context vec­
tors of all candidate Japanese expressions in the 
TM. We then choose the candidate whose cosine 
value to the context vector of the evaluation ex­
pression is the maximum. 

Each expression should have a unique con­
text vector in order to compare context vectors. 
But context words, like target words, have am­
biguity, and they have several candidates for se­
mantic codes in the thesaurus. It seems unac­
ceptable that the method requires disambigua­
tion of context words before disambiguation of 
the target word. Therefore, we decided not to 
disambiguate context words before constructing 
the context vector. Instead, we construct "con­
text vector candidates" from all combinations 
of the context word candidates. All combina­
tions of the context vector candidates are used 
for calculating similarity, and the combination 
that has the maximum value is selected as the 
pair of the evaluation and the TM expressions. 
We can resolve ambiguity of context words when 
selecting the translation of the target word. 

3 Description of Participating 
System 

3.1 Resources, etc. 
Our system used the following resources in ad­
dition to the given TM and evaluation set. 
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Table 3: Employed Parameters 

word attribute type ratio syntactic relation type ratio 
Emergent Word Form 1 
Pronunciation 1 

modifying target word (case relation: specific) 3 
(case relation: non-specific) 1 

Standard Form 4 modified by target word (case relation: specific) 3 
(standard) Pronunciation 4 (case relation: non-specific) 1 
Part-Of-Speech 0 target word 2 
Conjugated Form 1 the phrase containing target word 2 
Semantic Code 12 preceding target word 1 

following target word 1 
all content words 2 

Japanese Morphological Analyzer: 
JUMAN (Kurohashi and Nagao, 1998) 

Japanese Syntactic Analyzer: 
KNP (Kurohashi, 1998) 

Thesaurus: 
Nihongo Goi Taikei (Ikehara et al., 1997) 

3.2 Parameters 
The following parameters have significant ef­
fects on the accuracy of our method. 

1. The 77word_attr ratio of vector compo­
nents specified for each word attribute 
when making word attribute vectors (Sec­
tion 2.1.3) 

2. The Asyn_rel ratio of the vector components 
specified for each syntactic relation when 
joining word attribute vectors into context 
vectors (Section 2.1.2) 

However, we did not optimize the parameters 
in our participating system, because of the task 
specification that no training corpus was given 
and the time limitations in the course of system 
development. Parameters were given manually 
by considering the parameter functions. All of 
the lexical and syntactic attributes and parame­
ters that represent the ratio between attributes, 
which our participating system employed, are 
shown in Table 3. 

4 Evaluation 
Our participating system marked both the pre­
cision and the recall at 45.8% of the correct data 
(the gold standard) in the evaluation corpus se­
lection. However, our participating system had 
some serious bugs in the vector normalization 
process. After correcting the bugs, we made 
another selection experiment using the same pa­
rameters described in Section 3.2. The accu­
racy of the corrected system was 49.3% (nouns: 
50.0%, predicates: 48.5%). 
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5 Summary 
We proposed a translation selection method for 
the SENSEVAL-2 Japanese translation task. The 
proposed method calculates the similarity be­
tween an evaluation expression containing the 
target word and Japanese expressions contain­
ing the same word in the TM. For calculating 
similarity, "context vectors" are constructed. 
Context vectors represent lexical attributes of 
context words and syntactic relations between 
context words and the target word. The system 
employed the proposed method with an accu­
racy of 49.3% after bug elimination. 

Future plans are as follows. 

1. To optimize parameters using the gold 
standard. We would like to use the opti­
mized parameters to study the relation be­
tween context information type and accu­
racy on translation selection. In addition, 
we will examine whether employed lexical 
and syntactic attributes are appropriate for 
the task. 

2. To apply the machine learning method to 
the task, preparing the training corpora. 
We will make use of the detailed context 
information proposed, the lexical and syn­
tactic attributes, at machine learning. 
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Abstract 

This paper describes our use of Prolog Word 
Experts (PWEs) in the SENSEVAL-2 competi­
tion. We explain how we specify our PWEs as 
sequences of transformation rules and how they 
can be trained on sense tagged corpus data. We 
give a semantics of PWEs by translating them 
into first order predicate logic, and we describe 
how PWEs can be compiled into Prolog pro­
cedures. We finally present our results for the 
Swedish lexical sample task: 63% (fine-grained 
score) for our best PWE, and a second place in 
the ranking. 

1 Introduction 

Word experts are small expert system-like mod­
ules for processing a particular target word 
based on neighboring words. Typically, a word 
expert uses rules that test the identity and rela­
tive position of words in the context in order to 
infer the role of the target word in the passage 
(Berleant, 1995). In this paper, we describe the 
development of various kinds of word experts in 
a logic programming framework, dealing with 
word sense disambiguation in the context of the 
SENSEVAL-2 competition. 

In a logic programming framework, the task 
of engineering a word (sense) expert can be 
specified as follows. Given a suitable represen­
tation of a text, we want to define a predicate 
sense/2 such that sense (P, S) is true iff the 
word at position P in the text has the senseS. In 
the remainder of the paper, we will refer to this 
kind of word expert as a Pro log Word Expert (or 
PWE for short - "Peewee" to its friends). This 
is to distinguish it from other kinds of word ex­
perts, and to emphasize the fact that it is 'pro­
grammed in logic'. 
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2 The Anatomy of a Peewee 

2.1 Peewee Specifications 

In the present paper, a word expert's knowledge 
will be expressed, not as Prolog clauses defining 
sense/2 directly, but as a sequence of transfor­
mation rules. For example, here is how we spec­
ify a word expert which is able to disambiguate 
occurrences of interest:1 

word_expert sense := 
sense:add 6 <- word:interest@[O] o 
sense:6>1 <- word:in@[l] o 
sense:1>5 <- word:'/.'@[-1] o 
end. 

The first rule works as a default rule, which sim­
ply assigns the most frequent sense to the word 
interest ( 6 in this case). If no other rules apply, 
this is the tag that the word will eventually get. 
The other rules dictate when based on the 
context - a word should have its tag changed. 
The second rule is to be read "replace the tag 
for sense 6 with the tag for sense 1, if the next 
word is in". The third rule says "replace the tag 
for sense 1 with the tag for sense 5, if the pre­
vious 'word' is '%'." The o-symbol is a compo­
sition operator, and (R o Rs) basically means 
that the output of applying the rule R forms the 
input to the application of the rules Rs. Thus, 
rules are strictly order-dependent. Note, for ex­
ample, that the third rule is applicable only if 
the second rule is. 

Needless to say, the above rules are not at 
all sufficient for the task of disambiguating all 
uses of interest. But the number of rules can 
be increased, and typically a word expert will 

1This word was of course not used the Swedish task, 
but is used here for expository reasons. The sense tags 
are numbers: l="readiness to give attention", 5="a 
company share", 6= "money paid for the use of money", 
etc. 



have access to anything between just a handful 
of rules and several hundred ones. 2 

2.2 Peewee Logic 

Interestingly, a sequence of transformation rules 
can be translated into a set of axioms, expressed 
in first-order predicate logic, defining relation­
ships between positions in a text, word forms, 
and senses (Lager, 2000; Lager & Nivre, 2001). 
For example, the meaning of the rules from the 
previous section can be spelled out as follows: 

Vp[w(p,interest)-> S1(p,6)] 

Vpo,Pl [S1 (po,6) 1\ Pl=Po+ll\ w(p1,in) -> S2(Po,l)j 
Vpo,pl,x[SI(Po,x) l\p1=po+ll\ •w(p1,in)-> S2(po,x)] 

Vpo,PI [S2(po,l) 1\ Pl=po-11\ w(p1 ,%) -> S3(po,5)] 
iipo,Pl ,x[S2(Po,x) 1\ Pl=Po-11\ •w(pl ,%) -> Sa(po,x)] 

Vx,p[S3(p,x)-> S(p,x)] 

The idea is that for each rule in the sequence a 
new predicate si is introduced, where the sub­
script indicates where in the sequence the rule 
belongs. Semantically, Si relates a position to 
a sense, and the formulas define this predicate 
in terms of the predicate Si-1 plus a number 
of other predicates. Each Si corresponding to a 
replacement rule is defined by two sentences -
one stating the conditions under which a sense 
tag is replaced with another sense tag, the other 
one stating the conditions under which the old 
sense tag is kept. 

Given a suitable logical representation of a 
text, such as 

w(1,Sue) w(2,developed) w(3,an) w(4,interest) 
w(5, in) w(6, computers) w(7, and) w(8, bought) 
w(9, an) w(10, 11.5) w(ll, %) w(12, interest) 
w(13, in) w(14, Microsoft) 

and given a suitable constructive proof method, 
the exact identity of the sense of an occurrence 
of the word interest -say the word at position 
12 - will follow as a logical consequence of the 
theory formed by taking the union of the pre­
vious two sets of formulas. For example, the 
formula 3x[S(12,x)) is a theorem, for which we 
can construct (only) the example x --+ 5, and 
we have thus formally proved that this partic­
ular occurrence of interest means "a share in a 
company" .3 

2 A demo of a more potent PWE is available at: 
http://www.ling.gu.se/~lager/Home/pwe_ui.html 

3 The theory can be used in other ways too. Searching 
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What we have here is something that we like 
to think of as word sense disambiguation as de­
duction, in analogy to the ideas of parsing as 
deduction due to Pereira and Warren (1983). 

2.3 The Peewee Compiler 

Since the above formulas have already logic pro­
gramming form, it is straightforward to trans­
late them into Prolog. For example, the second 
and the third formulas can be translated as fol­
lows:4 

s2(P0,1) 
s2(PO,X) 

si(P0,6), Pi is P0+1, w(Pi,in). 
si(PO,X), Pi is PO+i, \+ w(Pl,in). 

To write Prolog procedures such as these by 
hand for many rules would be tedious and prone 
to errors. Fortunately, since the formalism for 
transformation rules is compositional, it was 
straightforward to write a compiler5 that gener­
ates word expert procedures from word expert 
specifications automatically. 

2.4 Peewee Training 

There is an obvious choice of learning method 
for training Prolog Word Experts, namely 
Transformation-Based Learning (Brill, 1995). 
Of course, the fact that transformation rules can 
be learned from tagged corpora was a major rea­
son for using them in the first place. The J_L-TBL 
system - described in detail in (Lager, 1999) -
uses the search and database capabilities of the 
Prolog programming language to implement a 
generalized form of transformation-based learn­
ing. Through its support of a compositional 
rule/template formalism and 'pluggable' algo­
rithms, the J_L-TBL system can easily be tailored 
to different learning tasks. 6 

Rules that can be learned in Transformation­
Based Learning are instances of rule templates. 
For example, the second of the rules in our ex­
ample PWE specification is an instance of the 
following template: 

sense:A>B <- word:C@[1]. 

for a word token with a particular sense (say 5) becomes 
a matter of constructively proving 3p[S(p,5)]. 

4There are equivalent but more efficient ways to rep­
resent these clauses in Prolog (cf. Lager, 2000). 

5 Download the compiler from the PWE homepage at: 
http://www.ling.gu.se/~lager/pwe.html 

6The J..t-TBL system is available from: 
http://www.ling.gu.se/~lager/mutbl.html 



The template is to be read "replace the tag for 
sense A with the tag for sense B if the word im­
mediately to the right is C", where A, B and C are 
variables. Learning is a matter of repeatedly in­
stantiating rule templates in training data, scor­
ing rules on the basis of counts of positive and 
negative evidence of them, selecting the highest 
scoring rule on the basis of this ranking, and 
applying it to the training data. 

3 Peewees at SENSEVAL-2 

The lexical sample task for Swedish in 
SENSEVAL-2 involved 40 lemmas: 20 nouns, 15 
verbs and 5 adjectives. Together they repre­
sented 145 senses and 304 sub-senses. 8, 718 
annotated instances were provided as training 
material and 1,525 unannotated instances were 
provided for testing. Furthermore, a lexicon 
-the GLDB (Gothenburg Lexical Database) -
complete with morphological information, defi­
nitions, language examples, etc. was available. 

Our team explored three approaches. For 
each lemma, we trained: 

• PWE-smpl: a simple PWE capable of ar­
riving at a single sense for each instance of 
that lemma in the testing material. 

• PWE-disj: a committee of PWEs (i.e. a 
set of PWEs) capable of arriving at (pos­
sibly) multiple senses for each instance of 
that lemma, by collecting the individual re­
sults into a set. 

• PWE-vote: a committee of PWEs capable 
of arriving at a single sense for each in­
stance of that lemma, by applying a simple 
voting procedure. 

As it turned out, the second of these approaches 
produced a rather unimpressive result, and we 
will therefore spend very little time discussing 
it. Indeed, had we been able to run the scor­
ing software ourselves (which we were not), we 
would have left them outside the competition 
altogether. 

3.1 The Simple Peewees 
For the training of our simplest form of sense 
disambiguation expert, the following set of 
seven templates was used: 

sense:A>B <- word:C~(-1]. 

sense:A>B <- word:C~[-1,-2]. 

sense:A>B <- word:C~[1]. 

sense:A>B <- word:C~[1,2]. 

sense:A>B <- word:C~[1) & word:D~[2]. 
sense:A>B <- word:C~[-1] & word:D~(-2]. 
sense:A>B <- word:C~[-1) & word:D~[1). 

The idea was to exploit. a fact noted by many 
researchers in the field: that the sense of an 
occurrence of a word can fairly successfully be 
determined from just looking at the two previ­
ous words and the two following words ( cf. Ide 
& Veronis, 1998). The choice of the above set 
of templates is based on a fairly thorough trail­
and-error process and works well for most words 
that we have tried. 

3.2 The Peewee Committees 

The idea here was to train five different PWEs 
for each lemma, and then to use a simple vot­
ing mechanism to arrive at a final decision. 
The PWEs were different only in that they 
used different sets of templates during the train­
ing. Templates looking forwards only, templates 
looking backwards only, and templates looking 
both forwards and backwards. Furthermore, 
one member in each committee was trained for 
using a bag-of-words approach to disambigua­
tion, based on templates of the following form: 

sense:A>B <- inBag:W~[O]. 

sense:A>B <- inBag:W1~[0] & inBag:W2~[0]. 

Finally, one PWE in each committee had access 
to a list of words extracted from the language 
examples provided by the GLDB. 

3.3 The Procedure 

In this section we describe the actions that we 
took in order to submit our entry in the compe­
tition. 

• In a preparatory step, the XML formatted 
training data was parsed and subsequently 
converted into the format required by the 
p-TBL system. 

• The training was performed, and resulted 
in one PWE specification per lemma. 
Training took between 5 seconds and a cou­
ple of minutes per lemma, depending on the 
amount of training data available for the 
lemma in question. 

• The PWE specifications were compiled into 
a set of PWE procedures, by means of the 
PWE compiler. 
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• Simple procedures were written to print the 
results to a file in the prescribed format, 
and the PWEs were then run on the test 
data. This took only a couple of seconds 
for the whole test corpus. 

3.4 Results 

In the following table we show the results of 
our entry in the competition, copied from the 
SENSEVAL-2 homepage.7 

System Evaluation Accuracy (%). 
PWE-smpl Fine 61.1 

Mixed 66.8 
PWE-vote Fine 63.0 

Mixed 68.6 

Five groups and altogether eight systems par­
ticipated in the Swedish lexical sample task. In 
terms of ranking, our PWE-vote came in sec­
ond, after Yarowski's JHU system, and before 
the Goteborg team's best entry. However, we 
hasten to add that the step from Yarowski's 
(nearly 70%, fine grained evaluation) to our re­
sults is a very significant 7%, and that the step 
down to Goteborg's result is very small and 
probably statistically insignificant. Our simple 
Peewees shared the fourth place with Resnik et 
al.'s UMD-SST. 

As can be seen from the table, the PWE com­
mittees did slightly better than a single simple 
PWE. It is however dubious whether the small 
difference was really worth the trouble. It is 
quite possible that training a single PWE on 
the combination of corpus data and the exam­
ples from the GLDB would have lead to a result 
almost as good, and with less work. 

4 Conclusion 

It seems we can conclude that an ap­
proach to word sense disambiguation based 
on Transformation-Based Learning is compet­
itive with approaches based on Memory-Based 
Learning as used by the Goteborg team, and 
support vector machine (SVM) learning, used 
by the University of Maryland team, This is 

7Note that the coarse-grained evaluation was not ap­
plicable to the Swedish task. Also, it should be noted 
that our results in the first round of evaluation were 
slightly worse than the results reported here. However, 
this was due to a spelling error which could be corrected 
by the conference organizers and thus did not involve 
any resubmission of test results. 
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good news for those aiming at building NLP sys­
tems in which transformation rules play a major 
role. 

As we have seen, there is meaning in the life 
of Peewees, and sound mathematical meaning 
at that! Also, given the link between first order 
logic and a logic programming language such 
as Prolog, the implementation follows very di­
rectly from the specification. The existence of 
a compiler from Peewee specifications into Fro­
log procedures makes Peewees very convenient 
to work with in a Prolog environment. 
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Abstract 

This paper describes a descriptive­
semantic-primitive-based method for 
word sense disambiguation (WSD) with 
a machine-tractable dictionary and 
conceptual distance data among 
primitives. This approach is using 
unsupervised learning algorithm and 
focuses only on the immediately 
surrounding words and basis 
morphological form to disambiguate a 
word sense. This approach also agrees 
with past observations that human only 
requires a small window of a few words 
to perform WSD. (Choueka & Lusignan, 
1985). In additional, this paper also 
describes our experience in doing the 
English all-word task in SENSEV AL-2. 
Then, we will discuss the results in the 
SENSEV AL-2 evaluation. 

Apart from the description of current 
system, possibilities for future work are 
explored 

1 Primitive-Based Word Sense Disambiguation 

This system consists of three important 
components: machine-tractable dictionary, 
conceptual distance data and sense tagger that 
uses a simple summation algorithm. 

1.1 Machine-Tractable Dictionary 

The first one is Machine-Tractable 
Dictionary (MTD) such as WordNet and 
LDOCE (Longman Dictionary of 
Contemporary English) especially LDOCE has 
been used extensively in NLP research and 
provide a broad set of senses for sense tagging. 
MTD contains word senses and their definitions 
are defined in term of descriptive and tagged 
primitives (words attached with sense number). 
Primitives are a set of words derived from 
dictionary (Guo, 1989b) and it is used to define 
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the definition of a word sense. (For further 
information about primitives, please refer to 
Wilks.Y (1977)). For example, father#1 has a 
definition defined by using four primitives that 
are 'title 1' ,' respect2', 'priest3' and 'church4' 
(refer figure 1). 

For SENSEVAL-2 competition, the pre­
release WordNet1.7 was used for this purpose. 
After WordNetl.7 was downloaded, the entries 
including their definition, sense number and 
sense id in WordNet was extracted and written 
into a temporary file. Primitives (not tagged) 
were derived from the words used in the word 
senses' definition. Then, the first 7 words of the 
definition text of the WordNet dictionary were 
disambiguated using the information from an 
existing MTD (LDOCE) and the derived 
primitives (Guo, 1998a). The existing MTD 
(LDOCE) contained word senses and the words 
in their definition are already tagged. 

Thus, a new MTD (the pre-release 
WordNet 1.7) was ready for the usage of 
tagging process. 

1.2 Conceptual Distance Data 

Conceptual distance data is showing the 
relatedness between two tagged primitives. 

Basically, the conceptual distance data is 
calculated by using content terms in the 
definition to determine the relatedness measure 
between two primitives layer by layer. The 
definitions of the primitives are getting from the 
existing MTD (LDOCE). It is important to note 
that a tagged primitive is also a word sense. For 
example, the first and second layer of 
referential definition for word sense 'forecast2' 
IS: 
forecast2 [de f) predictl in2 advance3 
predict! [def] makel a2 prediction3 about4; telll in2 

advance3 
1-referentiallayer: forecast2 predict 1 advance3 
2-referentiallayer: predict! makel prediction3 tell I 
(note:'advance3' is omitted because it has been 
counted in the first layer) 



Formula used to compute the relatedness 
percentage: 
% for first layer of the first target word sense 
and first layer of the second target word sense: 

if q<(nl+n2)12 then pl = (ql((nl+n2)12)*70% 
if q>(nl+n2)/2 then pl = 70% 

%for other layers: 
xl = ql I ((n3+n4)/2) 
x2 = q2 I ((nl+n4)12) 
x3 = q3 I ((n2+n3)12) 
p2=((xl +x2+x3)13)*30% 
The total value = p 1 +p2 

n 1 = no. of the element in the first layer of first 
target word sense 

n2 = no. of the element in the first layer of 
second target word sense 

n3 = no. of the element in the second layer of 
first target word sense 

n4 = no. of the element in the second layer of 
second target word sense 

q, ql, q2, q3 =no. of common content terms 
for each comparison 

p 1, p2 = final value of the relatedness measure 

1.3 Sense Tagger 

The third one is sense tagger. Sense tagger 
will get the input from MTD and its conceptual 
distance data among primitives to do the word 
sense disambiguation. Currently, the tagger 
consists of three processes: 

• Preprocess process. 
• Dictionary look-up process 
• Numerical calculation algorithm 

In the preprocess process, test data, which is 
downloaded for the usage of SENSEVAL-2, is 
going through several processes before tagging 
process takes place. The first process is 
separating the given text into sentences using 
full stops as separator. After that, the words in 
the sentences that do not require tagging will be 
removed, leaving only the heads (words to be 
sense-tagged) behind. Then, each word in the 
sentences will be stemmed, leaving only 
morphological root. The list of headsis then cut 
into chunks of three successive heads to be 
tagged in seconds. 

In dictionary look-up module, word senses 
with their definition for each of the words in a 
chunk is extracted from MTD. 

After that, sense tagger will use numericaL 
calculation algorithm to choose the suitable word 
sense for the words in the sentence. This 
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algorithm is to compute the path value among the 
definition of the word senses in a sentence. This is 
done first, by summing up the semantic data from 
conceptual distance data when comparison among 
primitives in the definitions for the word sense 
pairs in the sentence. After that, the result of 
summation has to be multiplied with the distance 
value between the two words in the sentence. This 
distance value basically depends on total words in 
a sentence. For example, sentence "Father marry 
couple", the distance value for 'father' and 
'marry' is 2 whereas the distance value for 
'father' and 'couple' is 1. This is because word 
'father' is closer to the word 'marry' than 
'couple'. Then this computation continues for the 
other of word sense pairs. 

Finally, this algorithm will compare the path 
values for the combination of word senses in a 
sentence and find the highest path value. Then 
this algorithm assigns the best combination of 
senses to each word in the sentence. 

For example, with reference to Figure 1, 
assume that words such as 'father', 'marry' and 
'couple' have two senses only. 

In the first step, definition of sense 1 from 
'father' will compare with definition of sense 1 
from 'marry'. 

f h 1 at er 
title 1 

respect2 

priest3 

church4 

Total 

marry 
take! 

person2 
marriage3 

take! 

person2 
marriage3 

takel 
person2 

marriage3 
take! 

person2 
marriage3 

Total comparison 

va ue 
xl 
x2 
x3 
x4 

x5 
x6 
x7 
x8 
x9 

xlO 
xll 
xl2 

xl+x2+ ... xl2=X 
12 

(Note: x 1, x2, .... x 12 are the values accessed from 
conceptual data. ) 

In the second step, definition of sense 1 from 
'father' will compare with definition of sense 1 
from 'couple'. The total comparison is 4*4=16 
and total value extracted from conceptual 
distance data is Y. Then in the third step, 
definition of sense 1 from 'couple' will 
compare with definition of sense 1 from 
'marry'. The total comparison is 4*3=12 and 

'total value extracted from conceptual distance 
data is Z. The calculations for second step and 
third are as same as the step. 



So, the path value for fatherl marry 1 couple 1 
= 2(XI12) + Y/16 + 2(Z/12). 
Formula used to compute path value: 

n 

Path value=Ildistance)(s_i I total comparison) 
i= 1 

where n = the total of words sense pairs , s = 
the total summation of values getting from 
conceptual distance data for i-th of word sense 
pairs. 

This process will continue for other 
combination of word senses: 

fatherl marry 1 couple2 
fatherl marry2 couple! 
fatherl marry2 couple2 
father2 marryl couplel 
father2 marry 1 couple2 
father2 marry2 couple 1 
father2 marry2 couple2 

The total combination of word sense for this 
example is 2*2*2=8. Finally, this algorithm 
will compare the path values for the 
combination of word senses in a sentence and 
find the most suitable combination of word 
senses. (Please refer to Figure 2) 

2 Result 

usm2 478 37.0% I 37.0% 36.0% I 36.0% 
usm3 4000 34.4% I 34.4% 33.6% I 33.6% 

Table I: SENSEV AL-2 English All Word Results 
(note:usm = Universiti Sains Malaysia) 

With reference to the above table, usml, 
usm2 and usm3 are three systems that are 
different in the number of primitives used in 
MTD as well as in the conceptual distance data 
and also MTD used. MTD used in usml is less 
comprehensive compare to MTD used in usm2 
and usm3. More comprehensive is meaning that 
each of the entries is represented by a more 
complete set of primitives. MTD used in usm2 
and usm3 is the same. Because of we are 
focusing more on speed of the system, overall 
of the results decreases when only the head 
words are considered. 

3 Future extension of the system 

In order to improve the existing algorithm, we 
need to avoid repeated calculation especially 
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repeated comparison among the primitives. The 
concept of dynamic programming is needed to 
reduce the calculation. Basically, by using this 
method, result of the calculation is stored in 
memory so that the result can be accessed easily 
later when it is needed. As a result, although 
this method will increase the memory usage, it 
can also increase speed of the calculation 
significantly especially when a long sentence is 
processed. This is important because since the 
speed of the algorithm is increasing, it can be 
used m the real time application such 
information retrieval system especially in the 
Internet. 

In additional, the accuracy of the system can 
be increased because more words in a sentence 
can be considered when a target word is tagged. 

It is also important to note that this system not 
only can be used for English language, it can 
also be used in the other languages such Bahasa 
Malaysia, Chinese and Japanese. 

Conclusion 

In this paper, we have illustrated the overall 
architecture of our application of unsupervised 
learning technique to word sense 
disambiguation. Besides that, we have also 
presented that how our application in handling 
the given sentence and how we manage to 
complete the English all task given by 
SENSEVAL-2 competition. In additional, we 
illustrated the improvement over the algorithm 
we have presented in this paper. This is to make 
the algorithm becoming more efficient and 
practical to implement in real time application. 
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Abstract 

CL Research's word-sense disambiguation 
(WSD) system is part of the DIMAP dictionary 
software, designed to use any full dictionary as 
the basis for unsupervised disambiguation. 
Official SENSEV AL-2 results were generated 
using WordNet, and separately using the New 
Oxford Dictionary of English (NODE). The 
disambiguation functionality exploits whatever 
information is made available by the lexical 
database. Special routines examined multiword 
units and contextual clues (both collocations, 
definition and example content words, and 
subject matter analyses); syntactic constraints 
have not yet been employed. The official coarse­
grained precision was 0.367 for the lexical 
sample task and 0.460 for the all-words task 
(these are actually recall, with actual precision of 
0.390 and 0.506 for the two tasks). NODE 
definitions were automatically mapped into 
WordNet, with precision of0.405 and 0.418 on 
75% and 70% mapping for the lexical sample 
and all-words tasks, respectively, comparable to 
WordNet. Bug fixes and implementation of 
incomplete routines have increased the precision 
for the lexical sample to 0.429 (with many 
improvements still likely). 

Introduction 

CL Research's participation in SENSEV AL-2 was 
designed to ( 1) extend WSD techniques from 
SENSEV AL-l (Litkowski, 2000 ), (2) generalize 
WSD mechanisms to rely on a full dictionary rather 
than a small set of entries where individual crafting 
might intrude, and (3) investigate WSD using one 
dictionary mapped into another (WordNet). Results 
indicate positive achievements for each of these 
goals. Time constraints precluded a complete 

assessment of the upper limits that can be achieved. 
In particular, although the general architecture from 
SENSEV AL-l was retained, several specific WSD 
routines were notreimplemented. Incomplete testing, 
debugging, and implementation of new routines 
significantly affected the official results. Several of 
these problems are investigated more fully below. 

CL Research's WSD functionality is implemented in 
DIMAP1, designed primarily for creation and 
maintenance of lexicons for natural language 
processing. In particular, DIMAP is designed to 
make machine-readable dictionaries (MRDs) 
tractable and to create semantic networks (similar to 
WordNet (Fellbaum, 1998) and MindNet 
(Richardson, 1997)) automatically by analyzing and 
parsing definitions. Section 1 describes the 
dictionary preparation techniques for WordNet and 
NODE (The New Oxford Dictionary of English, 
1998), as well as the mapping from NODE to 
WordNet. Section 2 describes the WSD techniques 
used in SENSEV AL-2. Section 3 describes the 
SENSEV AL-2 results and section 4 discusses these 
results .. 

1 Dictionary Preparation 

DIMAP can disambiguate any text against WordNet 
or any other dictionary converted to DIMAP, with a 
special emphasis on corpus instances for specillc 
lemmas. The dictionaries used for disambiguation 
operate in the background (as distinguished from the 
foreground development and maintenance of a 
dictionary), with rapid btree lookup to access and 
examine the characteristics of multiple senses of a 
word after a sentence has been parsed. DIMAP 
allows multiple senses for each entry, with fields for 
the definitions, usage notes, hypemyms, hyponyms, 

1Dictionary MAintenance :frograms, available from CL 
Research at http://www.clres.com. 
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arbitrary other semantic relations, and feature 
structures containing arbitrary information. 

WordNet is already integrated in DIMAP in several 
ways, but for SENSEVAL-2, WordNet was entirely 
converted to alphabetic format for use as the 
disambiguation dictionary. In this conversion, all 
WordNet information (e.g., verb frames and glosses) 
and relations are retained. Glosses are analyzed into 
definition, examples, usage or subject labels, and 
usage notes (e.g., "used with 'of"). Verb frames are 
used to build collocation patterns, typical subjects 
and objects, and grammatical characterizations (e.g., 
transitivity). WordNet ftle and sense numbers are 
converted into a unique identifier for each sense. 

A separate "phrase" dictionary was constructed from 
all noun and verb multiword units (MWUs), using 
WordNet's sense index file. For nouns, an entry was 
created for the last word (i.e., the head), with the first 
word( s) acting as a "hynonymic" indicator; an entry 
was also created for the first word, with the 
following word(s) acting as a collocation pattern 
(e.g., "work of art" is a hyponym of art and a 
collocation pattern under work, written"....., of art"). 
For verbs, an entry was created for the first word, 
with a collocation pattern (e.g., "keep an eye on" is 
entered as a collocation pattern"....., an eye on" under 
keep). In disambiguation, this dictionary was 
examined first for a match, with the full phrase then 
used to identify the sense inventory rather than a 
single word. 

NODE was prepared in a similar manner, with 
several additions. A conversion program transformed 
the MRD files into various fields in DIMAP, the 
notable difference being the much richer and more 
formal structure (e.g., lexical preferences, grammar 
fields, and subsensing). Conversion also 
considerably expanded the number of entries by 
making headwords of all variant forms (fully 
duplicating the other lexical information of the root 
form) and phrases run on to single lemma entries. 
E.g., "(as) happy as a sandboy (or Larry or a 
clam" under happy was converted into six 
headwords (based on the alternatives indicated by the 
parentheses), as well as a collocation pattern for a 
sense under happy, written "(asl?) ~ as (a sandboy I 
Larry I a clam)", with the tilde marking the target 
word. 
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NODE was then subjected to definition processing 
and parsing. Definition processing consists of further 
expansion of the print dictionary: ( 1) grabbing the 
definitions of cross-references and (2) assigning 
parts of speech to phrases based on analysis of their 
definitions. Definition parsing puts the definition 
into a sentence frame appropriate to the part of 
speech, making use of typical subjects, objects, and 
modificands. The sentence parse tree was then 
analyzed to extract various semantic relations, 
including the superordinate or hypernym, holonyms, 
meronyms, satellites, telic roles, and frame elements. 
After parsing was completed, a phrase dictionary 
was also created for NODE? 

The SENSEV AL tasks were run separately against 
the WordNet and NODE sense inventories, with the 
WordNet results submitted. To investigate the 
viability of mapping for WSD, subdictionaries were 
created for each of the lexical sample words and for 
each of the all-words texts. For the lexical sample 
words, the subdictionaries consisted of the main 
word and all entries identifiable from the phrase 
dictionary for that word. (For bar, in NODE, there 
were 13 entries where bar was the first word in an 
MWU and 50 entries where it was the head noun; for 
begin, there was only one entry.) For the all-words 
texts, a list was made of all the task words to be 
disambiguated (including some phrases) and a 
subdictionary constructed from this list. For both 
tasks, the creation of these subdictionaries was fully 
automatic; no hand manipulation was involved. 

The NODE dictionaries were then mapped into the 
WordNet dictionaries (see Litkowski, 1999), using 
overlap among words and semantic relations. The 73 
dictionaries for the lexical sample words gave rise to 
1372 WordNet entries and 1722 NODE entries. 3 

Only 491 entries were common (i.e., no mappings 
were available for the remaining 1231 NODE 
entries); 881 entries in WordNet were therefore 
inaccessible through NODE. For the entries in 

2WordNet definitions were not parsed. In an experiment, 
the semantic relations identifiable through parsing were 
frequently inconsistent with those already given in 
WordNet, so it was decided not to confound the 
disambiguation. 

3E~tries included all parts of speech; disambiguation was 
required to identifY the part of speech as well. 



common, there was an average of 5.6 senses, of 
which only 64% were mappable into WordNet. The 
a priori probability of successful mapping into the 
appropriate WordNet sense is 0.064, the baseline for 
assessing WSD via another _dictionary mapped into 
the WordNet sense-tagged keys.4 

2 Disambiguation Techniques 

The lexical sample and all-words texts were 
modified slightly. Satellite tags were removed and 
entity references were converted to an ASCII 
character. In the all-words texts, contraction and 
quotation mark discontinuities were undone. These 
changes made the texts more like normal text 
processing conditions. 

The texts were next reduced to sentences. For the 
lexical sample, a sentence was assumed to consist of 
a single line. For the all-words texts, a sentence 
splitter identified the sentences, which were next 
submitted to the parser. The DIMAP parser produced 
a parse tree for each sentence, with constituent 
phrases when the sentence was not parsable with the 
grammar, allowing the WSD phase to continue. 

The first step in the WSD used the part of speech of 
the tagged word to select the appropriate sense 
inventory. Nouns, verbs, and adjectives were looked 
up in the phrase dictionary; if the tagged word was 
part of an MWU, the word was changed to the 
MWU and the MWU's sense inventory was used 
instead. 

The dictionary entry for the word was then accessed. 
Before evaluating the senses, the topic area of the 
context provided by the sentence was "established" 
(only for NODE). Subject labels for all senses of all 
content words in the context were tallied. 

Each sense of the target was then evaluated. Senses 
in a different part of speech were dropped from 
consideration. The different pieces of information in 
the sense were assessed: collocation patterns, 
contextual clue words, contextual overlap with 
definitions and examples, and topical area matches. 
Points were given to each sense and the sense with 
the highest score was selected; in case of a tie, the 

"Note that a mapping from WordNet to NODE is likely 
to generate similar mismatch statistics. 

first sense in the dictionary was selected. 5 

Collocation pattern testing (requiring an exact match 
with surrounding text) was given the largest number 
of points (10), sufficient in general to dominate 
sense selection. Contextual clue words (a particle or 
preposition) was given a small score (2 points). Each 
content word of the context added two points if 
present in the sense's definition or examples, so that 
considerable overlap could become quite significant. 
For topic testing, a sense having a subject label 
matching one of the context topic areas was awarded 
one point for each word in the context that had a 
similar subject label (e.g., if four words in the 
context had a medical subject label, four points 
would be awarded if the instant sense also had a 
medical label). 

3 Results 

As shown in Table 1, using WordNet as the 
disambiguation dictionary resulted in an overall 
precision (and recall) of 0.293 at the fine-grained 
level and 0.367 at the coarse-grained level. Since CL 
Research did not use the training data in any way, 
running the training data also provided another test 
of the system. The results are remarkably consistent, 
both overall and for each part of speech. Using 
NODE as the disambiguation dictionary and 
mapping its senses into WordNet senses achieved 
comparable levels of precision, although recall was 
somewhat lower, as indicated by the difference in the 
number of items on which the precision was 
calculated. Overall, about 75% of the senses were 
mapped into WordNet. 

For the all-words task, the disambiguation results 

3Several other functions were implemented only in stub 
form at the time of the test runs, to evaluate: type 
restrictions (e.g., transitivity), presence of accompanying 
grammatical constituents (e.g., infinitive phrase or 
complements), form restrictions (such as number and 
participial), grammatical role (e.g., as a modifier), and 
selectional restrictions (such as subject, object, 
modificand, and internal arguments). 
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were significantly higher than for the lexical sample, 
with a precision (and recall) of 0.460 for the 
WordNet coarse-grained level. For NODE, about 
70% were mapped into WordNet (indicated by the 
reduced number of items), with precision on the 
mapped items only slightly less.6 

4 Discussion 

Because of the usual bugs and incomplete 
implementation, the official results do not adequately 
indicate the potential of our approach. The official 
results are actually recall rather than precision, since 
an answer was submitted when it shouldn't have 
been, as distinguished from cases where the parser 
picked the wrong part of speech or was unable to 
select a sense. The actual precision for the lexical 
sample task is 0.311 for the fine grain and 0.390 for 
the coarse grain, and for the all-words task, 0.496 
and 0.506 for fine and coarse grains, respectively. 

Minimal debugging and inability to implement 
several routines significantly affected the scores. 
Examining the reasons for failures in the test runs 
and making program fixes has thus far resulted in 
increasing precision (and recall) to 0.340 and 0.429 
for the lexical sample. Further improvements are 
likely, although it is not clear whether the 
SENSEV AL-l precision of 0.67 is achievable using 
only the information available in WordNet. 

It is more likely that using NODE will achieve better 
results. Improvements in automatic mapping have 
now reached 90% mapping; it is also relatively easy 
to make manual adjustments to the maps to achieve 
even higher performance from the lexicographically­
based lexical resource. Since the automatic mapping 
is inaccurate to an unknown degree (perhaps 25-
30%), improving the maps will achieve better results 

6For both tasks, NODE senses were identified for all 
words, but could be mapped only for the percentages 
given. 

using NODE via WordNet, rather than WordNet 
alone. Using NODE also provides a much richer set 
of data upon which to make improvements in WSD. 
Finally, since NODE is lexicographically-based and 
with an arguably better sense inventory, we are 
confident that our WSD would have scored much 
higher if the taggers had used this inventory. 

Conclusion 

Given the very preliminary implementation of the 
disambiguation routines and lack of adequate 
debugging, the results indicate that using MRDs (and 
even mapping from one into another) shows 
considerable potential for unsupervised and general 
word-sense disambiguation. 
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Abstract 
The major goal in ITC-irst's participation at 
SENSEVAL-2 was to test the role of domain in­
formation in word sense disambiguation. The 
underlying working hypothesis is that domain 
labels, such as MEDICINE, ARCHITECTURE and 
SPORT provide a natural way to establish se­
mantic relations among word senses, which can 
be profitably used during the disambiguation 
process. For each task in which we participated 
(i.e. English all words, English 'lexical sample' 
and Italian 'lexical sample') a different mix of 
knowledge based and statistical techniques were 
implemented. 

1 Introduction 
Current investigation in Word Sense Disam­
biguation (WSD) at ITC-irst focuses on the role 
of domain information. The hypothesis is that 
domain labels (such as MEDICINE, ARCHITEC­
TURE and SPORT) provide a natural and pow­
erful way to establish semantic relations among 
word senses, which can be profitably used dur­
ing the disambiguation process. In particular, 
domains constitute a fundamental feature of 
text coherence, such that word senses occurring 
in a coherent portion of text tend to maximize 
domain similarity. The importance of domain 
information in WSD has been remarked in sev­
eral works, including (Gonzalo et al., 1998) and 
(Buitelaar and Sacaleanu, 2001). In (Magnini 
and Strapparava, 2000) we introduced "Word 
Domain Disambiguation" (WDD) as a variant 
of WSD where for each word in a text a domain 
label (among those allowed by the word) has to 
be chosen instead of a sense label. We also ar­
gued that WDD can be applied to disambigua­
tion tasks that do not require fine grained sense 
distinctions, such as information retrieval and 
content-based user modeling. For SENSEVAL-
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2 the goal was to evaluate the role of domain 
information in WSD: no other syntactic or se­
mantic information has been used (e.g. seman­
tic relations in WoRDNET) except domain la­
bels. Three systems have been implemented, in­
tegrating knowledge-based and statistical tech­
niques, for the three tasks we participated in, 
i.e. English 'all words', English 'lexical sample' 
and Italian 'lexical sample'. The main lexical 
resource for domains is "WordNet Domains", 
an extension of English Wordnet 1.6 (Fellbaum, 
1998) developed at ITC-irst, where synsets have 
been annotated with domain information. 

2 WordN et Domains 

The basic lexical resource we used in SENSEVAL-
2 is "WordNet Domains", an extension of 
WoRDNET 1.6 where each synset has been an­
notated with at least one domain label, se­
lected from a set of about two hundred la­
bels hierarchically organized (see (Magnini and 
Cavaglia, 2000) for the annotation methodol­
ogy and for the evaluation of the resource). 
The information from the domains that we 
added is complementary to what is already in 
WoRDNET. First of all a domain may in­
clude synsets of different syntactic categories: 
for instance MEDICINE groups together senses 
from Nouns, such as doctor#i and hospi tal#i, 
and from Verbs such as operate#7. Sec­
ond, a domain may include senses from dif­
ferent WoRDNET sub-hierarchies (i.e. deriv­
ing from different "unique beginners" or from 
different "lexicographer files"). For example, 
SPORT contains senses such as athlete#i, de­
riving from life...forrn#i, garne_equiprnent#i 
from physicaLobj ect#i, sport#i from act#2, 
and playing...field#i from location#i. Fi­
nally, domains may group senses of the same 
word into homogeneous clusters, with the side 



effect of reducing word polysemy in WoRD NET. 
Table 1 shows an example. The word "bank" 
has ten different senses in WoRDNET 1.6: three 
of them (i.e. sense 1, 3 and 6) can be grouped 
under the EcoNOMY domain, while sense 2 and 
7 both belong to GEOGRAPHY and GEOLOGY, 
causing the reduction of the polysemy from 10 
to 7 senses. For the purposes of SENSEVAL-2 
we have considered 41 disjoint labels which al­
low a good level of abstraction without loosing 
relevant information (i.e. in the experiments we 
have used SPORT in place of VOLLEY or BAs­
KETBALL, which are subsumed by SPORT). 

Sens Synset €1 Gloss Domains Semcor 
occurr. 

#1 depository finan- EcoNOMY 20 
cial institution, 
bank, banking 
concern, bank-
ing company (a 
financial institu-
tion ... ) 

#2 bank (sloping GEOGRAPHY, 14 
land ... ) GEOLOGY 

#3 bank (a supply or EcoNOMY -
stock held In re-
serve ... ) 

#4 bank, bank ARCHITECTURE -
building (a build- EcoNOMY 

ing ... ) 
#5 bank (an arrange- FACTOTUM 1 

ment of similar 
objects ... ) 

#6 savmgs bank, EcoNOMY -
coin bank, money 
box, bank (a 
container ... ) 

#7 bank (a long GEOGRAPHY, 2 
ridge or pile ... ) GEOLOGY 

#8 bank (the funds EcoNOMY, 

held by a gam- PLAY 

bling house ... ) 
#9 bank, cant, cam- ARCHITECTURE -

ber (a slope in the 
turn of a road ... ) 

#10 bank (a flight rna- TRANSPORT -
neuver ... ) 

Table 1: WORDNET senses, domains C!.,nd occur­
rences in Semcor for the word "bank" 

Two mapping procedures have been imple­
mented for SENSEVAL-2 in order to use do­
main information. For the English tasks a map­
ping from WORDNET 1.6 to the WORDNET 
1. 7 pre-release made available to participants; 
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for the Italian task a mapping from WoRD­
NET 1.6 to WoRDNET 1.5, because the inter­
lingual index of EuroWordNet (Vossen, 1998) 
is in that version. The mapping to WoRDNET 
1. 7 is based on a set of heuristics (e.g. corre­
spondences between synonyms, glosses and hy­
pernyms) which discover corresponding synset 
pairs. Then, an inheritance algorithm is ap­
plied to WoRDNET 1.7 in order to fill unas­
signed synsets with domain labels. As far as 
the Italian wordnet is concerned the same pro­
cedure used for the WoRD NET 1.7 mapping has 
been applied to WoRDNET 1.5, resulting in the 
annotation of the Interlingual Index. Then the 
equivalence links (we excluded eq_hyperonym 
and eq_hyphonym) from the ILl to the Italian 
synsets were used to bring the domain informa­
tion to Italian words. 

There was no time for a complete evaluation 
of the quality of the mapping procedures. 

3 Algorithms 

The starting point in the algorithm design was 
the previous work in word domain disambigua­
tion reported in (Magnini and Strapparava, 
2000). One drawback of that approach is that, 
for rather long texts, it does not consider do­
main variations. To overcome this problem we 
have introduced contexts within which domains 
are calculated. A second direction of work has 
been the acquisition of domain information from 
annotated texts (i.e. Semcor and the training 
data). The following sections presents details of 
the disambiguation procedures implemented for 
SENSEVAL-2. 

3.1 Linguistic Processing 

XML files made available by the task organizers 
have been processed with an XML parser. As 
for lemmatization and part-of-speech tagging 
the Tree Tagger, developed at the University of 
Stuttgart (Schmid, 1994) has been used, both 
for English and Italian. The WordNet mor­
phological analyser has also been used in order 
to resolve ambiguities and lemmatization mis­
takes. After this process texts are represented 
as vectors of triples: word lemma, WoRDNET 
part of speech and position in the text. 

3.2 Scoring Domains for a Lemma 

'Fhe basic procedure in domain driven disam­
biguation is a function that, given a lemma L, 



associates a score to each domain defined for 
that lemma in Wordnet Domains. Such a score 
is the relative frequency of the domain in L, 
computed on the basis of the occurrences of the 
synsets of L in Semcor. Semcor occurrences for 
synsets with multiple dqmain annqtations are 
repeated for each domain (e.g. if a synset has 2 
occurrences and 2 labels it is counted as having 
4 occurrences), while synsets with 0 occurrences 
are counted as 0.5. As an example, consider the 
lemma "bank" in Table 1. According to our 
scoring method, it has 57 total occurrences in 
Semcor. The GEOLOGY domain collects contri­
butions from senses 2 and 7, for a total of 16 
occurrences in Semcor, which corresponds to a 
frequency .28 (i.e. fq[Dceology](bank) = 0.28). 

3.3 Domain Vectors 
The data structure that collects domain infor­
mation is called a Domain Vector (DV). Intu­
itively a DV represents the domains that are 
relevant for a certain lemma (or word sense) in 
a certain context. We have considered three 
kinds of DV's: a DV for a lemma L within a 
context C (DV[), for the case of test data; a 
DV for a synset Sofa lemma . .L within a context 
C ( DVf), for the case of training data; and a 
DV for a synset Sofa lemma Lin WoRDNET 
(DVs), which is used when no training data are 
available. 

DV for a lemma in context (DV[). Given 
a set of domains D1 ... Dn, a DV for a lemma L 
in a position I< within a text represents the rele­
vance of those domains for that lemma, i.e. each 
component DVL[i] gives the degree of relevance 
of the domain Di for the lemma L. Given a con­
text of ±C words before and after the lemma L 
in the position I<, each component of the do­
main vector is defined with the following for­
mula: 

+C 
DV[[i] = L Fq[Di](Lk) *gauss 

k=-C 

where gauss is the normal distribution cen­
tered on the position I<. In the current al­
gorithms C is set to 50 because our experi­
ments with Semcor showed that the precision 
decreases below that thresold. 

Intuitively, the above formula takes into ac­
count the contribution of the lemmas in the con­
text C to the sense of the target lemma L. In 
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addition a DV actually selects a set of relevant 
domains rather than just one domain. 

DV for a synset in context ( DVf) In case 
a training corpus is available where lemmas are 
annotated with the correct sense, Domain Vec­
tors are computed with the formula above. In­
stead of considering a lemma in a position I< 
within a text, we have a sense for that lemma 
(i.e. a synset). DVf represents a "typical" vec­
tor for a sense Sofa lemma L. 

DV for a synset without context (DVs) 
When a training corpus is not available (as for 
the 'all words' task), a simpler way to build a 
DV for a certain synset is to compute it with 
respect to WordNet Domains. Given a synset S 
in WordNet Domains, the domain vector DVs 
is a vector that has 1 's in the position of its 
domain(s) and O's otherwise. A more accurate 
DV could be obtained by considering contextual 
information such as the synset gloss. 

3.4 Comparing Domain Vectors 

To disambiguate a lemma L (i.e. the target 
lemma) in a text, first its DV[ is computed. 
The next step consists of comparing the DV 
of the target lemma L with the domain vec­
tors for each sense of L derived either from the 
training set, when available, or from WordNet 
Domains, when training data are not available. 
The sense vector DVs which maximizes the sim­
ilarity is selected as the appropriate sense of L 
in that text. The similarity between two DV's 
is calculated with the standard scalar product: 
DV1 · DV2 = I::i DV1[i] * DV1[i]. 

4 Results and Discussion 

Table 2 presents the results, in terms of pre­
cision and recall, obtained at the SENSEVAL-2 
initiative for the three tasks in which we partic­
ipated. 

I Task Precision I Recall I 
English All Words (fine g.) .748 .357 
English All Words (coarse g.) .748 .357 
English Lexical Sample (fine g.) .665 .249 
English Lexical Sample (coarse g.) .720 .269 
Italian Lexical Sample (fine g.) .375 .371 

Table 2: Final results of ITC-irst systems at 
SENSEVAL-2 



i 

4.1 English 'All Words' 

The 'all words' task seems to benefit from the 
domain approach. One reason for this is that 
texts are enough long to provide an accurate 
context (as mentioned in section 3.3, we used 
a window of 100 content words around the tar­
get word) within which domains are coherent. 
The rather low degree of recall reflects the fact 
that few words in a text carry relevant domain 
information. Most of the words actually be­
have such as a "factotum" (see (Magnini and 
Cavaglia, 2000) for a preliminary discussion on 
this problem) that can equally occur in almost 
every domain. Some words lie outside the do­
main approach and their senses could be cap­
tured with the integration of local (e.g. syntac­
tic) information. 

4.2 English 'Lexical Sample' 

From the point of view of domain driven dis­
ambiguation, the 'lexical sample' task was in­
herently more difficult than the 'all words' task 
for two reasons. First the context provided for 
disambiguation was generally shorter than the 
100 words we used to build a semantic vector. 
Second, the high number of "factotum" words 
to be disambiguated resulted in a recall even 
lower (i.e. about 0.24) than for the 'all words' 
task. The improvement of performance from 
the fine grained to the coarse grained evalua­
tion seems to confirm that, at least to some de­
gree, domain clustering corresponds to the sense 
grouping created by the task organizers. 

4.3 Italian 'Lexical Sample' 

The low results obtained for the Italian 'lexical 
sample' task may have several causes. First of 
all, the absence of a training set and the ab­
sence of any tagged text for Italian forced us 
to use a similarity function (see 3.4) trained 
to an English corpus. This was possible be­
cause we maintained the mappings between the 
English and the Italian wordnets. However, 
these multiple mappings (i.e. from WoRD­
NET1.6 to WORDNET1.5 and then to the Ital­
ian synsets through the equivalence links) are 
another source of possible errors, especially con­
cerning the domain information associated with 
Italian synsets. 

5 Conclusions 

We have described an approach to word sense 
disambiguation based on domain information. 
The underlying assumption is that domains con­
stitute a fundamental feature of text coherence. 
As a consequence, word senses occurring in a co­
herent portion of text tend to maximize domain 
similarity. Three systems have been imple­
mented, integrating knowledge-based and sta­
tistical techniques, for the three task we partic­
ipated in. As for lexical resources, the systems 
make use of WordNet Domains, an extension of 
English Wordnet 1.6, where synsets have been 
annotated with domain information. The dis­
ambiguation algorithm is based on domain vec­
tors that collect contextual information with re­
spect to the target word. At this moment only 
domain information is used in our system. A 
promising research direction is the use of local 
information (e.g. syntax) to capture word be­
haviors that lie outside the domain approach. 
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Abstract 

In this paper we describe the systems we 
developed for the English (lexical and all­
words) and Basque tasks. They were all 
supervised systems based on Yarowsky's 
Decision Lists. We used Semcor for training 
in the English all-words task. We defined 
different feature sets for each language. For 
Basque, in order to extract all the 
information from the text, we defined 
features that have not been used before in 
the literature, using a morphological 
analyzer. We also implemented systems that 
selected automatically good features and 
were able to obtain a prefixed precision 
(85%) at the cost of coverage. The systems 
that used all the features were identified as 
BCU-ehu-dlist-all and the systems that 
selected some features as BCU-ehu-dlist­
best. 

1 Introduction 

Our group took part in three tasks in Senseval-
200 1: all-words and lexical sample for English, 
and lexical sample for Basque. We applied the 
same algorithm in all tasks, but using different 
feature sets. The method we used was based on 
Yarowsky's Decision Lists (Yarowsky, 1994). 

We have to mention that different motivations 
were pursued when working for English or for 
Basque. In the last years, our work for English 
has focused on studying the contribution of 
different kinds of features to WSD (Agirre and 
Martinez, 2000; Agirre and Martinez, 200la) 
and on analyzing different knowledge types on a 
common setting (Agirre and Martinez, 200lb). 

The English tasks gave us the chance to 
compare the performance of our method with 
state-of-the-art systems. Unfortunately, due to 
time constrains, we could not train the system 
with syntactic and semantic features, as was our 
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goal. The systems we used for the English tasks 
were trained with topical and local features 
already mentioned in the literature (Yarowsky, 
1994). 

In the English lexical sample, we presented 
two systems: one trained with all the features 
(BCU-ehu-dlist-all) and another that selected 
automatically good features and was able to 
obtain a prefixed precision (85%) at the cost of 
coverage (BCU-ehu-dlist-best). In the all-words 
exercise, we presented only one system, which 
used all the features and was trained using 
Semcor (previously we mapped automatically 
WN 1.6 senses with the WN 1.7 Pre-release). 
The features and the systems will be described 
in Section 3. 

The Basque task presented interesting 
challenges for us. Previous work in WSD was 
performed using MRDs, but this was our first 
approach to the problem using Decision Lists. 
The Basque language has some particularities 
that make the selection of features a difficult 
task. First of all, Basque is an agglutinative 
language, and some syntactic information is 
given by inflectional suffixes. Therefore, it is 
necessary a powerful morphologic analysis of 
the text in order to identify the lemma and the 
different parts of each word. Also, phenomena 
like noun ellipsis have to be taken into account. 

We had the tools to perform a deep 
morphological analysis of the text (Urkia, 1997) 
and we were able to define a richer feature set 
than the one used for English. The complex 
structure of the analysis allowed constructing 
different feature types, which should be studied 
in detail. However, our approach was to define 
many features and integrate them together in the 
system, expecting that the Decision List 
algorithm would be powerful enough to choose 
the best ones in each case. We will explain the 
feature set in Section 4. We also presented two 
systems for Basque: one using all the features 
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and another selecting good features (those above 
a threshold of 85% precision). 

Following this introduction, we will briefly 
explain the Decision List algorithm in Section 2. 
Section 3 will be devoted to the English lexical 
task and Section 4 to the English all-words task. 
The Basque lexical task will be described in 
Section 5. The results obtained by our systems 
will be discussed in Section 6. Finally, we will 
resume our conclusions in Section 7. 

2 Decision Lists 

Decision lists as defined in (Yarowsky, 1994) 
are simple means to resolve ambiguity 
problems. With the addition of some hierarchical 
structure, it was one of the most successful 
systems on the Senseval-1 exercise. The training 
data is processed to extract the features, which 
are weighted with a log-likelihood measure. The 
list of all features ordered by the log-likelihood 
values constitutes the decision list. We adapted 
the original formula in order to accommodate 
ambiguities higher than two. 

Pr(sense I featurek) 
weight(sense,,featurek) =Log('\' ' I ) 

Lt Pr(sense1 featurek) 
j~i 

It is not clear what to do when all weights of 
the senses for the given feature are below 0. We 
decided to delete such features from the decision 
lists. 

When testing, the decision list is checked in 
order and the feature with highest weight that is 
present in the test sentence selects the winning 
word sense. The probabilities have been 
estimated using the maximum likelihood 
estimate, smoothed using a simple method: 
when the denominator in the formula is 0 we 
replace it with 0.1. The estimates can be 
improved using more sophisticated smoothing 
techniques. 

3 English lexical-sample task 

In the English lexical sample task, we presented 
two systems: BCU-ehu-dlist-all and BCU-ehu­
dlist-best. 

3.1. BCU-dlist-ehu-all 

We trained our Decision List algorithm using 
local and global features: 
• Local features: bigrams and trigrams around 

the target word, consisting on lemmas or 
word forms or parts of speech. Also a bag of 
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lemmas constructed using the content words 
in a ±4 word window around the target. 

• Global features: a bag of lemmas with the 
content words included in the whole context 
provided for the target word. 

We did not use the tags P and U. There was no 
special treatment for multiword detection. 

3.2. BCU-dlist-ehu-best 

In this case, instead of using the whole set of 
features, only the best features for each word 
were chosen. Features that had a precision above 
a threshold of 85% were automatically selected 
running the system on the training data, using 10 
fold cross validation. With this second system 
we wanted to guarantee high precision for each 
word, at the cost of coverage. 

4 English all-words task (BCU-dlist-ehu-all) 

In the all-words exercise, we presented only one 
system, which used all the features and was 
trained using Semcor. A mapping between the 
senses in Semcor (tagged with WordNet 1.6 
senses) and WordNet 1.7 was performed 
automatically for nouns and verbs; only words 
with those parts-of-speech were treated (we 
could not finish the mapping for adjectives on 
time). 

5 Basque lexical-sample task (BCU-dlist-ehu-
all and BCU-dlist-ehu-best) 

As mentioned before, Basque is an agglutinative 
language, and syntactic information is given by 
inflectional suffixes. The morphological analysis 
of the text is a necessary previous step in order 
to select informative features. In Basque, the 
determiner, the number and the declension case 
are appended to the last element of the phrase. In 
order to include this information in our 
representation, we have to use more rich features 
than those defined for English. When defining 
our feature set for Basque, we tried to introduce 
the same knowledge that is represented by 
features that work well for English. 

We will describe our feature set with an 
example: for the phrase "elizaren arduradunei" 
(which means "to the directors of the church") 
we get the following analysis: 

eliza jren larduradun lei 

church jof the jdirector jto the +plural 



The order of the words is inverse in English. 
We extract the following information for each 
word: 

elizaren: 
Lemma: eliza (church) 
PoS: noun 
Declension Case: genitive (of) 
Number: singular 
Determiner mark: yes 

ard uradunei: 
Lemma: arduradun (director) 
PoS: noun 
Declension Case: dative (to) 
Number: ·plural 
Determiner mark: yes 

We will assume that eliza (church) is the target 
word. Words and lemmas are shown in 
lowercase and the other information in 
uppercase. As local features we defined different 
types of unigrams, bigrams, trigrams and a 
window of ±4 words. The unigrams were 
constructed combining word forms, lemmas, 
case, number, and determiner mark. We defined 
4 kinds of unigrams: 

Uni_wfO elizaren 
Uni_wfl eliza SING+DET 
Uni_wf2 eliza GENITIVE 
Uni_wf3 eliza SING+DET GENITIVE 

As for English, we defined bigrams based on 
word forms, lemmas and parts-of-speech. But in 
order to simulate the bigrams and trigrams used 
for English, we defined different kinds of 
features. For word forms, we distinguished two 
cases: using the text string (Big_ wfO), or using 
the tags from the analysis (Big_wfl). The word 
form bigrams for the collocation "elizaren 
arduradunei" are shown below. In the case of the 
feature type "Big_wfl", the information is split 
in three features: 

Big_wfO elizaren arduradunei 

Big_wfl eliza GENITIVE 
Big_ wfl GENITIVE arduradun_rLUR+DET 
Big_wfl arduradun_pLUR+DET DATIVE 

Similarly, depending on the use of the 
declension case, we defined three kinds of 
bigrams based on lemmas: 

Big_lemO eliza arduradun 

Big_lem1 eliza GENITIVE 
Big_lem1 GENITIVE arduradun 
Big_leml arduradun DATIVE 

l3ig_lem2 eliza_GENlTIVE 
Big_Iem2 arduradun_DATIVE 

The bigrams constructed using Part-of-speech 
are illustrated below. We included the 
declension case: 

Big_pos_-1 NOUN GENITIVE 
Big_pos_-1 GENITIVE NOUN 
Big_pos_-1 NOUN DATIVE 

Trigrams are built similarly, by combining the 
information from three consecutive words. We 
also used as local features all the content words 
in a window of ±4 words around the target. 
Finally, as global features we took all the 
content lemmas appearing in the context, which 
was constituted by the target sentence and the 
two previous and posterior sentences. 

One difficult case to model in Basque is the 
ellipsis. For example, the word "elizakoa" 
means "the one from the church". We were able 
to extract this information from our analyzer and 
we represented it in the features, using a mark as 
the elliptic word. 

We implemented two systems; in the first one, 
we integrated all the features in the Decision 
List algorithm, expecting that the most 
informative ones would be chosen. The 
performance of the different features was not 
studied separately. Our second system for 
Basque applied feature selection in a similar way 
as for English. 

This was our first approach to represent the 
Basque sentences in a feature set suitable for the 
Decision List algorithm. We detected some 
reasons that could have lowered the performance 
of the system: 
• In Basque the word order is free. The 

performance of bigrams and trigrams, which 
have to be in fixed positions, could be 
affected for this fact. 

• When we introduce the number, declension 
case, and determiner; the relation between 
some words that are close in the text could 
be lost. We have tried to overcome this by 
defining many features, but we did not 

117 



analyze them by hand, and some could 
introduce noise. Deeper study of the features 
should be done in order to know the real 
performance of the method. Uncommon 
cases, like ellipsis, should be further 
examined. 

• Another source of noise was the morphological 
analyzer, which in some cases produced 
very ambiguous analysis, or errors. 

6 Results and Discussion 

In the English lexical task, BCU-ehu-dlist-all 
scored 57.3% in precision and 98% in coverage. 
It beat easily the different baselines and with a 
simple implementation, was close in precision to 
more elaborate and complex systems. With 
BCU-ehu-dlist-best we were able to obtain a 
precision of 82.9% for 28% coverage. The 
threshold of 85% precision proved to be too high 
for some words, and too low for others. Besides, 
the chosen features had low coverage and could 
be applied only in a few cases. 

In the English all-words task, we obtained 
almost the same precision as in the lexical task: 
57.2%. The coverage was limited to nouns and 
verbs with training examples in Semcor, and 
reached 51% of the target words. Clearly, more 
training data was required to compete in recall 
with the best systems. 

For Basque, with BCU-ehu-dlist-all we 
obtained 73.2% precision for 100% coverage. 
The system improved in almost 9 points the 
precision of the most frequent sense (MFS) 
baseline, but was two points below the best 
system (JHU- John Hopkins University). We 
have to notice that the JHU system won the 
lexical sample task both for Basque and for 
English; and while .the difference in recall with 
our system was only 2% for Basque, it reached 
8% for English. We think that the reason for this 
is that our feature set for Basque is better, 
although our ML algorithm is worse. 

Finally, with BCU-ehu-dlist-best the 85% 
threshold worked better than for English and we 
reached higher coverage. We were able to obtain 
84.9% precision for 57% coverage. However, 
again, the threshold was too high for some 
words (for 4 words no feature was chosen), and 
too low for others (easy words like "enplegu" 
chose the whole feature set). 

The positions of our systems in the different 
tasks are illustrated in Table 1: 

Task System Position 
Precision Recall 

Basque lexical best 1't of 3 3'ct of 3 

Basque lexical all 3'ct of 3 211d of 3 

English lexical best l't of 20 20th of 20 
English lexical all 9th of 20 9th of 20 

English all-words all ih of 21 14t11 of21 

Table 1: Classification of our systems (version 1.5, 
published 28 Sep. 2001 ). Fine-grained scoring. Only last 
versions of resubmitted systems (R) are included. Baselines 
are not incorporated. Only supervised systems are included 
in the lexical tasks. 

7 Conclusions 

In the English tasks we were able to compare a 
limited version of our system (with a reduced 
feature set) with state-of-the-art systems. We 
observed that with minimum work, we could 
obtain results above the average of the other 
systems. Our next goal is to test the system with 
semantic and syntactic features and compare the 
performance with other systems. 

For Basque, we defined a preliminary set of 
features and achieved good performance. Our 
results were close to the best system and above 
the MFS baseline. In the future, we want to 
refine the feature set and explore other sources 
of information, as syntactic features. 

Finally, more experiments on feature selection 
should be performed in order to take advantage 
of this technique. 

8 References 

Agirre E. and Martinez D. Exploring automatic word 
sense disambiguation with decision lists and the 
Web. Proceedings of the Semantic Annotation and 
Intelligent Annotation workshop organized by 
COLING. Luxembourg, 2000. 

Agirre E. and Martinez D. Learning class-to-class 
selectional preferences. Proceedings of the 
Workshop CoNLL. In conjunction with ACL'2001. 
Toulouse, France. 2001. 

Agirre E. and Martinez D. Knowledge sources for 
Word Sense Disambiguation. Proceedings of the 
Fourth International Conference TSD 2001, Plzen 
(Pilsen), Czech Republic. 2001. 

Urkia M., Euskal Morfologiaren tratamendu 
informatikorantz, Gasteiz, UPV JEHU, Ph.D. thesis. 
1997. 

Yarowsky, D. Decision Lists for Lexical Ambiguity 
Resolution: Application to Accent Restoration in 
Spanish and French. Proceedings of the 32nd 
Annual Meeting of the Association for 

. C\lmputational Linguistics, pp. 88--9 5. 1994. 

118 



Disambiguating Noun and Verb Senses Using 
Automatically Acquired Selectional Preferences* 

J udita Preiss 
Computer Laboratory 

Diana McCarthy and John Carroll 
Cognitive & Computing Sciences 

University of Sussex 
Brighton BNl 9QH, UK 

{dianam,johnca}©cogs.susx.ac.uk 

University of Cambridge, JJ Thomson Avenue 
Cambridge CB3 OFD, UK 

Judita.Preiss©cl.cam.ac.uk 

Abstract 

Our system for the SENSEVAL-2 all words task 
uses automatically acquired selectional prefer­
ences to sense tag subject and object head 
nouns, along with the associated verbal pred­
icates. The selectional preferences comprise 
probability distributions over WordN et nouns, 
and these distributions are conditioned on 
WordNet verb classes. The conditional distri­
butions are used directly to disambiguate the 
head nouns. We use prior distributions and 
Bayes rule to compute the highest probability 
verb class, given a noun class. We also use 
anaphora resolution and the 'one sense per dis­
course' heuristic to cover nouns and verbs not 
occurring in these relationships in the target 
text. The selectional preferences are acquired 
without recourse to sense tagged data so our 
system is unsupervised. 

1 Introduction 

In the first SENSEVAL, we used automati­
cally acquired selectional preferences to disam­
biguate head nouns occurring in specific gram­
matical relationships (Carroll and McCarthy, 
2000). The selectional preference models pro­
vided co-occurrence behaviour between Word­
Net synsets1 in the noun hyponym hierarchy 
and verbal predicates. Preference scores, based 
on mutual information, were attached to the 
classes in the models. These scores were condi­
tioned on the verbal context and the grammat­
ical relationship in which the nouns for training 
had occurred. The system performed compara-

• This work was supported by UK EPSRC projects 
GR/153175 'PSET: Practical Simplification of English 
Text' and GR/N36462/93 'Robust Accurate Statistical 
Parsing (RASP)'. 

1 We will hereafter refer to WordN et synsets as classes. 

bly to the other system using selectional prefer­
ences alone. 

The work here is an extension of this earlier 
work, this time applied to the English all words 
task. We use probability distributions rather 
than mutual information to quantify the prefer­
ences. The preference models are modifications 
of the Tree Cut Models (TCMs) originally pro­
posed by Li and Abe (1995; 1998). A TCM is a 
set of classes cutting across the WordNet noun 
hypernym hierarchy which covers all the nouns 
of WordNet disjointly, i.e. the classes in the set 
are not hyponyms of one another. The set of 
classes is associated with a probability distri­
bution. In our work, we acquire TCMs condi­
tioned on a verb class, rather than a verb form. 
We then use Bayes rule to obtain probability 
estimates for verb classes conditioned on co­
occurring noun classes. 

Using selectional preferences alone for disam­
biguation enables us to investigate the situa­
tions when they are useful, as well as cases when 
they are not. However, this means we loose out 
in cases where preferences do not provide the 
necessary information and other complemen­
tary information would help. Another disad­
vantage of using selectional preferences alone for 
disambiguation is that the preferences only ap­
ply to the grammatical slots for which they have 
been acquired. In addition, selectional prefer­
ences only help disambiguation for slots where 
there is a strong enough tie between predicate 
and argument. In this work, we use subject and 
object relationships, since these appear to work 
better than other relationships (Resnik, 1997; 
McCarthy, 2001), and we use argument heads, 
rather than the entire argument phrase. 

Our basic system is restricted to using only 
selectional information, and no other source of 
disambiguating information. However, we ex-
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perimented with two methods of extending the 
coverage to include other grammatical contexts. 
The first of these methods is the 'one sense per 
discourse' heuristic (Gale et al., 1992). With 
this method a sense tag for a given word is 
applied to other occurrences of the same word 
within the discourse. The second method uses 
anaphora resolution to link pronouns to their 
antecedents. Using the anaphoric links we 
are able to use the preferences for a verb co­
occurring with a pronoun with the antecedent 
of that pronoun. 

2 System Description 

There is a training phrase and a run-time dis­
ambiguation phase for our system. In the train­
ing phase a preprocessor and parser are used 
to obtain training data for selectional prefer­
ence acquisition. At run-time the preproces­
sor and parser are used for identifying predi­
cates and argument heads for application of the 
acquired selectional preferences for disambigua­
tion. Anaphora resolution is used at run-time to 
make links between antecedents of nouns, where 
the antecedents or the predicates may be in sub­
ject or object relationships. 

2.1 Preprocessor and Parser 

The preprocessor consists of three modules ap­
plied in sequence: a tokeniser, a part-of-speech 
(PoS) tagger, and a lemmatiser. The tokeniser 
comprises a small set of manually-developed 
finite-state rules for identifying word and sen­
tence boundaries. The tagger (Elworthy, 1994) 
uses a bigram HMM augmented with a statisti­
cal unknown word guesser. \Vhen applied to the 
training data for selectional preference acquisi­
tion it produces the single highest-ranked tag 
for each word; at run-time it returns multiple 
tags whose associated forward-backward proba­
bilities are incorporated into parse probabilities. 
The lemmatiser ( Minnen et al., 2001) reduces 
inflected verbs and nouns to their base forms. 

The parser uses a 'shallow' unification-based 
grammar of English PoS tags, performs .disam­
biguation using a context-sensitive probabilistic 
model (Carroll and Briscoe, 1996), and recovers 
from extra-grammaticality by returning partial 
parses. The output of the parser is a set of 
grammatical relations specifying the syntactic 
dependency between each head and its depen­
dent( s), read off from the phrase structure tree 

that is returned from the disambiguation phase. 
For selectional preference acquisition we applied 
the analysis system to the 90 million words of 
the written portion of the British National Cor­
pus (BNC); both in the acquisition phase and at 
run-time we extracted from the analyser output 
only subject-verb and verb-direct object depen­
dencies2. Thus we did not use the SENSEVAL-

2 Penn Treebank-style bracketings supplied for 
the test data. 

2.2 Selectional Preferences 

A TCM provides a probability distribution over 
the noun hyponym hierarchy of WordN et. We 
acquire TCMs conditioned on \VordN et verb 
classes to represent the selectional preferences 
of the verbs in that verb class. The noun fre­
quency data used for acquiring a TCM is that 
occurring with verbs from the target verb class. 
The verb members for training are taken from 
the class directly and all hyponym classes. How­
ever not all verbs in a verb class are used for 
training. We use verbs which have a frequency 
at or above 20 in the BNC, and belong to no 
more than 10 WordNet classes. 

The noun data is used to populate the hy­
pernym hierarchy with frequencies, where the 
frequency count for any noun is divided by the 
number of noun classes it is a member of. A 
hyperonym class includes the frequency credit 
attributed to all its hyponyms. 

A portion of two TCMs is shown in figure 1. 
The TCMs are similar as they both contain di­
rect objects occurring with the verb seize; the 
TCM for the class which includes clutch has a 
higher probability for the entity noun class 
compared to the class which also includes as­
sume and usurp. This example includes only 
classes at WordNet roots, although it is quite 
possible for the TCM to use more specific noun 
classes. The method for determining the gen­
eralisation level uses the minimum description 
length principle and is a modification of that 
proposed by Li and Abe (1995; 1998). In 
our modification, all internal nodes of WordNet 
have their synonyms placed at newly created 
leaves. Doing this ensures that all nouns are 

2 In a previous evaluation of grammatical relation ac­
curacy, the analyser returned subject-verb and verb­

··· direct object dependencies with 84-88% recall and pre­
cisio~ (Carroll et al., 1999). 
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money straw 
handle 

TCM for seize clutch 

party 

Figure 1: TCMs for the direct object slot of two verb classes which include the verb seize. 

covered by the probability distribution specified 
by the TCM. 

2.3 Disambiguation 

The probability distributions enable us to get 
estimates for p( noun classiverb class) for dis­
ambiguation. To disambiguate a noun occur­
ring with a given verb, the noun class ( n1) out 
of all those to which the noun belongs that 
gives the largest estimate for p(n1lv1) is taken, 
where the verb class ( v 1) is the one for the co­
occurring verb which maximises this estimate. 
The selectional preferences provide an estimate 
for p(n1lv1). The probability estimate of the 
hyperonym noun class ( n2) occurring above n 1 
on the TCM for vl is multiplied by the ratio of 
the prior probability estimate for the hyponym 
divided by that for the hyperonym on the TCM, 

i.e. by ~~~;l. These prior estimates are taken 
from populating the noun hypernym hierarchy 
with the prior frequency data. 

To disambiguate a verb occurring with a 
given noun, the verbclass (v2) which gives the 
largest estimate for p(v2ln3) is taken. The noun 
class ( n3) for the co-occurring noun is taken as 
the one that maximises this estimate. Bayes 
rule is used to obtain this estimate: 

p(v2) 
p( v2ln3) = p( n:3lv2) -.-) 

p(n3 

The TCMs for the candidate verb classes are 
used for the estimate of p( n31 v2). The estimate 
for p( n3) is taken from a frequency distribution 
stored over the entire noun hyponym hierarchy 
for the prior noun data for the target grammat­
ical slot. The estimate p( v2) is taken from a 
frequency distribution over the entire verb hy­
ponym hierarchy for the given grammatical slot. 
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2.4 Increasing Coverage- OSPD and 
anaphora resolution 

When applying the one sense per discourse 
( OSPD) heuristic, we simply used a tag for a 
noun, or verb to apply to all the other nouns (or 
verbs) in the discourse, provided that there was 
not more than one possible tagging provided by 
the selectional preferences for that discourse. 

In order to increase coverage of the selectional 
preferences we used anaphoric links to allow 
preferences of verbs occurring with pronouns to 
apply to antecedents. 

The anaphora resolution algorithm imple­
mented is due to Kennedy and Boguraev (1996). 
The algorithm resolves third person pronouns, 
reciprocals and reflexives, and its cited accuracy 
is 75% when evaluated on various texts taken 
from the World Wide \Veb. 

The algorithm places each discourse referent 
into a coreference class, where discourse refer­
ents in the same class are believed to refer to the 
same object. The classes have a salience value 
associated with them, and an antecedent for a 
pronoun is chosen from the class with the high­
est salience value. The salience value of a class 
is computed by assigning weights to the gram­
matical features of its discourse referents, and 
these grammatical features are obtained from 
the Briscoe and Carroll (1996) parser. 

3 Evaluation 
VVe entered three systems for the SENSEVAL-2 
English all words task: 

s ussex-sel Selectional preferences were used 
alone. Preferences at the subject slot were 
applied first, if these were not applicable 
then the direct object slot was tried. 



System Precision Recall Attempted 
(sussex-) (%) (%) (%) 
sel 59.8 14.0 23 
sel-ospd 56.6 16.9 30 
sel-ospd-ana 54.5 16.9 31 

Table 1: English all words fine-grained results 

Slot Nouns(%) Verbs (%) 

subject 34 36 
direct object 28 45 

I random baselme I 24 25 

Table 2: Analysis of sussex-sel precision for pol­
ysemous nouns and verbs 

sussex-sel-ospd The selectional preferences 
were applied first, followed by the one sense 
per discourse heuristic. In the English all 
words task a discourse was demarcated by 
a unique text identifier. 

sussex-sel-ospd-ana The selectional prefer­
ences were used, then the anaphoric links 
were applied to extend coverage, and finally 
the one sense per discourse was applied. 

The results are shown in table 1. We only 
attempted disambiguation for head nouns and 
verbs in subject and direct object relation­
ships, those tagged using anaphoric links to 
antecedents in these relationships and those 
tagged using the one sense per discourse heuris­
tic. vVe do not include the coarse-grained re­
sults which are just slightly better than the fine­
grained results, and this seems to be typical of 
other systems. We did not take advantage of 
the coarse grained classification as this was not 
available a.t the time of acquiring the selectional 
preferences. 

From analysis of the fine-grained results of 
the selectional preference results for system 
sussex-sel, we see that nouns performed better 
than verbs because there were more monose­
mous nouns than verbs. However, if we re­
move the monosemous cases, and rely on the 
preferences, the verbs were disambiguated more 
accurately than the nouns, having only a. 1% 
higher random baseline. Also, the direct object 
slot outperformed the subject slot. In future it 
would be better to use the preferences from this 
slot first. 
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4 Conclusions 

Given that this method is unsupervised, we feel 
our results are promising. The one sense per dis­
course heuristic works well and increases cover­
age. However, we feel that a.naphora resolution 
information has not reached its full potentiaL 
There is plenty of scope for combining evidence 
from several anaphoric links, especially once we 
have covered more grammatical relationships. 
We hope that precision can also be improved 
by combining or comparing several pieces of evi­
dence for a single test item. We are currently ac­
quiring preferences for adjective-noun relation­
ships. 
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Abstract 

This paper describes a system for word 
sense disambiguation that participated in the 
Swedish Lexical Sample task of 
SENSEVAL-2. The system LIU-WSD is 
based on letting different contextual features 
cast votes on preferred senses according to a 
ranking scheme. 

Introduction 

The addition of new languages to the 
SENSEV AL-2 workshop, among these 
languages also Swedish, presented an 
opportunity to learn more about WSD applied to 
Swedish by participation in the event. 
Previously, we had had no experience of 
building word sense disambiguation software, 
but the Swedish Lexical Sample task seemed 
like a suitable occasion for trying another field 
of NLP (in recent years our focus has been on 
word alignment and parallel corpora). 

Due to time constraints our initial plans of 
implementing some kind of version of decision 
lists (Yarowsky, 2000; Pedersen 2001) were 
abandoned in the end and we decided to go for a 
slightly simpler approach based on a general 
algorithm and voting strategies for contextual 
features on different levels. The contextual 
features that were being considered were 
unigrams and bigrams, both in fixed and 
variable positions, together with possibilities to 
include parts-of-speech, lemmas and graph 
words (inflected words). 

1 Data and pre-processing 

The data and resources used in the LIU-WSD 
system were apart the following: 

• Sample and training data, provided by 
the task organisers - the sample data were 
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a great help in order to understand the 
format of the provided material. 
• Part of the lexicon data provided for the 
Swedish lexical sample task. Here only the 
information on the number of senses and 
division of main and sub senses was used. 
Information contained in examples, 
definitions and for valency was left out. 

As the system was a first attempt to word sense 
disambiguation for us, we set up a small corpus 
containing for five lexical items with around 60 
contexts for each lexeme. This was used to test 
various approaches and algorithms as well as 
making sure of conversions to and from the 
format used in the task. 

As we wanted to use morphosyntactic 
information and lemmas in the system, the 
Swedish Constraint Grammar package, 
SWECG-2 from Conexor was used (Karlsson et 
al., 1994). The training corpus was fed into the 
tagger, SWECG-2, which returned an XML file 
where the text was POS tagged and lemmatised. 
Below is a sample of how the sentence Men 
pastaendet ar litet missvisande. came back in 
XML format. 

<instance id="barn.l9"> 
<answer instance="barn.19"/> 
<context> 
<w id="wl" base="rnen" pos="CC">rnen</w> 
<w id="w2" base="pastaende" 

pos="N">pastaendet</w> 
<w id="w3" base="vara" pos="PRES">ar</w> 
<w id="w4" base="litet & litet" pos="ADV & 

A">litet</w> 
<w id="w5" base="rnissvisa" 

pos="NDE">rnissvisande</w> 
<w id="w6" base="." 
pos="interpunction">.</w> ... 

2 Training 

The actual training was a matter of building 
tables of information from the training corpus. 
The task was first to decide on a number of 
contextual features to be observed, then set 



---------------------------------------------------------------------------
SENSES frqj 1 l.a l.b l.c l.d l.e l.f l.g 2 2.a 2.b 2.c 2.d 3 4 

Distrib. 1521 30 12 0 7 15 4 1 14 6 7 0 32 3 2 19 
Rel.freq. I .19 .07 - .04 .09 .02 - .09 .03 .04 - .21 .01 .01 .12 
Stand.dev. I .03 .02 - .01 . 02 .01 - .02 .01 .01 - .03 .01 - .02 

---------------------------------------------------------------------------
egen 
Rel.freq. 
Ratio 
T-score 

41 4 
I 1. o 
I 5 
124.8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 1. Extract from training data for the lexeme kraft, and the contextual feature [-1, lemma] when egen is 
observed in position -1. The upper part of the table shows the sense distribution in the training corpus and the lower 

part give data on egen when seen immediately in front of kraft. 

thresholds and store the information as a 
database where each lexeme was represented 
with a number of relevant contextual features 
observed in the training data. 

Basically, a table contains general information 
on the sense distribution in the training corpus, 
including frequencies, relative frequencies, 
standard deviation and a statistical measure, the 
Student T-measure. The idea behind the 
statistical measure is to use a test that can tell 
whether a certain observation of a contextual 
feature in relation to the choice of a word sense 
is statistically significant or not. We test whether 
the existence of a certain contextual feature F 
changes the distribution of senses for a certain 
sense S. There are many tests that can be used. 
We chose to use the Student T -test. The 

s 
p=-

T 
probability p for a sense Sis estimated as: 
where s is the total number of contexts holding 
word W with sense S, and T is the total number 
of contexts where the word W occurs. 

To arrive at a t-score we set N as the number of 
contexts for W where the feature F is holds, and 
n as the number of contexts among N that 
contain the sense S. We then calculate p ': 

' n p=-
N 

To be interesting p' must be greater than p. We 
can now test whether the distribution for F is the 
same as if when F is not observed, which is the 
actual t-test. We then test HO (p=p') vs. HI 
(p<p') and calculate t as 

p'-p 
t=--

dev 
where dev is the standard deviation for p, testing 
on the 95% confidence level. An example how 
the t-score looks for a particular feature is 
illustrated in Table 1. 

2.1 Feature patterns 

Twelve general feature patterns were extracted 
from the training corpus. The patterns are 
defined by choosing options on three different 
levels: (i) unigram or bigram, (II) lemma (base 
form), graph word (inflected form) or parts-of­
speech category (POS), and (iii) fixed position 
or position within an interval. 1 

1. Unigram, lemma, position -1 
2. Unigram, lemma, position + 1 
3. Unigram, lemma, position -5 to -2 
4. Unigram, lemma, position +2 to +5 
5. Unigram, lemma, all positions 
6. Unigram, POS, position -2 to -1 
7. Unigram, POS, position+ 1 to +2 
8. Bigram, lemma, position -2 to -1 
9. Bigram, lemma, position+ 1 to +2 
10. Bigram, lemma, all positions 
11. Bigram, POS, position -2 to -1 
12. Bigram, POS, position+ 1 to +2 

Patterns 1-7 all concern unigrams, while the rest 
operate on bigrams. Pattern 11, for example, will 
extract all POS bigrams in position -2 to -1, i.e., 
the POS tags for the two words that immediately 
precede the head word (which is assumed to be 
in position 0). 

For each lexeme, a table was built like the one in 
Table 1 for each of the twelve general feature 

1 Feature 3, 4, 5, 6, 7 and 10 are all be bags of word 
features. The others indicate fixed positions. 
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patterns. The frequency threshold used was 3 
and function words were ignored except in the 
bigram patterns. 

3 Procedure and algorithm 

When a test instance is to be disambiguated, a 
pre-processor first matches the test context with 
the training data for the lexeme in question. This 
involves identifying exactly those contextual 
features from the test data that are applicable to 
the test instance. The filtered set of tables is then 
used as input to the main disambiguation 
algorithm. 

The algorithm is based on a voting strategy 
combined with some heuristics. The voting 
strategy entails that all classes of feature patterns 
(at the most 12 classes) will cast votes for a 
particular sense. The class vote is determined by 
which sense is ranked highest within that class. 
The winner for each class is determined by the 
number of sense choices for the included 
features of that class. For example, for the 
instance 9 in the test corpus of the lexeme barn 
(Eng. child), the voting would result in choosing 
sense barn_l_l as it was ranked as number one 
in three classes, see below. 

barn.9: 
VOTES for senses: 
Sense 

1_1: Rank1: 3 
1_1.a: Rank3: 1 
1_1.b: Rank1: 1, Rank3: 1 
1_2: Rank1: 1, Rank2: 1 
1_2.a: Rank3: 1 

sense selected: barn_l_l 

During the training phase it was discovered that 
features that contained a relative frequency of 
1.0 (i.e. all observations of the feature only 
occurred with a single sense) could be 
considered as a relatively "sure sense", we 
included this strategy in the algorithm. 

The basic outline of the algorithm is as follows: 

1. If there are no applicable data for the 
instance (i.e. no tables), pick the most 
common sense in the training corpus as the 
sense for this instance. 

2. Otherwise, if there is a "sure sense", i.e. a 
contextual feature is found with the relative 

frequency 1. 0, this sense is selected, if there 
is no conflict between several "sure senses". 

3. Check the t-scores for all features in every 
class, and rank each sense as Rank1, Rank2, 
Rank3, etc. Each feature class will then be 
ranked and will cast votes accosdingly. If 
there is a sense winner (i.e. most number of 
first places in the feature classes), this sense 
is selected. 

4. If there are several senses that are tied 
check how many votes they have for s~cond 
places, and the best one of them is chosen as 
the sense. 

5. Ifthere's still a tie when considering second 
places, start clustering senses together into a 
main sense, for example, l_l.a, l_l_b, and 
1_1_ c are all considered as sense 1.1. Only 
those senses that were tied for first place are 
considered, but if these senses all share a 
single main sense, then that sense is chosen. 

6. If there be several main senses, go back to 
original (sub-)senses, and select the sense 
with highest frequency in the training 
corpora. 

7. If all of the above fails, simply resort to 
taking the most common sense in the 
training sample. 

4 Results 

The official results for the LIU-WSD system in 
the Swedish Lexical Sample task were the 
following: 

Fine-grained scoring: 56.5 per cent precision, 
56. 5 per cent recall. 
Mid-grained scoring: 61.6 per cent precision, 
61.6 per cent recall. 

The coarse-grained scoring is not relevant as an 
evaluation criterion due to the fact that the tested 
lexemes were categorised as belonging to the 
same main sense, which means that all results 
received precision scores of 100 per cent. 

5 Evaluation 

As the results were slightly worse than we had 
hoped for, it is interesting to point out further 
details from the scores and on the strategies that 
were actually used by the system. Table 2 
illustrates what part of the algorithm that was 
used for selecting a particular sense and how 
well each strategy worked. It is notable that 
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Table 2. Overview of sense selecting criteria for the LIU-WSD system in SENSEV AL-2 

TOTAL CORRECT 
Sure senses: 875 619 
Voted Rank1 393 194 
TiedRank2 115 28 
Common main sense 27 7 
Most frequent main sense: 38 7 
Sub sense 77 17 
Most frequent sense 0 0 

1525 872 

more than 50 per cent of the selections were 
made by the heuristics to select a "sure sense" 
based on the relative frequency. This is also the 
most successful in terms of precision of all the 
strategies. The voting strategies performed far 
worse, 49% for selection based on senses that 
were ranked first, and only 24% when a tie for 
first place was found and the second positions 
were considered. The strategies to select a 
shared common main sense, a most frequent 
main sense or most frequent sub sense when the 
other criteria failed were clearly not very 
successful, as indicated by precision rates 
varying from 18 to 25 per cent. 

It is also worth pointing out that there were 
always some significant features for each 
instance of the test corpus, which meant that step 
1 of the algorithm never triggered. The same is 
true for the last step. If we break down the 
results into different parts-of-speech, we can see 
the following: 

Table 3. Results for nouns, verbs and adjectives 

NOUNS 
Precision: 74% 
Better than baseline (MFS): 20/20 
Average no. of senses: 8.05 
VERBS 
Precision: 40.4% 
Better than baseline (MFS): 12/15 
Average no. of senses: 14.26 
ADJECTIVES 
Precision: 40% 
Better than baseline (MFS): 4/5 
Average no. of senses: 14A 

As has been noted elsewhere, nouns are easier 
than verbs and adjectives when it comes to word 
sense disambiguation ( cf. Yarowsky 2000). This 
is clearly the case here, and a contributing factor 
to this is that the number of senses for nouns is 
significantly smaller than for the other word 
classes. However, the system does in general 
perform better than the standard baseline (Most 
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ERROR PRECISION 
256 70% 
199 49% 
87 24% 
20 25% 
31 18% 
60 22% 
0 
653 

Frequent Sense of the trammg corpus). For 
nouns, all 20 test instances are better than the 
baseline. There is however work to be done to 
improve the performance for verbs and 
adjectives. 

6 Discussion 

Clearly this system can be improved further, 
especially when it comes to how the voting 
system should be set up. As the feature classes 
sometimes are overlapping, some features will 
contribute several times to the votes (but from 
different classes), therefore some kind of 
inductive Machine Learning algorithm to infer 
which combination of features is the best should 
be tested. Another possible improvement would 
be to include information from the examples in 
the lexicon and also to include the inflected form 
of the word that is to be disambiguated in the 
process. 
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Abstract 
We present here the main ideas of the algo­
rithm employed in the SMUls and SMU aw sys­
tems. These systems have participated in the 
SENSEVAL-2 competition attaining the best per­
formance for both English all words and En­
glish lexical sample tasks1. The algorithm has 
two main components (1) pattern learning from 
available sense tagged corpora (SemCor) and dic­
tionary definitions (WordNet), and (2) instance 
based learning with active feature selection, when 
training data is available for a particular word. 

1 Introduction 
It is well known that WSD constitutes one of 
the hardest problems in Natural Language Pro­
cessing, yet is a necessary step in a large range 
of applications including machine translation, 
knowledge acquisition, coreference, information 
retrieval and others. This motivates a continu­
ously increasing number of researchers to develop 
WSD systems and devote time to finding solu­
tions for this challenging problem. 

The system presented here was initially de­
signed for the semantic disambiguation of all 
words in open text. The SENSEVAL competitions 
created a good environment for supervised sys­
tems and this encouraged us to improve our sys­
tem with the capability of incorporating larger 
training data sets when provided. 

There are two important modules in this sys­
tem. The first one uses pattern learning relying 
on large sense tagged corpora to tag all words in 
open text. The second module is triggered only 
for the words with large training data, as was the 
case with the words from the lexical sample tasks. 
It uses an instance based learning algorithm with 
active feature selection. 

1This is in conformity with the original ranking, fol­
lowing the evaluation of systems answers submitted before 
deadline. 
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To our knowledge, both pattern learning and 
active feature selection are novel approaches in 
the WSD field, and they led to very good results 
during the SENSEVAL-2 evaluation exercise. 

2 System description 

The WSD algorithm used in this system has the 
capability of tagging words when no specific sense 
tagged corpora is available, automatically scaling 
up to larger training data2 when provided. 

Due to space constraints, we will not be able to 
give a detailed description of the system. How­
ever we try to gain space and replace one thou­
sand words with a picture: Figure 1 shows an 
overview of the system architecture. It illustrates 
the two main components, namely pattern learn­
ing from available sense tagged corpora and dic­
tionary definitions and instance based learning 
with active feature selection. The two modules 
are preceded by a preprocessing phase which in­
cludes compound concept identification, and fol­
lowed by a default phase that assigns the most 
frequent sense as a last resort, when no other 
previous methods could be applied. The shaded 
areas in Figure 1 are specific for the case when 
larger training data sets are available. 

During the preprocessing stage, SGML tags are 
eliminated, the text is tokenized, part of speech 
tags are assigned using Brill tagger (Brill, 1995), 
and Named Entities (NE) are identified with an 
in-house implementation of an NE recognizer. To 
identify collocations, we determine sequences of 
words that form compound concept,s defined in 
WordNet. 

In the second step, patterns3 are learned from 
WordNet, SemCor and GenCor, which is a large 

2I.e. in addition to the publicly available sense tagged 
corpora 

3 We alternatively call them rules as they basically spec­
ify the sense triggered by a given local context, using rules 
like "if the word before is X then sense is Y" 
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Figure 1: System architecture 

sense tagged corpus automatically built via a set 
of heuristics. If additional training data is avail­
able, patterns are filtered through a validation 
process. Practically, the patterns are applied on 
the sense tagged data and we keep only those with 
no counter-examples found in the training sets. 

The third step consists of a learning mecha­
nism with active feature selection. This step is 
initiated only for those words with a sufficiently 
large number of examples, as was the case with 
the words in the SENSEVAL lexical sample tasks. 

3 Pattern learning 
This module is intended for solving the semantic 
ambiguity of all words in open text. To this end, 
we build disambiguation patterns using SemCor, 
WordNet and GenCor. Several processing steps 
were required to transform the first two resources 
into a useful corpus for our task. Moreover, these 
lexical resources coupled with a set of heuristics 
were used as seeds for generating a new sense 
tagged corpus called GenCor. 
SemCor The SENSEVAL-2 English tasks have de­
cided to use the WordNet 1. 7 sense inventory, and 
therefore we had to deal with the task of map­
ping SemCor senses, which were assigned using 

an earlier version of WordNet, to the correspond­
ing senses in WordNet 1.7. When a word sense 
from WordNet 1.6 is missing we assign a default 
sense of 0.4 

WordN et The main idea in generating a sense 
tagged corpus out ofWordNet is very simple. It is 
based on the underlying assumption that each ex­
ample pertains to a word belonging to the current 
synset, thereby allowing us to assign the correct 
sense to at least one word in each example. For 
instance, the example given for mother#4 is "ne­
cessity is the mother of invention", and the word 
mother can be tagged with its appropriate sense. 
GenCor is a generated sense tagged corpus, con­
taining at the moment about 160,000 tagged 
words, which uses as seeds the sense tagged ex­
amples from SemCor and WordNet, as well as 
some of the principles for generating sense tagged 
corpora presented in (Mihalcea and Moldovan, 
1999). Due to space limitations we cannot 
present here the methodology for creating this 
corpus. A thorough description is provided in 
(Mihalcea, 2001). 

4SemCor 1. 7a is available for download at 
http://www.seas.smu.edu;-rada/semcor 
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Once we have created this large corpus with 
examples of word meanings, we can start to learn 
patterns. A pattern basically consists of the local 
context for each semantically tagged word found 
in the corpus. The local context is formed by a 
window pf N words to the left &nd M words to the 
right of each word considered. Additionally, a set 
of constraints is applied to filter out meaningless 
patterns. 

Patterns are formed following the rules for reg­
ular expressions. Each word in the corpus is rep­
resented by its base form, its part of speech, its 
sense, if there is any provided, and its hypernym, 
again if the sense is known. Any of these word 
components can be unspecified, and therefore de­
noted with the symbol *. A count is also asso­
ciated with every pattern, indicating the number 
of times it occurred in the corpus. 

When trying to disambiguate a word, first we 
search for all available patterns that match the 
current context. In doing so, we use the current 
word as a pivot to perform matching. If there 
are several patterns available, then the decision 
of which pattern to apply is based on the pattern 
strength. The strength of a pattern is evaluated 
in terms of {1) number of specified components, 
{2) number of occurrences and {3) pattern length. 

<the/DT modaljJJ/1 age/NN at/IN> is consid­
ered to be stronger than <modal/NN/1 age/NN>. 
Also, <clearjJJ/4 water/NN/1> is stronger than 
<clearfJJ water/NN/1>. Moreover, the inclusion 
of the hypernym among the word components 
gives us the means for generalization. For 
instance, <* jNN /* /room/1 door jNN /1> matches 
"kitchen door" as well as "bedroom door". 

Another important step performed during the 
all words disambiguation task is sense propaga­
tion. The patterns do not guarantee a complete 
coverage of all words in input text, and therefore 
additional methods are required. We use a cache­
like procedure which assigns to each ambiguous 
word the sense of its closest occurrence, if any 
can be found. The words still ambiguous at this 
point are assign~d by default the first sense in 
WordNet. 

Words with a significant number of seman­
tic tagged examples constitute a special case in 
our system. There is a second module designed 
to handle the semantic disambiguation of these 
words. This module, described in the follow­
ing section, exploits the benefits of having larger 
training data available for a particular word. 

4 Learning with active feature 
selection 

Learning mechanisms for disambiguating word 
senses have a long tradition in the WSD field. For 
our system, we have decided for an instance based 
algorithm with information gain feature weight­
ing. The reasons for this decision are three fold: 
first, it has been advocated that forgetting ex­
ceptions is harmful for language learning applica­
tions {Daelemans et al., 1999), and instance based 
algorithms are known for their property of taking 
into consideration every single training example 
when making a classification decision; secondly, 
instance based learning algorithms have been suc­
cessfully used in WSD applications (Veenstra et 
al., 2000); finally, this type of algorithms are ef­
ficient in terms of training and testing time. We 
have initially used the MLC++ implementation, 
and later on switched to Timbl {Daelemans et al., 
2001). 

Even more important than the choice of learn­
ing methodology is the selection of features em­
ployed during the learning process. There are 
several features recognized as good indicators of 
word sense, including the word itself ( CW) and 
its part of speech ( CP), surrounding words and 
their parts of speech (CF), collocations (COL), 
syntactic roles, keywords in contexts (SK). More 
recently, other possible features have been inves­
tigated: bigrams in context {B), named entities 
{NE), the semantic relation with the other words 
in context, etc. 

Our intuition was that different sets of features 
have different effects depending on the ambiguous 
word considered. Feature weighting was clearly 
proven to be an advantageous approach for a 
large range of applications, including WSD. Still, 
weights are computed independently for each fea­
ture and therefore this strategy does not always 
guarantee to provide the best results. 

For our system, we actively select features us­
ing a forward search algorithm. In this way, 
we practically generate meta word experts. Each 
word will have a different set of features that will 
eventually lead to the best disambiguation accu­
racy. 

Using this approach, we combine the advan­
tages of instance based learning mechanisms that 
have the nice property of "not forgetting ex­
ceptions", with an optimized feature selection 
scheme. One could argue that decision trees have 
the capability of selecting relevant features, but 
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it has been shown (Almuallim and Dietterich, 
1991) that irrelevant features significantly affect 
the performance of decision trees as well. 

The algorithm for active feature selection is 
sketched in Figure 2. It is worth mentioning that 
in step 2, the training and testing corpora are ex­
tracted for each ambiguous word. This means 
that examples pertaining to the word ''dress 
down" are separated from the examples for the 
single word "dress". 

1. Generate pool of features PF = {Fi}. Initialize 
the set of selected features with the empty set 
SF={0}. 

2. Extract training and testing corpora for the given 
target ambiguous word. 

3. For each feature Fi in the pool PF: 

3.1. Run a 10-fold cross validation on the training 
set; each example in the training set contains 
the features in SF and the feature F;. 

3.2. Determine the feature F; leading to the best 
accuracy. 

3.3. Remove Fi from PF and add it to SF. 

4. Repeat step 3 until no improvements are ob­
tained. 

Figure 2: Algorithm for active feature selection 

The pool PF contains a large number of fea­
tures, including those previously mentioned CW, 
CP, CF, COL, SK, B, NE, as well as other fea­
tures like the noun before and after (NB, NA), 
head of the noun phrase, surrounding verbs, and 
others. 

5 Results in SENSEVAL-2 

The overall performance of the system in the En­
glish all words task was 69% for fine-grained scor­
ing, respectively 69.8% for coarse-grained scoring 
(SMUaw). In the English lexical sample task, we 
obtained 63.8% for fine-grained scoring, respec­
tively 71.2% for coarse-grained scoring (SMUls). 
These results ranked our system before deadline 
as the best performing for both tasks. 
Discussion 

There were several interesting cases encoun­
tered in the SENSEVAL-2 data, justifying our ap­
proach of using active feature selection. The in­
fluence of a feature greatly depends on the tar­
get word: a feature can increase the precision for 
a word, while making things worse for another 
word. For example, a word such as free does not 
benefit from the surrounding keywords {SK) fea-

ture, whereas colourless gains almost 7% in pre­
cision when this feature is used. 

free.a[CW CP CF SK] -t 57.85% 
free.a[CW CP CF ] -t 63.57% 
colourless.a[CW CP CF ] -t 78.57% 
colourless.a[CW CP CF SK] -t 85.71% 

Another interesting example is constituted by 
the noun chair, which was disambiguated with 
high precision by simply using the current word 
(CW) feature. This is explained by the fact 
that the most frequent senses are Chair meaning 
person and chair meaning furniture, and there­
fore the distinction between lower and upper case 
spellings makes the distinction among the differ­
ent meanings of this word. 

We have also tested the system on the 
SENSEVAL-1 data, and performed the disam­
biguation task in respect with Hector definitions, 
as required by the first disambiguation exercise. 
The overall result achieved on this data was 
higher than the one reported by the best per­
forming system. Besides proving the validity of 
our approach, this fact also proved that our sys­
tem is not tight in any ways to the sense inventory 
or data format employed. 

6 Conclusion 
Pattern learning and active feature selection are 
new approaches in the WSD field. They have 
been implemented in a system that participated 
in the SENSEVAL-2 competition, with an excel­
lent performance in both English all words and 
English lexical sample tasks. 
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Abstract 
The WSD system presented at SENSEVAL-2 
uses a knowledge-based method for noun dis­
ambiguation and a corpus-based method for 
verbs and adjectives. The methods are, respec­
tively, Specification Marks and Maximum En­
tropy probability models. So, we can say that 
this is a hybrid system which joins an unsuper­
vised method with a supervised method. The 
whole system has been used in lexical sample 
english task and lexical sample spanish task. 

1 Introduction 
In this paper a Word Sense Disambiguation sys­
tem based on Specification Marks (SM) and 
Maximum Entropy probability models {ME) is 
presented. SM is an unsupervised knowledge­
based method and has been applied to noun 
disambiguation. ME belongs to the statistical 
approach to WSD in NLP and uses a tagged cor­
pus in order to learn a probability model that 
can be used to predict the correct sense of a 
word. SM does not need a previously tagged 
corpus, it uses the semantic information stored 
in WordNet. 

The weakness of supervised corpus-based ap­
proaches rely on availability of corpora and their 
dependency of the data which were used in the 
training phase. Knowledge-based approaches 
use previously acquire linguistic knowledge. 
This knowledge is extracted from human lex­
icographers experience and can be in form of 
electronic dictionary or lexicon. While their 
success seems poorest than statistical methods, 
they don't need neither an existing corpus nor 
a training phase and they can be more domain 
independent. 

* This paper has been partially supported by the Span­
ish Government (CICYT) project number TIC2000-
0664-C02-02. 
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So, the University of Alicante system per­
forms the WSD task combining unsupervised 
with supervised methods. The whole system 
has been used in lexical sample English task and 
lexical sample Spanish task. 

2 Specification Marks Framework 

The method we present here consists basically 
of the automatic sense-disambiguating of nouns 
that appear within the context of a sentence 
and whose different possible senses are quite re­
lated. Its context is the group of words that 
co-occur with it in the sentence and their rela­
tionship to the noun to be disambiguated. The 
disambiguation is resolved with the use of the 
WordNet lexical knowledge base. 

The intuition underlying this approach is that 
the more similar two words are, the more infor­
mative the most specific concept that subsumes 
them both will be. In other words, their low­
est upper bound in the taxonomy. (A "con­
cept" here, corresponds to a Specification Mark 
(SM)). In other words, the more information 
two concepts share in common, the more similar 
they obviously are, and the information com­
monly shared by two concepts is indicated by 
the concept that subsumes them in the taxon­
omy. 

The input for the WSD module will be the 
group of words W = {W1, W2, ... , Wn}· Each 
word wi is sought in WordNet, each one has 
an associated set Si = { Sil, Si2, ... , Sin} of pos­
sible senses. Furthermore, each sense has a 
set of concepts in the IS-A taxonomy (hyper­
nymy/Hyponymy relations). First, the concept 
that is common to all the senses of all the words 
that form the context is sought. We call this 
concept the Initial Specification Mark (ISM), 
and if it does not immediately resolve the ambi­
guity of the word, we descend from one level 



to another through WordNet 's hierarchy, as­
signing new Specification Marks. The number 
of concepts that contain the subhierarchy will 
then be counted for each Specification Mark. 
The sense that corresponds to the Specification 
Mark with highest number of words will then be 
chosen as the sense disambiguation of the noun 
in question, within its given context. 

At this point, we should like to point out that 
after having evaluated the method, we subse­
quently discovered that it could be improved 
with a set of heuristics, providing even better 
results in disambiguation. The set of heuristics 
are Heuristic of Hypernym, Heuristic of Defini­
tion, Heuristic of Common Specification Mark, 
Heuristic of Gloss Hypernym, Heuristic of Hy­
ponym and Heuristic of Gloss Hyponym. De­
tailed explanation and evaluation of the method 
and heuristics can be found in (Montoya and 
Palomar, 2000; Montoya and Palomar, 2001), 
while its application to NLP tasks are addressed 
in (Montoya et al., 2001). 

3 Maximum Entropy Framework 

Maximum Entropy(ME) modeling is a frame­
work for integrating information from many 
heterogeneous information sources for classifica­
tion. ME probability models were successfully 
applied to some NLP tasks such as POS tagging 
or sentence boundary detection (Ratnaparkhi, 
1998). 

The WSD system presented in this paper 
is based on conditional ME probability mod­
els (Saiz-Noeda et al., 2001). It implements 
a supervised learning method consisting of the 
building of word sense classifiers through train­
ing on a semantically tagged corpus. A classifier 
obtained by means of a ME technique consists of 
a set of parameters or coefficients estimated by 
means of an optimization procedure. Each co­
efficient is associated to one feature observed in 
training data. A feature is a function that gives 
a measure for some characteristic in a context 
associated to a class. The main purpose is to 
obtain the probability distribution that maxi­
mizes the entropy, that is, maximum ignorance 
is assumed and nothing apart of training data 
is considered. As advantages of ME framework, 
knowledge-poor features applying and accuracy 
can be mentioned; ME framework allows a vir­
tually unrestricted ability to represent problem-
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specific knowledge in the form of features (Rat­
naparkhi, 1998). 

Let us assume a set of contexts X and a 
set of classes C. The function c1 : X -+ C 
that performs the classification in a condi­
tional probability model p chooses the class with 
the highest conditional probability: c1 ( x) = 
argmaxcp(c!x), where x is a context and c a 
class. The features have the form of (1), where 
cp( x) is some observable characteristic1 . The 
conditional probability p(c!x) is defined as (2) 
where ai are the parameters or weights of each 
feature, and Z(x) is a constant to ensure that 
the sum of probabilities for each possible class 
in this context is equal to 1. 

f (x c) = { 1 if d =?and cp(x) =true 
c! ' 0 otherwise 

(1) 

K 
p(c!x) = _1_ IT a{i(x,c} (2) 

Z(x) i=l 

4 The system at Senseval-2 
The Spanish and English lexical sample tasks at 
the SENSEVAL-2 workshop had been performed 
by our system in three phases. The first one is 
a naive multi-word detection; the second one, 
the disambiguation of nouns by means of the 
SM method, and the third one, the disambigua­
tion of verbs and adjectives by means of the ME 
method. 

In a previous step, training and test data had 
been tagged with Tree-Tagger(Schmid, 1994) 
for English files and Conexor's FDG Parser 
(Tapanainen and Jarvinen, ) for Spanish files 
in order to get the part-of-speech information 
and identify nouns, verbs and adjectives. 

Multi-words detection 
The multi-word detection has been performed 
by combining the words around the target word 
in each sample and consulting WordNet for En­
glish (examining the training data, we conclude 
that this is not necessary for Spanish data). If 
a multi-word is found in WordNet a multi-word 
instance is assigned and no further single word 

1The ME approach is not limited to binary fun­
tions, but the optimization procedure( Generalized Iter­
ative Scaling) used for the estimation of the parameters 
needs this kind of features. 



disambiguation will be done. This kind of in­
stances has been disambiguated with the first 
sense of WordNet (even if it is a polysemous 
one). 

Nouns with Specification Marks 

The second phase consist of noun classification, 
and has been performed by the SM method de­
scribed previously. 

Verbs and adjectives with Maximum 
Entropy 

The third and final phase, the verbs and ad­
jectives disambiguation, has been performed by 
the ME method. The SENSEVAL-2 training data 
has been used in order to obtain the classifica­
tion functions to be applied on the test data. 
The set of features defined for ME training is 
described below and it is based on features se­
lection made in {Ng and Lee, 1996) and (Escud­
ero et al., 2000). 

The set of features corresponds to words 
around the word to classify and POS la­
bels at positions related to the target word 
in each sentence: wo, w_b w_2, W-3, 
W+b W+2, W+3, (w-2, W-I), (W-I, W+I), 
(w+b W+2), (w-3,w-2,w-d, (w-2, w_bw+I), 
(w-bw+I,W+2), (w+I, W+2,W+3), P-3, P-2, P-1, 
P+I, P+2, P+3· Each Wi is the lemma of the word 
at position i in the context (in collocations, at 
least one of the words must be a content word). 
Each Pi is the POS label at position i. 

Other set of features consists of a surround­
ing nouns selection. This selection is doing by 
means of frequency information of nouns co­
occurring with a sense. Nouns co-occurring 
with a class in a K% of examples of that class 
in the corpus or more are selected to build a 
feature for each possible class2 • 

5 Senseval-2 results analysis 
Analyzing the first evaluation results of 
the English lexical sample task {fine-grained 
scoring) reported by SENSEVAL-2 committee 
(precision = 0.421 and recall = 0.411) , some 
conclusions can be extracted from them. 

The nouns disambiguation obtains the worst 
results (see table 1). We can mostly assure 

2For example, in a set of 100 examples of sense four 
of the noun "interest", if "bank" is observed 10 times or 
more (K = 10%) then a feature for each possible sense 
of "interest" is defined with "bank" . 
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that the reason is the kind of method used: 
knowledge-based for nouns and corpus-based for 
verbs and adjectives. 

POS 
Nouns 
Verbs 
Adjectives 

precision 
0.299 
0.486 ~ 
0.709 

recall 
0.292 
0.480 
0.635 

Table 1: Results of the English Lexical Sample 
Task {Fine-grained) 

The results of the Spanish lexical sample task 
(fine-grained scoring) reported by SENSEVAL-2 
committee are precision = 0.514 and recall = 
0.503. Nevertheless, the nouns results rise to 
56% of precision (table 2). It seems that the 
set of nouns selected for this task is easier to 
Specification Marks than English ones, maybe 
related to lexical resources used and the lan­
guage itself. However, the recall of nouns is 
too low because a implementation error causes 
that the accented words had not been recognize 
( coraz6n, operaci6n and 6rgano ). 

POS 
Nouns 
Verbs 
Adjectives 

precision recall 
0.566 0.435 
0.511 0.511 
0.687 0.687 

Table 2: Results of the Spanish Lexical Sample 
Task (Fine-grained) 

The preprocessing of the train and test data 
are relevant. Some errors of the PO S-tagger had 
been detected and they affect some answer in­
stances. Multi-words are a not resolved prob­
lem. The detection and disambiguation method 
is too simple and causes too much errors. More 
preprocessing is necessary, as well: the con­
text information can be enriched and accuracy 
increased with entity recognition, full-parsing, 
and so on. 

6 Conclusions 
The University of Alicante system presented at 
SENSEVAL-2 workshop joins the two general ap­
proaches to the WSD task: knowledge-based 
and corpus-based methods. The Specification 
Marks method belongs to the first one and Max­
imum Entropy-based method to the second one. 



Specification Marks for nouns, and Maximum 
Entropy for verbs and adjectives had been used 
in order to process the test data of the En­
glish and the Spanish lexical sample tasks. The 
training and the test data had been used with a 
minimum preprocessing, just cleaning of XML­
tags in order to run the Tree-Tagger. Besides, 
the two WSD modules had been used in the 
same manner as for other corpora with minor 
modifications: no specific changes to the algo­
rithms used in both methods had been made for 
SENSEVAL-2, apart from the necessary modules 
to make data files available to the computer pro­
grams. 

Due to the distinct approaches used in each 
POS, the whole system has been classified as 
supervised system. In the English task, the sys­
tem obtains a poor score when it is compared 
with other supervised systems, and a great re­
sult against the unsupervised systems (we have 
no such information of systems for Spanish). 
But the truth is that our system is unsuper­
vised for nouns but supervised for verbs and ad­
jectives. Therefore, comparing our results with 
the other systems must be done separating the 
results of nouns, verbs and adjectives. 

7 Future and in progress work 

At this moment, the two methods presented 
here are being improved with new knowledge 
sources like full parsing information and domain 
categories that in order to decrease the Word­
Net granularity. The WSD system will be com­
pleted with other NLP software like N arne En­
tity recognition and multi-words detection mod­
ules. 

Recent work in our research group indicates 
that it is possible to combine the two methods in 
a hybrid method that assign a sense to a context 
combining the answers of both methods with a 
relevant improvement of accuracy (Suarez and 
Montoya, 2001). Our intention is to extent this 
combination with the help of other well known 
WSD methods and to establish a voting method 
or some other manner of cooperation. 

Our main objective is to develop a complete 
WSD system in order to help other NLP activ­
ities in our research group. The work presented 
here is our first attempt to participate at Sen­
seval and we hope to get the proper conclusions 
in order to improve our system and compete in 

the next Senseval. 
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Abstract 
We submitted four systems to the Japanese 
dictionary-based lexical-sample task of 
SENSEVAL-2. They were i) the support 
vector machine method ii) the simple Bayes 
method, iii) a method combining the two, and 
iv) a method combining two kinds of each. The 
combined methods obtained the best precision 
among the submitted systems. After the 
contest, we tuned the parameter used in the 
simple Bayes method, and it obtained higher 
preciSIOn. An explanation of these systems 
used in Japanese word sense disambiguation 
was provided. 

1 Introduction 
We participated in the Japanese dictionary­
based lexical-sample task of the SENSEVAL-2 
contest. We used machine learning approaches 
and submitted four systems. After the con­
test, we tuned the parameter used in the simple 
Bayes method and carried out additional exper­
iments. In this paper, we explain the systems 
and their experimental results. 

2 Task Descriptions 
The test data included 10,000 instances for eval­
uation. The RWC corpus (Shirai et al., 2001) 
was given as the training data. It was made 
from 3000 articles published in the Mainichi 
Newspaper. The nouns, verbs, and adjectives 
(the total number of which was about 150,000) 
were assigned sense tags defined on the basis 
of the Iwanami dictionary. The purpose of this 
task was to estimate the sense of a word by us­
ing its context. 

3 Methods 
Because the word sense assigned to each word 
is dependent on the word itself, estimations 
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were conducted using machine learning meth­
ods for each word. That is, we constructed as 
many learning machines as there were individ­
ual words. 

We used the simple Bayes and support vec­
tor machine methods as the machine learning 
method. 1 In this section, we explain each of the 
machine learning methods and then explain the 
method combining several of them. 

3.1 Simple Bayes Method 
This method estimates probability based on the 
Bayes theory. The category (i.e., the sense tag) 
with the highest probability is judged to be the 
desired one. This is a basic approach to the 
disambiguation of word sense. The probability 
of category a appearing in context b is defined 
as: 

p(alb) 
p(a) 
p(b) p(bla) (1) 

p(a) IT-
p(b) . p(f;ia), (2) 

' 
where context b is a set of features fj ( E F, 1 ~ 
j ~ k) that is defined in advance. p(b) is the 
probability of context b, which is not calculated 
because it is a constant and is not dependent 
on category a. p(a) and jj(fila) are the prob­
abilities estimated by using the training data 
and indicate the probability of the occurrence 
of category a in the examples of the training 
data and the probability of feature fi occur­
ring, given category a, respectively. When we 
use the maximum likelihood estimation to cal­
culate p(fiia), which often has a value of 0 and 
is therefore difficult to estimate the desired cat­
egory, smoothing process is used. We used this 

1 We made preliminary experiments using various 
methods: the simple Bayes, the decision list, the max­
imum entropy, and the support vector machine. The 
results showed that the simple Bayes and support vector 
machine methods were better than the other two (M u­
rata et al., 2001). We used these two methods in the 
contest. 
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Figure 1: Maximizing the margin 

equation for smoothing: 

_(!·I ) _ freq(f;, a)+ E * freq(a) 
p,a- ()' freq(a) + E * freq a 

(3) 

where freq(Ji, a) is the number of events that 
have the feature fi and whose category is a and 
freq(a) is the number of events whose category 
is a. E is a constant set by experimentation. In 
this study, we used 0.01 and 0.0001 as E. 2 

3.2 Support Vector Machine Method 

In this method, data consisting of two categories 
is classified by using a hyperplane to divide a 
space. When the two categories are, for exam­
ple, positive and negative, enlarging the margin 
between the positive and negative examples in 
the training data (see Figure 13) reduces the 
possibility of incorrectly choosing categories in 
test data. The hyperplane that maximizes the 
margin is thus determined, and classification is 
carried out using that hyperplane. Although 
the basics of this method are the same as those 
described above, in the extended versions of 
the method, the region between the margins 
through the training data can include a small 
number of examples, and the linearity of the 
hyperplane can be changed to a non-linearity 
by using kernel functions. The classification in 
the extended versions is equivalent to the classi­
fication using the following function (Equation 
( 4)), and the two categories can be classified on 
the basis of whether the value output by the 
function is positive or negative ( Cristianini and 
Shawe-Taylor, 2000; Kudoh, 2000): 

2 In the SENSEVAL-2 contest, we used 0.01 as t:. After 
the contest, we tested several values (0.1 to 0.00000001) 
as E. We confirmed that E = 0.0001 produced the best 
results using 10-fold cross validation in the training data. 

3 In the figure, the white and black circles indicate 
positive and negative examples, respectively. The solid 
line indicates the hyperplane that divides the space, and 
the broken lines indicate the planes that mark the mar­
gins. 
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f(x) 'gn ( t ";y;J((x;, x) + /,) (4) 

max;,y;=-tb; + mini,y;=tb; 
b 

2 
l 

b; - I:>'iYiK(xj, x;), 
j=l 

where x is the context (a set of features) of 
an input example, Xi indicates the context of 
a training datum, Yi (i = 1, ... ,l,yi E {1,-1}) 
indicates its category, and the function sgn is 

sgn(x) = 1 (x 2: 0), (5) 

-1 (otherwise). 

Each O:i ( i = 1, 2 ... ) is fixed as the value of O:i 

that maximizes the value of L(a) in Equation 
(6) under the conditions set by Equations (7) 
and (8). 

l l 

L(a) 2:: a;-~ 2:: a;O:jYiYjK(x;, Xj) (6) 
i=l i,j=l 

0 S: a; S: C (i = 1, ... ,l) 

l 

L a;y; = 0 
i=l 

(7) 

(8) 

Function K is called a kernel function and var­
ious functions are used as kernel functions. We 
have used the following polynomial function ex­
clusively. 

K(x,y) =(x·y+l)d (9) 

C and d are constants set by experimentation. 
For all of the experiments reported in this pa­
per, C was fixed as 1 and d was fixed as 2. 

A set of Xi that satisfies O:i > 0 is called a 
support vector (SVs) 4. The summation portion 
of Equation ( 4) was calculated using only the 
examples that were support vectors. 

Support vector machine methods are capable 
of handling data consisting of two categories. In 
general, data consisting of more than two cate­
gories is handled by using the pair-wise method 
(Kudoh and Matsumoto, 2000). 

In this method, for data consisting of N cat­
egories, pairs of two different categories (N (N-
1)/2 pairs) are constructed. The better cate-

1rn Figure 1, the circles in the broken lines indicate 
support vectors. 



gory is determined by using a 2-category clas­
sifier (in this paper, a support vector machine5 

was used as the 2-category classifier), and the 
correct category is finally determined by "vot­
ing" on the N(N-1)/2 pairs that result from 
analysis using the 2-category classifier. 

The support vector machine method is, in 
fact, performed by combining the support vec­
tor machine and pair-wise methods described 
above. 

3.3 Combined Method 
Our combined method changed the used 
machine-learning method for each word. The 
used method for each word was the best one 
for the word in the 10-fold cross validation6 on 
the training data among the given methods for 
combination. 

We used the following three kinds of combi­
nations. 

• Combined method 1 
a combination of the simple Bayes and support 
vector machine methods 

• Combined method 2 
a combination of two kinds of the simple Bayes 
method and two kinds of the support vector 
machine method 
(Here, "the two kinds" indicate an instance 
where all features were used and where the syn­
tactic feature alone were not). 7 

• Combined method 3 
a combination of two kinds of the simple Bayes 
method 
(Here, "the two kinds" indicate instance where 
E = 0.0001 and another where E = 0.01). 

4 Features (information used in 
classification) 

In this paper, the following are defined as fea­
tures. 

• Features based on strings 

- strings in the analyzed morpheme 
- strings of 1 to 3-grams just before the an-

alyzed morpheme 

5We used Kudoh's TinySVM software (Kudoh, 2000) 
as the support vector machine. 

6 In the 10-fold cross validation, we first divide the 
training data into ten parts. The answers of the in­
stances in each part are estimated by using the instances 
in the remaining nine parts as the training data. We then 
use all the results in the ten parts for evaluation. 

7We used a case where the syntactic feature alone 
was not used because it obtained a higher precision than 
when all the features had been used in our preliminary 
experiments. 

- strings of 1 to 3-grams just after the ana­
lyzed morpheme 

• Features based on the morphological in­
formation given by the RWC tags 

- the part of speech (POS), the minor POS, 
and the more minor POS of the analyzed 
morpheme 8 

- the previous morpheme, its 5-digit cate­
gory number, its 3-digit category number, 
its POS, its minor POS, and its more mi­
nor POS9 

the next morpheme, its 5-digit category 
number, its 3-digit category number, its 
POS, its minor POS, and its more minor 
POS 

• Features based on the morphological in­
formation given by JUMAN 
The corpus was analyzed using the Japanese 
morphological analyzer, JUMAN (Kurohashi 
and Nagao, 1998), and the results were used 
as features. 

the POS, the minor POS, and the more 
minor POS of the analyzed morpheme, 
which were determined from the results of 
JUMAN. 
the previous morpheme, its 5-digit cate­
gory number, its 3-digit category number, 
its POS, its minor POS, and its more mi­
nor POS 

- the next morpheme, its 5-digit category 
number, its 3-digit category number, its 
POS, its minor POS, and its more minor 
POS 

• Features based on syntactic information 
The corpus was analyzed using the Japanese 
syntactic analyzer KNP (Kurohashi, 1998), and 
the results were used as features. 

- the bunsetsu, 10 including the analyzed 
morpheme information on whether or not 

8 The POS, the minor POS, and the more minor POS 
of a morpheme are the items in the third, fourth, and 
fifth fields of the RWC corpus, respectively. 

9 A Japanese thesaurus, the Bunrui Goi Hyou dictio­
nary (NLRI, 1964), was used to determine the category 
number of each morpheme. This thesaurus is of the 'is­
a' hierarchical type, in which each word has a category 
number, which is a 10-digit number that indicates seven 
levels of an 'is-a' hierarchy. The top five levels are ex­
pressed by the first five digits, the sixth level is expressed 
by the next two digits, and the final level is expressed by 
the final three digits. 

10 Bunsetsu is a Japanese grammatical term. A bun­
setsu is similar to a phrase in English, but is a slightly 
smaller component. Eki-de "at the station" is a bun­
setsu, and sono, which corresponds to "the" or "its," is 
also a bunsetsu. A bunsetsu is, roughly, a unit of items 
that refers to entities. 
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Table 1: Experimental results 

Method Precision 
Baseline method 0.726 
Support vector machine (CRL1) 0.783 
Simple Bayes method, t = 0.01 (CRL2) 0.778 
Simple Bayes method, t = 0.0001 0.790 
Combined method 1 (CRL3) 0.786 
Combined method 2 (CRL4) 0.786 
Combined method 3 0.793 
The best method in the contest 0.786 

the bunsetsu was a noun phrase, the POS 
of the bunsetsu's particle, the minor POS 
of the particle, and the more minor POS 
of the particle 

the main word that the bunsetsu modifies, 
including the analyzed morpheme and its 
5-digit category number, 3-digit category 
number, POS, minor POS, and more mi­
nor POS 

the main words of the modifiers of the 
bunsetsu including the analyzed mor­
pheme and their 5-digit category numbers, 
3-digit category numbers, POSs, minor 
POSs, and more minor POSs (In this case, 
the information on the particle, such as ga 
or o, was used as well). 

• Features of all words co-occurring in the 
same sentence 
The corpus was analyzed using the Japanese 
morphological analyzer JUMAN (Kurohashi 
and Nagao, 1998), and lists of the results were 
used as features. 

each morphology in the same sentence, its 
5-digit category number, and its 3-digit 
category number 

• Features of the UDC code in a document 
In the RWC corpus, each document has a uni­
versal decimal code (UDC), indicating its cat­
egory. 

the first digit, the first two-digits, and the 
first three-digits of the UDC in the docu­
ment 

5 Experiments 

We submitted the four systems ( CRL1 to 
CRL4), the support vector machine method, 
the simple Bayes method (E = 0.01), Combined 
method 1, and Combined method 2. After the 
contest, we carried out the experiments using 
the simple Bayes (E = 0.0001) and Combined 
method 3. Their experimental results are shown 

in Table 1. "Baseline method" selected the cate­
gory that most frequently occurred in the train­
ing data as the answer. "The best method in 
the contest" was the best among all the sys­
tems submitted to the contest, which was CRL4 
(0.786483). The precisions shown in the table 
are the mixed-grained scores calculated by soft­
ware "scorer2", which was given by the com­
mittees of SENSEVAL-2. (In our systems, all 
the instances were attempted, so the recall rate 
was equal to its precision rate.) 

We found the following items from the results. 

• All the methods produced higher precision than 
the baseline method. 

• Among the four submitted systems (CRL1 to 
CRL4), Combined method 2 was the best. 

• The simple Bayes method using E = 0.0001 
and Combined method 3 (the combination of 
the two simple Bayes methods) obtained higher 
precision. This indicates that the simple Bayes 
method was effective. 

6 Conclusion 
Our methods combining the simple Bayes and 
support vector machine methods obtained the 
best precision among all the submitted systems. 
After the contest, we tuned the parameter used 
in the simple Bayes method using the 10-fold 
cross validation in the training data, and it ob­
tained higher precision. The best method was 
the combination of the two simple Bayes, whose 
precision was 0.793. 

References 
Nello Cristianini and John Shawe-Taylor. 2000. An Introduc­

tion to Support Vector Machines and Other Kernel-based 
Learning Methods. Cambridge University Press. 

Taku Kudoh and Yuji Matsumoto. 2000. Use of support vec­
tor learning for chunk identification. CoNLL-2000. 

Taku Kudoh. 2000. TinySVM: Support Vector Machines. 
http://cl.aist-nara.ac.jp/ taku-ku// software/TinySVM/ 
index.html. 

Sadao Kurohashi and Makoto Nagao, 1998. Japanese Mor­
phological Analysis System JUMAN version 3.5. Depart­
ment of Informatics, Kyoto University. (in Japanese). 

Sadao Kurohashi, 1998. Japanese Dependency/Case Struc­
ture Analyzer KNP version 2.0b6. Department of Infor­
matics, Kyoto University. (in Japanese). 

Masaki Murata, Masao Utiyama, Kiyotaka Uchimoto, Qing 
Ma, and Hitoshi !sahara. 2001. Experiments on word 
sense disambiguation using several machine-learning meth­
ods. In IEICE-WGNLC2001-2. (in Japanese). 

NLRI. 1964. Bunrui Goi Hyou. Shuuei Publishing. 
Kiyoaki Shirai, Wakako Kashino, Minako Hashimoto, 

Takenobu Tokunaga, Eiichi Arita, Hitoshi !sahara, Shiho 
Ogino, Ryuichi Kobune, Hlronobu Takahashi, Katashi 
Nagao, Koiti Hasida, and Masaki Murata. 2001. Text 
database with word sense tags defined by Iwanami 
Japanese dictionary. Information Processing Society of 
Japan, WGNL 141-19. (in Japanese). 

138 



Machine Learning with Lexical Features: 
The Duluth Approach to Senseval-2 

Ted Pedersen 
Department of Computer Science 
University of Minnesota, Duluth 

Duluth, MN 55812 USA 
tpederse©d.umn.edu 

Abstract 
This paper describes the sixteen Duluth entries 
in the SENSEVAL-2 comparative exercise among 
word sense disambiguation systems. There were 
eight pairs of Duluth systems entered in the 
Spanish and English lexical sample tasks. These 
are all based on standard machine learning algo­
rithms that induce classifiers from sense-tagged 
training text where the context in which am­
biguous words occur are represented by simple 
lexical features. These are highly portable, ro­
bust methods that can serve as a foundation for 
more tailored approaches. 

1 Introduction 
The Duluth systems in SENSEVAL-2 take a su­
pervised learning approach to the Spanish and 
English lexical sample tasks. They learn deci­
sion trees and Naive Bayesian classifiers from 
sense-tagged training examples where the con­
text in which an ambiguous word occurs is rep­
resented by lexical features. These include uni­
grams and bigrams that occur anywhere in the 
context, and co-occurrences within just a few 
words of the target word. These are the only 
types of features used. There are no syntac­
tic features, nor is the structure or content of 
WordNet employed. As a result these systems 
are highly portable, and can serve as a founda­
tion for systems that are tailored to particular 
languages and sense inventories. 

The word sense disambiguation literature 
provides ample evidence that many different 
kinds of features contribute to the resolution of 
word meaning. These include part-of-speech, 
morphology, verb-object relationships, selec­
tional restrictions, lexical features, etc. When 
used in combination it is often unclear to what 
degree each type of feature contributes to over­
all performance. It is also unclear to what 
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extent adding new features allows for the dis­
ambiguation of previously unresolvable test in­
stances. One of the long term objectives of our 
research is to determine which types of features 
are complementary and cover increasing num­
bers of test instances as they are added to a 
representation of context. 

2 Experimental Methodology 

The training and test data for the English and 
Spanish lexical sample tasks is split into sep­
arate training and test files per word. A su­
pervised learning algorithm induces a classifier 
from the training examples for a word, which 
is then used to assign sense tags to the test in­
stances for that word. 

The context in which an ambiguous word oc­
curs is represented by lexical features that are 
identified using the Bigram Statistics Package 
(BSP) version 0.4. This is free software that 
extracts unigrams and bigrams from text us­
ing a variety of statistical methods. Each uni­
gram or bigram that is identified in the training 
data is treated as a binary feature that indicates 
whether or not it occurs in the context of the 
word being disambiguated. The free software 
package SenseTools (version 0.1) converts train­
ing and test data into a feature vector repre­
sentation, based on the output from BSP. This 
becomes the input to the Weka suite of super­
vised learning algorithms. Weka induces classi­
fiers from the training examples and applies the 
sense tags to the test instances. 

The same software is used for the English 
and Spanish text. BSP and SenseTools are 
written in Perl and are freely available from 
www.d.umn.edu;-tpederse/code.html. Weka is 
written in Java and is freely available from 
www.cs.waikato.ac.nz/-ml. 



3 System Descriptions 

There were eight pairs of Duluth systems in 
the English and Spanish lexical sample tasks. 
The only language dependent components are 
the tokenizers and stop-lists. For both English 
and Spanish a stop-list is made up of all words 
that occur ten or more times in five randomly 
selected word training files of comparable size. 
All Duluth systems exclude the words in the 
stop-list from being features. 

Each pair of systems is summarized below. 
All performance results are based on accuracy 
(correct/total) using fine-grained scoring. The 
name of the English system appears first, fol­
lowed by the Spanish system. 

Duluthl/Duluth6 create an ensemble of 
three Naive Bayesian classifiers, where each is 
based on a different set of features. The hope is 
that these different views of the training exam­
ples will result in classifiers that make comple­
mentary errors, and that their combined perfor­
mance will be better than any of the individual 
classifiers. 

Separate Naive Bayesian classifiers are 
learned from each representation of the train­
ing examples. Each classifier assigns probabili­
ties to each of the possible senses of a test in­
stance. These are summed and the sense with 
the largest value is used. This technique is used 
in many of our ensembles and will be referred 
to as a weighted vote. 

The first feature set is made up of bigrams, 
i.e., consecutive two word sequences, that can 
occur anywhere in the context with the ambigu­
ous word. To be selected as a feature, a bigram 
must occur two or more times in the training 
examples and have a log-likelihood ratio ( G2 ) 

value 2:: 6.635, which is associated with a p-value 
of .01. 

The second feature set is based on unigrams, 
i.e., one word sequences, that occur five or more 
times in the training data. 

The third feature set is made up of co­
occurrence features that represent words that 
occur on the immediate left or right of the tar­
get word. In effect, these are bigrams that in­
clude the target word. They must also occur 
two or more times and have a log-likelihood ra­
tio 2:: 2.706, which is associated with a p-value 
of .10. 

These systems are inspired by (Pedersen, 

2000), which presents an ensemble of eighty-one 
Naive Bayesian classifiers based on varying sized 
windows of context to the left and right of the 
target word that define co-occurrence features. 
However, the current systems only use a three 
member ensemble to capture the spirit of sim­
plicity and portability that underlies the Duluth 
approach to SENSEVAL-2. 

English accuracy was 53%, Spanish was 58%. 
Duluth2/Duluth7 learn an ensemble of de­

cision trees via bagging. Ten samples are drawn, 
with replacement, from the training examples 
for a word. A decision tree is learned from each 
of these permutations of the training examples, 
and each of these trees becomes a member of 
the ensemble. A test instance is assigned a sense 
based on a weighted vote among the members of 
the ensemble. In general decision tree learning 
can be overly influenced by a small percentage 
of the training examples, so the goal of bagging 
is to smooth out this instability. 

There is only one kind of feature used in these 
systems, bigrams that occur two or more times 
and have a log-likelihood ratio ;:::: 6.635. This 
is one of the three feature sets used in the Du­
luth1/Duluth6 systems. 

The set of bigrams that meet these criteria 
become candidate features for the J48 decision 
tree learning algorithm, which is the Weka im­
plementation of the C4.5 algorithm. The deci­
sion tree learner first constructs a tree of fea­
tures that characterizes the training data ex­
actly, and then prunes features away to avoid 
over-fitting and allow it to generalize to the 
previously unseen test instances. Thus, a de­
cision tree learner performs a second cycle of 
feature selection and is not likely to use all of 
the features that we identify prior to learning 
with BSP. The default C4.5 parameter settings 
are used for pruning. 

These systems are an extension of (Peder­
sen, 2001), which learns a single decision tree 
where the representation of context is based on 
bigrams. This earlier work does not use bag­
ging, and the top 100 bigrams according to the 
log-likelihood ratio are the candidate features. 

English accuracy was 54%, Spanish was 60%. 
Duluth3 /Duluth8 rely on the same fea­

tures .as Duluthl/Duluth6, but learn an en­
semble of three bagged decision trees instead 
of an ensemble of Naive Bayesian classifiers. 
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There is a strong contrast between these tech­
niques, since decision tree learners attempt to 
characterize the training examples and find re­
lationships among the features, while a Naive 
Bayesian classifier is based on an assumption of 
conditional independence among the features. 

The feature set used in these systems is from 
Duluthl/Duluth6 and consists of bigrams, un­
igrams and co-occurrences. A bagged decision 
tree is learned for each of the three kinds of fea­
tures. The test instances are classified by each 
of the bagged decision trees, and a majority vote 
is taken among the members to assign senses to 
the test instances. 

These are the most accurate of the Duluth 
systems for both English (57%) and Spanish 
(61%). These are within 7% of the most accu­
rate overall approaches for English (64%) and 
Spanish (68%). 

Duluth4/Duluth9 uses a Naive Bayesian 
classifier based on a bag of words representation 
of context, where each unigram that occurs in 
the training data is taken as a feature. This is a 
common benchmark in word sense disambigua­
tion studies and text classification problems. 

In the English training examples any word 
that occurs five or more times is used as a fea­
ture, and in the Spanish data any word that 
occurs two or more times is used. These fea­
tures are used to estimate the parameters of a 
Naive Bayesian classifier. This will assign the 
most probable sense to a test instance, given 
the surrounding context. 

Accuracy for English was 54%, and for Span­
ish 56%. This Naive Bayesian classifier was one 
of the three member classifiers in the ensemble 
approach of Duluth1/Duluth7, which was 1% 
less accurate for English and and 2% more ac­
curate for Spanish. 

Duluth5/Duluth10 add a co-occurrence 
feature to the Duluth2/Duluth7 systems. In 
every other respect they are identical. The 
co-occurrence feature was also used in Du­
luthl/Duluth6, and is essentially a bigram 
where one of the words is the ambiguous word. 
These must occur two or more times in the 
training examples and have a log-likelihood ra­
tio 2: 2.706 to be included as a feature. In ad­
dition to the co-occurrence feature the bigram 
feature from Duluth2/Duluth7 is used, where a 
bigram must occur two or more times and have 
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a log-likelihood ratio 2: 6.635. 

Accuracy for English was 55%, and for Span­
ish 61%. This was a slight improvement over 
Duluth2 (54%) and Duluth7 (60%). 

DuluthA/DuluthX build an ensemble of 
three different classifiers that are induced from 
the same representation of the training exam­
ples. A weighted vote is taken to assign senses 
to test instances. The three classifiers are a 
bagged J48 decision tree, a Naive Bayesian clas­
sifier, and the nearest neighbor classifier IBk, 
where the number of neighbors parameter k is 
set to 1. 

The context in which the ambiguous word oc­
curs is represented by bigrams that may include 
zero, one, or two intervening words that are ig­
nored. To be considered as features these bi­
grams must occur two or more times and have 
a log-likelihood ratio 2: 10.827, i.e., a p-value of 
.001. The log-likelihood ratio threshold is set to 
0 for the Spanish data due to the smaller volume 
of data. 

English accuracy was 52%, Spanish was 58%. 

DuluthB /Duluth Y are identical to Du­
luth5/Duluth10, except that rather than learn­
ing an entire decision tree they stop the learn­
ing process once the root of the decision tree 
is selected. The resulting one node decision 
tree is called a decision stump. At worst a de­
cision stump will reproduce the most common 
sense baseline, and may do better if the selected 
feature is particularly informative. In previous 
work we have observed that decision stumps can 
serve as a very aggressive lower bound on per­
formance (Pedersen, 2001). 

Decision stumps are the least accurate 
method for both English (DuluthB, 51%) and 
Spanish (DuluthY, 52%), but are more accu­
rate than the most common sense baseline for 
English ( 48%) and Spanish ( 4 7%). 

DuluthC /DuluthZ take a kitchen sink ap­
proach to ensemble creation, and combine the 
seven systems for English and Spanish into en­
sembles that assign senses to test instances by 
taking a weighted vote among the members. 

Accuracy for English was 55%, and for Span­
ish 59%. This is less than the accuracy of some 
of the members systems, suggesting that the 
members of the ensemble are making redundant 
errors. 



4 Discussion 
There are several hypotheses that underly and 
motivate these systems. 

4.1 Features Matter Most 

This hypothesis is at the core of much of our 
recent work. It holds that variations in learn­
ing algorithms matter far less to disambiguation 
performance than do variations in the features 
used to represent the context in which an am­
biguous word occurs. In other words, an infor­
mative feature set will result in accurate dis­
ambiguation when used with a wide range of 
learning algorithms, but there is no learning al­
gorithm that can overcome the limitations of an 
uninformative or misleading set of features. 

There are a number of demonstrations that 
can be made from the Duluth systems in sup­
port of this hypothesis, but perhaps the clear­
est is found in comparing the systems Du­
luth1/Duluth6 and Duluth3/Duluth8. The first 
pair learns three Naive Bayesian classifiers and 
the second learns three bagged decision trees. 
Both use the same feature set to represent the 
context in which ambiguous words occur. There 
is a 3% improvement in accuracy when using 
the decision trees. We believe this modest im­
provement when moving from a simple learn­
ing algorithm to a more complex one supports 
the hypothesis that the true dividends are to be 
found in improving the feature set. 

4.2 50/25/25 Rule 

We hypothesize a 50/25/25 rule for supervised 
approaches to word sense disambiguation. This 
loosely holds that given a classifier learned from 
a sample of sense-tagged training examples, 
about half of the test instances are easily dis­
ambiguated, a quarter are harder but still pos­
sible, and the remaining quarter are extremely 
difficult. This is a minor variant of the 80/20 
rule of time management, which holds that 20% 
of effort accounts for 80% of results. 

When the two highest ranking systems.in the 
official English lexical sample results are com­
pared there are 2180 test instances (50%) that 
both disambiguate correctly using fine-grained 
scoring. There are an additional 1183 instances 
(28%) where one of the two systems are cor­
rect, and 965 instances (22%) that neither sys­
tem can resolve. If these two systems were 
optimally combined, their accuracy would be 
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78%. If the third-place system is also consid­
ered, there are 1939 instances ( 44.8%) that all 
three systems can disambiguate, and 816 (19%) 
that none could resolve. 

For all the Duluth systems for English, there 
are 1705 instances (39%) that all eight sys­
tems got correct. There are 1299 instances 
(30%) that none can resolve. The accuracy of 
an optimally combined system would be 70%. 
The most accurate individual system is Duluth3 
with 57% accuracy. 

For the Spanish Duluth systems, there are 
856 instances (38%) that all eight systems got 
correct. There are 478 instances (21%) that 
none of the systems got correct. This results in 
an optimally combined result of 79%. The most 
accurate Duluth system was Duluth8, with 1369 
correct instances ( 62%). If the top ranked Span­
ish system (68%) and Duluth8 are compared, 
there are 1086 instances ( 49%) where both are 
correct, 737 instances (33%) where one or the 
other is correct, and 402 instances (18%) where 
neither system is correct. 

This is intended as a rule of thumb, and sug­
gests that a fairly substantial percentage of test 
instances can be resolved by almost any means, 
and that a hard core of test instances will be 
very difficult for any method to resolve. 
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Abstract 
We describe a simple word sense disambiguation 
system equipped with the Kennedy and Bogu­
raev (1996) anaphora resolution algorithm, 
evaluated on the SENSEVAL-2 English all-words 
task. The system relies on the structure of 
the WordNet hierarchy to pick optimal senses 
for nouns in the text. Since anaphoric refer­
ences are known to indicate the topic of the text 
(Boguraev et al., 1998), they may aid disam­
biguation. 

1 Introduction 
We investigate the effect of repeating pronom­
inalized nouns in the input to our Word Sense 
Disambiguation (WSD) algorithm (Preiss, 
2001). The WSD algorithm is based on the 
WordNet 1.7 hierarchy (Miller et al., 1990), and 
assigns (WordNet) senses to all nouns. The en­
riched version we evaluate in this paper makes 
use of our re-implementation of an anaphora 
resolution algorithm of Kennedy and Boguraev 
(1996). 

If, as claimed by Boguraev et al. (1998), the 
topic of the discourse is thus repeated, then the 
main topic words will be more likely to be dis­
ambiguated correctly. The subsequent WSD al­
gorithm makes use of this extra topic informa­
tion, and this will in turn affect the disambigua­
tion of all other nouns in the discourse. 

The system is evaluated on the English all­
words task in SENSEVAL-2. 

2 Algorithms 
2.1 Overview of the Algorithm 

Our WSD algorithm has three components, as 
depicted in Figure 1. Taking as input the 

• This work was supported by the EPSRC while the 
author was at the University of Sheffield. 

test data parsed using the Briscoe and Car­
roll (1993) parser (which uses the grammar de­
scribed in Carroll and Briscoe (1996) ), the first 
step is to identify and discard the pleonastic 
pronouns. Our pleonastic component is de­
scribed in section 2.2. 

In the next phase (section 2.3), third person 
pronouns are resolved to a noun antecedent and 
replaced in the text by the noun antecedent. 
The purpose of this is to increase the number 
of topic words in the text, to aid the disam­
biguation of other nouns. This approach as­
sumes firstly that pronouns refer mainly to topic 
words, and secondly that repeating topic words 
in the text helps overall disambiguation. 

The final phase of the algorithm is the WSD 
component, described in section 2.4. Using sim­
ulated annealing, it attempts to find a sense 
assignment for every noun that minimizes an 
overall 'distance' function using the WordNet 
hierarchy. In addition, for the repeated nouns 
added in the previous phase, the senses are tied 
together. This means that if the sense of one 
word in a tie is changed during simulated an­
nealing, the sense of all words in the tie are si­
multaneously changed. 

The advantage of this approach can be shown 
on the following discourse: The parrot, like the 
chicken, is kept by people as a domesticated 
bird. It can speak. Suppose firstly that there is 
no anaphora resolution phase. The words par­
rot, chicken, person, bird are given to the word 
sense disambiguation algorithm, and the system 
chooses senses which are related to people (par­
rot in the sense of mimicking people, chicken 
a wimp and so on). This is clearly incorrect. 
Now suppose we resolve the pronoun it to par­
rot, and repeat the word parrot in the text. Now 
the words parrot, chicken, person, bird, parrot 
are passed to the WSD system (where the two 
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parrots are sense-tied together), and the system 
now chooses the correct bird-related senses. 

2.2 Pleonastic Pronouns Component 

It can be a pleonastic pronoun (pronoun with 
no antecedent), for example in the sentence: It 
is raining. We label the pronoun it as pleonastic 
if it is a subject of a raising verb (these were ex­
tracted from the ANLT lexicon (Boguraev and 
Briscoe, 1987)) or if it was used in conjunctions 
with the verb to be and one of a particular set 
of adjectives (for example It is possible to go to 
town.). 

The component was evaluated on a manually 
anaphorically resolved portion of the BNC (the 
initial 2000 sentences of w01). It has a preci­
sion (proportion of pronouns deemed pleonastic 
which really are pleonastic) of 94% and recall 
(proportion of pleonastic pronouns recognized 
as pleonastic) of 61%. 

2.3 Anaphora Resolution Component 

The pronominal anaphora resolution is carried 
out by our re-implementation of the Kennedy 
and Boguraev (Kennedy and Boguraev, 1996) 
anaphora resolution algorithm. This algorithm 
is based on that of Lappin and Leass (Lappin 
and Leass, 1994), but does not require a full 
parse. It treats the cases of third person pro­
nouns and lexical anaphors. 1 Its cited accuracy 
is 75% on general corpora (Kennedy and Bogu­
raev, 1996), but note that their published algo­
rithm uses the LINGSOFT morphosyntactic tag­
ger. 

The algorithm creates coreference classes 
which join together words which are believed 
by the algorithm to be referring to the same ob­
ject. These classes are assigned a salience value 
based on the presence of the features in Table 
1. The salience value of a class is the sum of 
the feature weights of its members, scaled down 
by the number of sentences ago that the feature 
last occurred. The correct antecedent is chosen 
to be the closest word from the coreference· class 
with the highest salience. 

2.4 WSD Component 

We define a notion of distance between any two 
WordNet noun senses which is based on the 

1 Lexical anaphors are reflexives and reciprocals. 

Condition Weight 
Current sentence 100 
Current context 50 
Subject 80 
Existential construct 70 
Possessive 65 
Direct object 50 
Indirect object 40 
Oblique 30 
Non embedded 80 
Non adjunct 50 

Table 1: Salience values 

WordNet hierarchy. 2 As pointed out by Resnik 
(1999), it is naive to assume that the distance 
between any two nodes in the hierarchy is equal. 
We therefore assign a weight w to every noun 
sense x: 

weight(x) = 
number of children below x in hierarchy 

total nodes in hierarchy 

This is used to define the distance between two 
distinct noun senses x andy: 

dist(x, y) = 
min weight(z)- ~weight(x)- ~weight(y) 

zEh(x)nh(y) 

where h ( s) denotes the hypernym chain of noun 
sense s. 3 If the hypernym chains of x and y do 
not intersect, the distance is set to the max­
imum value of 1. In Preiss (2001), we investi­
gated scaling the distance function such that for 
noun senses x and y at positions in the corpus 
n and m respectively: 

d . *( ) _ dist(x, y) 
1St x, y - I I n-m 0 

Note that we do not explicitly use a window 
of surrounding nouns, but the In - ml denom­
inator means that contributions from far away 
nouns are usually negligible. We showed that it 
was not possible to guess the optimal value of a 

2 In the SENSEVAL-2 task we identify nouns by using 
an enhanced version of the GATE tagger and lemmatizer 
(Cunningham et al., 1995). 

_3 The hypernym chain of s consists of the word s, the 
parent' word of s, the grandparent of s, etc, all the way 
to a root word. 
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Pleonastic Anaphora 
WSD 

component resolution 

Figure 1: Integration of components 

in advance for any set of texts covered in SEM­
COR. However, averaged over all words there is 
a slight peak around a = 1, so this is the value 
we take. 

The distance between two adjacent nodes in 
the hierarchy may now not be equal. To il­
lustrate this, consider the following example 
adapted from a paper of Resnik (1999). In 
WordNet 1.7 (prerelease), VALVE is the parent 
node of SAFETY VALVE, and MACHINE is the 
parent of INFORMATION PROCESSING SYSTEM. 
However, the intuitive distance between the first 
pair of nodes seems to be less than the distance 
between the second pair. Using our distance 
function outlined above, the distance between 
SAFETY VALVE and VALVE is 0.000121, while 
the distance between INFORMATION PROCESS­
ING SYSTEM and MACHINE is 0.00229. This is 
depicted in Figure 2. 

We want to assign precisely one sense to each 
noun in the text; we call this a path. We find the 
'optimal' path by simulated annealing (Bertsi­
mas and Tsitsiklis, 1992). Simulated annealing 
is a probabilistic method for finding the global 
optimum of a function which may have a num­
ber of local optima. We define the function to 
be minimized, the energy function, to be the 
sum of all the pairwise scaled distances. 

Our version of simulated annealing starts 
with a randomly chosen path which it attempts 
to improve. It performs a number of iterations 
in which it randomly chooses a word and then 
chooses a new sense for this word. 4 If this 
change is an improvement in terms of the en­
ergy function, it is kept. Otherwise, it may or 
may not be accepted depending on the current 
value of the temperature. Over time the tem­
perature decreases, making it less likely to keep 
changes that increase the energy. The algorithm 

4 We slightly skewed the probability distribution of 
the senses towards the more frequent sense. The proba­
bility of the nth sense is proportional to ~. 
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terminates when no changes were made in the 
last 1000 iterations. 

When simulated annealing terminates, it out­
puts what it deems the optimal sense assign­
ment for all the nouns in the text. For a 
more detailed description of the WSD algo­
rithm, please refer to Preiss (2001). 

This algorithm was implemented inC and ex­
ecuted on a Pentium III 500MHz. Each text 
took 1 hour to initialize, and 2 hours to perform 
20 runs of simulated annealing. A majority vote 
then decided the sense assignment. 

Article Words Senses Ties 
1 363 1698 38 
2 575 2098 46 
3 340 1495 60 

Table 2: Test data for the English all words task 

3 Results 

The WSD component enhanced with the 
anaphora resolution algorithm was submitted 
for the English all-words task in SENSEVAL-2. 
The test data for this task consisted of three ar­
ticles, and information gathered from each ar­
ticle is displayed in Table 2. The words col­
umn shows the number of words marked as 
nouns by the part of speech tagger in the parser. 
The senses column contains the total number of 
senses for all of these words. The ties column 
shows the number ofties inthe text, where each 
tie contains a noun and some pronouns that re­
fer to it. The system achieved 44% precision 
and 20% recall fine-grained, and 45.2% preci­
sion and 20.5% recall coarse-grained.5 

5The system assigns senses to all nouns but to no 
other part of speech. It also has no mechanism for mark­
ing a word undecidable. 



valve 3 

weight = 0.000132 

/l~ 
safety_valve 1 

weight= 0.000011 

9 other children 

machine 1 

weight = 0.002598 

information_processing_system 1 

weight= 0.000308 

39 other children 

Figure 2: Distance between adjacent nodes 

4 Future Work 
We would like to investigate the performance 
of the WSD system with and without anaphora 
resolution, with a view to also extending links 
in text to other entities. 

Although the precision of the pleonastic com­
ponent is currently quite high, we intend to 
boost recall possibly by including some of the 
rules devised by Lappin and Leass (1994). 
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Abstract 
The classification information model or CIM classi­
fies instances by considering the discrimination abil­
ity of their features, which was proven to be useful 
for word sense disambiguation at SENSEVAL-1. But 
the CIM has a problem of information loss. KUNLP 
system at SENSEVAL-2 uses a modified version of the 
CIM for word sense disambiguation. 

We used three types of features for word sense 
disambiguation: local, topical, and bigram context. 
Local and topical context are similar to Chodorow's 
context and refer to only unigram information. The 
window of a bigram context is similar to that of a 
local context but a bigram context refers to only 
bigram information. 

We participated in the English lexical sample task 
and the Korean lexical sample task, where our sys­
tems ranked high. 

1 Introduction 
The classification information model(Ho, 1997) is 
the model that classifies instances by considering 
the discrimination ability of their features. In the 
CIM, a feature with high discrimination ability con­
tributes to the classification more than one with low 
discrimination ability. Hence, we can omit the fea-
ture selection procedure. · 

The CIM has a kind of information loss problem 
due to the assumption that a feature contributes to 
only one class. We devised a modified version of the 
CIM where a feature can contribute to all classes. 

\Vord sense disambiguation task can be treated as 
a kind of classification process(Ho, 2000). When a 
classification technique is applied to word sense dis­
ambiguation, an instance corresponds to a context 
containing a polysemous word and its class to the 
proper sense of the word, and one of its features 
to a piece of context information. As a classifica­
tion problem, word sense disambiguation task can 
be solved by the CIM. 

\Ve used three types of features for word sense 
disambiguation: local, topical, and bigram context. 
Local and topical context are similar to Chodorow's 
context(Chodorow, 2000) and consist of only uni-

135-090 3rd floor, Hanarn BD 
157-18 Sarnsung-Dong 

Kangnarn-Gu, Seoul, Korea 
leeho@astronest.corn 

gram information. A bigram context has a similar 
window to a local context but consists of only bigram 
information. 

2 KUNLP system 

To disambiguate senses, we did two phases: corpus 
preprocessing and sense disambiguation. Figure 1 
shows the flow chart of our system. 

Corpus 

~ 
Tokenizer 

~ 
POS-Tagger 

Corpus Preprocessing 

~ 
Phrase Filter 

~ 
Sense Tagger 

using 
Modified CIM 

Sense Disambiguation 

~ 
Sense-Tagged Corpus 

Figure 1: Flow chart of KUNLP system 

2.1 Corpus preprocessing 

At the corpus preprocessing phase, we tokenized a 
corpus and then tagged it with parts-of-speech using 
Brill's Tagger(Brill, 1994). The tokenizer just sepa­
rates symbols from a word. For example, a sentence 
"I'm straight, white, no longer middle class, anti­
IRA, have ... " is tokenized to "I 'm stright , white , 
no longer middle class , anti - IRA , have ... ". Un­
like other symbols, an apostrophe is not separated 
from the following characters. 
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2.2 Phrase filtering 
At the phrase filtering phase, we filtered senses using 
the satellite feature, which is marked with sat tag in 
training and test corpus given by the task organizer. 
For example, in a sentence This air of disengagement 
<head sats= "carry_over. 067:0"> carried</head> 
<sat id= "carry_over. 067:0"> over</sat> to his 
apparent attitude toward his things, carried over is 
a phrase and also a satellite feature. 

Phrase filtering is applied to sense disambiguation 
as in Table 1 

Table 1: phrase filtering and sense disambiguation 

if the number of filtered senses = 1 then 
determine sense 

else if the number of filtered senses > 1 then 
execute sense-tagger with the filtered senses 

else if the number of filtered senses = 0 then 
execute sense-tagger with all senses 

There are satellite features in the English lexical 
sample, but not in the Korean lexical sample. Hence, 
phrase filtering was applied only in the English lex­
ical sample task. 

2.3 Classification Information Model 
(CIM) 

The CIM is a kind of classification model based on 
the entropy theory. Given an input instance, the 
CIM decides the proper class of the instance by con­
sidering individual decisions made by each feature 
of the instance. In the model, the proper class of an 
instance,X, is determined by Equation 1. 

Class(X) ~f arg max Rel(classj, X) (1) 
class; 

where classJ is the j-th class and Rel(classj, X) is 
the relevance between the j-th class and the instance 
X. Here, if we assume that features are independent 
of each other, the relevance can be defined as in 
Equation 2. 

m 

Rel(classj, X)= L x;W;j 

i=l 

(2) 

where m is the size of the feature set, xi is the value 
of the i-th feature and W;J is the weight of the i­
th feature for the j-th class. In Equation 2, x; has 
a binary value (1 if the feature occurs within the 
window, 0 otherwise) and W;j is defined in terms of 
classification information. 

The classification information of a feature is com­
posed of two components. One is the discrimination 
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score (DS), which represents the discrimination abil­
ity of classifying instances. The other is the most 
probable class (MPC), which represents the most 
closely related class to the feature. Wij is defined 
by using these two components as follows: 

~ { DS; 
Wij ~ Q 

if classj = MPC; 
otherwise (3) 

In Equation 3, DS; and M PCi represent the DS 
and MPC of the i-th feature, respectively. In the 
CIM, DS and MPC are defined in terms of the con­
ditional probability of a class given a feature, which 
is normalized by the corpus size. The normalized 
conditional probability is defined as follows: 

clef = 
( l If) N(class) p C aSSj i N(class;) 

';:-'n ( l If) N(class) 
uk=l p c aSSk i N(classk) 

p(f;iclassj) 
(4) 

In Equation 4, Pii is a normalized conditional 
probability, N(classJ) is the number of instances 
belonging to the j-th class in the training data, 
N (class) is the average number of instances for each 
class and n is the number of classes. Given the 
normalized conditional probability distribution, DSs 
and MPCs are defined as follows: 

DS; 
clef 

MPC; 
clef 

log2 n ~ H(pi) 
n 

log2 n + ~ PJi log2 PJi 
j=l 

arg max PJi 
class; 

arg max p(filclassj) 
class i 

(5) 

(6) 

In Equation 5, H(p;) is the entropy of the i-th 
feature over the normalized conditional probability 
distribution. 

2.4 Modifying CIM 
The CIM has a problem caused by using MPCs, 
which is information loss. For example, let us con­
sider the situation in Table 2 and Table 3. Table 2 
shows the normalized conditional probability distri­
bution, DSs and MPCs of features in an instance. 
Table 3 shows the weights and the relevance values 
at the CIM using Wij and at the modified CIM us­
ing 'Wij, for the instance of Table 2. The feature h 
co-occurred with class1 and class 2 and the MPC of 
h is class1 at Table 2. In the CIM, this feature 



Table 2: A normalized conditional probability, DSs and MPCs of features of an instance 

normalized conditional probability(pj;) 
feature class1 class2 class3 class4 DS MPC 

h 0.7 0.3 0 0 1.1187 class1 
fz 0 0.4 0.6 0 1.0290 class3 

h 0 0.4 0.1 0.5 0.6390 class4 

Table 3: The weights and the relevance values at the CIM using w;J and at the modified CIM using w;j, for 
the instance of Table 2 

weight( W;J) II weight ( W;j) 
feature class1 class2 class3 class4 II class1 class2 class3 class4 

h 1.1187 0 0 0 0.7831 0.3356 0 0 
h 0 0 1.0290 0 0 0.4116 0.6174 0 
h 0 0 0 0.6390 0 0.2556 0.0639 0.3195 

T I Rel(classj,X) 11.1187 I 0 1 1.o29o 1 o.639o 11 o.7831 1 1.oo28 1 o.6813 1 o.3195 1 

contributes to only class1. Actually the feature h 
can contribute to distinguishing class2 from class3 

if it consults the normalized conditional probability 
distribution. In the CIM, however, the feature can 
not distinguish them because their weights have the 
same value. 

Another aspect of the problem is that the CIM 
fails to capture the minor contribution of features, 
which is crucial in the case where the sum of the 
minor contribution of features to a non-MPC class 
dominates that of the major contribution of fea­
tures to MPC classes. For example, at Table 2, 
all features, h, fz, and /3, have different MPCs: 
class1, class3 and class4, respectively. it is also ob­
vious that they have some minor contribution to the 
class2 . The CIM will classify the instance as class1 

because Rel(class1,X) = 1.1187 is the maximum 
number among the Rel(classj, X). However, if we 
consider the minor contribution of all the features, 
we prefer class2 to class1 because class2 intuitively 
gains the total contribution more than class1. 

A solution to the problem may be not to use 
MPCs, but to use a measure of contribution of a 
feature to a class which is proportional to the dis­
crimination score of the feaure and the normalized 
conditional probability of the class given the feature. 
The modified CIM can be defined as follows: 

m 

Rel(classj, X)= L x;W;j (7) 
i=l 

A def DS A ( 8) 
W;j = ; X PJi 

As shown in Table 3, the ·w12 is larger than 
tu13 (0.3356 > 0) and the instance is classified not 
as class1 but as class2 because Rei ( class2, X) = 
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1.0028 > Rel(class1 , X) = 0.7831, which is based 
on the modified CIM. 

2.5 Feature Space 

We used three types of features for word sense dis­
ambiguation: local, topical and bigram context. In 
the preliminary experiment, we have observed that, 
when the CIM considered all these three types of 
features, it mostly achieved the best result. 

2.5.1 Local context 
In a local context, there can be features of the fol­
lowing templates for all words within its window: 

• in the English lexical sample task 

- word_position : a word and its position 

- word_POS : a word and its part-of-speech 

- POS_position : the part-of-speech and po-
sition of a word 

• in the Korean lexical sample task 

- rnorpheme_position : a morpheme1 and its 
position. 

- rnorpheme_POS : a morpheme and its part­
of-speech. 

- POS_position : the part-of-speech and po­
sition of a morpheme 

In the English lexical sample task, word is a sur­
face form and can be either one of open-class words 
whose POS is one of the noun, verb, adjective, and 
adverb; or one of closed-class words whose POS is 

1 A Korean sentence is composed of one or more eojeols, 
which are separated by spaces, and an eojeol consists of one 
or more morphemes. 



one of the determiner, preposition, pronoun, and 
punctuation. The window size of ±3 words in the 
English lexical sample task and the window size from 
-2 to +3 word in the Korean lexical sample task 
were empirically chosen. 

In the first phase of the experiments, we used just 
one complicated template, word_position_POS (in 
Korean morpheme_position_POS), which brought 
about data sparseness problem. So we split the tem­
plate into three simpler templates. 

2.5.2 Topical context 

A topical context includes features of the following 
templates for all open-class words within its window: 

• in the English lexical sample task 

- word : an open-class word. 

• in the Korean lexical sample task 

- morpheme : an open-class morpheme. 

The window size of ±1 sentences in the English 
lexical sample task and the window size of all sen­
tences in the Korean lexical sample task were em­
pirically chosen. 

2.5.3 Bigram context 

In a bigrarn context, there can be features of the fol­
lowing templates for all word-pairs within its win­
dow: 

• in the English lexical sample task 

- (word;, wordj) 
word (i>j) 

the i-th word and j-th 

(word;, POSj) : the i-th word and j-th 
part-of-speech ( i > j) 

• in the Korean lexical sample task 

- (eojeol;, eojcolj) : the i-th eojeol and j-th 
eojeol (i>j) 

"Cnlike local and topical contexts, bigram contexts 
are composed of only bigrarn information surround­
ing the polysemous word. The window size of ±2 
words in the English lexical sample task and the win­
dow size from -2 to +3 word in the Korean lexical 
sample task were empirically chosen. 

3 Experimental Result 

The following tables show the results of our systems 
at SENSEVAL-2 (Table 4). For the Korean lexical 
sample task at SENSEVAL-2, only fine-grained sense 
distinction was made. 
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Table 4: Results of KUNLP systems at SENSEVAL-2 

I task I prec. I recall 
English Lexical Sample (fine g.) 0.629 0.629 
English Lexical Sample (coarse g.) 0.697 0.697 
Korean Lexical Sample (fine g.) 0.698 0.74 

4 Conclusion 
We have described the modified CIM used for word 
sense disambiguation at SENSEVAL-2. In the exper­
iments, three types of features; local, topical, and 
bigram context, are used. Our system ranked as 
the highest at the Korean lexical sample task and 
as the topmost group at the English lexical sample 
task among the supervised models at SENSEVAL-2. 
Consequently, the results back up the fact that the 
modified CIM and three types of features are useful 
for discriminating word senses. 

References 
Eric Brill 1994. Some advances in rule-based 

part of speech tagging. In Proceedings of the 
Twelfth National Conference on Artificial Intel­
ligence ( AAAI-94}. 

Martin Chodorow, Claudia Leacock and George A. 
Miller 2000. A Topical/Local Classifier for Word 
Sense Identification. In Computers and the Hu­
manities 34: 115-120. 

Ro Lee, Dae-Ro Baek and Rae-Chang Rim 1997. 
Word Sense Disambiguation Based on The In­
formation Theory. In Proceedings of Research on 
Computational Linguisitcs Conference. 

Ro Lee, Rae-Chang Rim and JungYun Seo 2000. 
Word Sense Disambiguation Using the Classifica­
tion Information Model. In Computers and the 
Humanities 34: 141-146. 



WASP-Bench: a Lexicographic Tool Supporting Word Sense 
Disambiguation 

David Tugwell & Adam Kilgarriff 
ITRI, University of Brighton 

Lewes Road, Brighton BN2 4GJ, UK 
{David.Tugwell,Adam.Kilgarriff}©itri.bton.ac.uk 

Abstract 
We present WASP-Bench: a novel approach to 
Word Sense Disambiguation, also providing a 
semi-automatic environment for a lexicographer 
to compose dictionary entries based on corpus 
evidence. For WSD, involving lexicographers 
tackles the twin obstacles to high accuracy: 
paucity of training data and insufficiently ex­
plicit dictionaries. For lexicographers, the com­
putational environment fills the need for a cor­
pus workbench which supports WSD. Results 
under simulated lexicographic use on the En­
glish lexical-sample task show precision compa­
rable with supervised systems1, without using 
the laboriously-prepared training data. 

1 Introduction 
WASP-Bench2 is a web-based tool support­
ing both corpus-based lexicography and Word 
Sense Disambiguation. The central premise be­
hind the initiative is that deciding what the 
senses for a word are, and developing a WSD 
program for it, should be tightly coupled. In the 
course of the corpus analysis, the lexicographer 
explores the textual clues that indicate a word 
is being used in one sense or another; given an 
appropriate computational environment, these 
clues can be gathered and used to seed a boot­
strapping WSD program. 

This strategy clearly requires human input for 
each word to be disambiguated, which may raise 

1 It should be noted that the lower figure for recall 
reflects solely the fact that not all words were attempted 
due to time constraints. 

2 The system has been developed under EP-
SRC project M54971. A demo is available at 
http:jjwasps.itri.bton.ac.uk. The second author was also 
a co-ordinator for the SENSEVAL-2 evaluation exercise-to 
limit any conflict of interest only the first author was in­
volved applying the system to the SENSEVAL-2 task and 
had no prior knowledge of the format of the task. ' 

151 

the objection that the lexicon is far too large 
for any word-by-word work to be viable. How­
ever, the amount of human interaction needed 
is far less than that involved in preparing train­
ing data3 and lexicographers are already in the 
position of having to inspect every word in the 
vocabulary. If they use a interactive tool such 
as the WASP-Bench to help them in this, then 
total coverage becomes a feasible proposition. 

2 WASP-Bench Methodology 

The workbench is implemented in perl and uses 
cgi-scripts and a browser for user interaction. 

2.1 Grammatical relations database 

The central resource is a collection of all gram­
matical relations holding between words in the 
corpus. The corpus currently used in WASP­
Bench is the British National Corpus4 (BNC): 
. Using finite-state techniques operating over 
part-of-speech tags, we process the whole cor­
pus finding quintuples of the form: {Rei, Wl, 
W2, Prep, Position}, where Rei is a relation, 
Wl is the lemma of the word for which Rei 
holds, W2 is the lemma of the other open-class 
word involved, Prep is the preposition or parti­
cle involved and Position is the position of Wl 
in the corpus. Relations may have null values 
for W2 and Prep. The database contains 70 
million quintuples. 

The current inventory of relations is shown 
in Table 1. All inverse relations, ie. subject-of 
etc, found by taking W2 as the head word in­
stead of Wl are explicitly represented, to give a 
total of twenty-six distinct relations. These pro­
vide a flexible resource to be used as the basis 
of the computations of the workbench. Keeping 

3 See results section for details. 
4 100 million words of contemporary British English. 

see http://info.ox.ac.uk/bnc 



I relation example 
bare-noun the angle of bankT 
possessive my bank1 

plural the banks1 

passive was seen1 

reflexive see1 herself 
ing-comp love1 eating fish 
finite-comp know1 he came 
inf-comp decision 1 to eat fish 
wh-comp know1 why he came 
subject the bank1 refusedT 
object climb 1 the bank1 

adj-comp grow1 certain2 

noun-modifier merchant2 bank1 

modifier a big2 bank:l 
and-or banks1 and mounds2 

predicate banks1 are barriers:r 
particle grow1 upP 
Prep+gerund tired1 ofP eating fish 

I PP-comp/mod j banks1 ofP the river:.! 

Table 1: Grammatical Relations 

the position numbers of examples allows us to 
find associations between relations and to dis­
play examples. 

2.2 Word Sketches 

The user enters the word and using the gram­
matical relations database, the system com­
poses a word sketch for this word. This is 
a page of data such as Table 2, which shows, 
for the word in question (W1), ordered lists 
of high-salience grammatical relations, relation­
W2 pairs, and relation-W2-Prep triples for the 
word. 

The number of patterns shown is set by the 
user, but will typically be over 200. These are 
listed for each relation in order of salience, with 
the count of corpus instances. The instances 
can be instantly retrieved and shown in a con­
cordance window. Producing a word sketch for 
a medium-to-high frequency word takes in the 
order of ten seconds. 

Salience is calculated as the product of Mu­
tual Information I (Church and Hanks, 1989) 
and log frequency. I for a word W1 in a gram­
matical relation Rel5 with a second word W2 is 
calculated as: 

5 {Grammatical-relation, preposition} pairs 
treated as atomic relations in calculating MI. 

are 
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I(Wl Rel W2) = log(II*,Rel,*llxttWl,Rel,W21) 
' ' \IWl,Re!,*llxii*,Re!,W21 

The notation here is adopted from (Lin, 1998) 
(who also spells out the derivation from the 
definition of I). IIW1, Rel, W2ll denotes the 
frequency count of the triple {W1, Rel, W2} 6 

in the grammatical relations database. Where 
W1, Rel or W2 is the wild card (*), the fre­
quency is of all the dependency triples that 
match the remainder of the pattern. 

The word sketches are presented to the user 
as a list of relations, with items in each list or­
dered according to salience. Our experience of 
working lexicographers' use of Mutual Informa­
tion or log-likelihood lists shows that, for lex­
icographic purposes, these over-emphasise low 
frequency items, and that multiplying by log 
frequency is an appropriate adjustment. 

2.3 Matching patterns with senses 

The next task is to enter a preliminary list 
of senses for the word, possibly in the form 
of some arbitrary mnemonics: for example, 
MONEY, CLOUD and RIVER for three senses of 
bank. 7 This inventory may be drawn from the 
user's knowledge, from a perusal of the word 
sketch, or from a pre-existing dictionary entry. 

As Table 2 shows, and in keeping with "one 
sense per collocation" (Yarowsky, 1993) in most 
cases, high-salience patterns or clues indicate 
just one of the word's senses. The user then 
has the task of associating, by selecting from 
a pop-up menu, the required sense for unam­
biguous clues. The number of relations marked 
will depend on the time available, as well as 
the complexity of the sense division to be made. 
The act of assigning senses to patterns may very 
well lead the user to discover fresh, unconsid­
ered senses usages of the word. 

The pattern-sense associations are then sub­
mitted to the next stage: automatic disam­
biguation. 

2.4 The Disambiguation Algorithm 

The workbench currently uses Yarowsky's de­
cision list approach to WSD (Yarowsky, 1995). 
This is a bootstrapping algorithm that, given 

60r, strictly, of the quintuple {Wl, Rel - part -
1, W2, Rel- part- 2, ANY}. 

• 7W:ASP-Bench can also be used for Machine Transla­
tion lexicography, where arbitrary mnemonics would be 
replaced by target language translations. 



I subj-of num sal I obj-of num sal I modifier num sal I n-mod num sal I 
lend 95 21.2 burst 27 16.4 central 755 25.5 merchant 213 29.4 
issue 60 11.8 rob 31 15.3 Swiss 87 18.7 clearing 127 27.0 
charge 29 9.5 overflow 7 10.2 commercial 231 18.6 river 217 25.4 
operate 45 8.9 line 13 8.4 grassy 42 18.5 creditor 52 22.8 
modifies pp inv-PP and-or 
holiday 404 32.6 of England 988 37.5 governor of 108 26.2 society 287 24.6 
account 503 32.0 of Scotland 242 26.9 balance at 25 20.2 bank 107 17.7 
loan 108 27.5 of river 111 22.1 borrow from 42 19.1 institution 82 16.0 
lending 68 26.1 of Thames 41 20.1 account with 30 18.4 Lloyds 11 14.1 

Table 2: Extract of word sketch for bank 

some initial seeding, iteratively divides the 
corpus examples into the different senses. 
Yarowsky notes that the most effective ini­
tial seeding option he considered was labelling 
salient corpus collocates with different senses. 
The user's first interaction with the workbench 
is just this. 

At the user-input stage, only clues involving 
grammatical relations are used. At the WSD al­
gorithm stage, some "bag-of-words" and n-gram 
clues are also considered. Any content word 
(lemmatised) occurring within a k-word window 
of the nodeword is a bag-of-words clue.8 N­
gram clues capture local context which may not 
be covered by any grammatical relation. The 
n-gram clues are all bigrams and trigrams in­
cluding the nodeword. N-grams and context­
word clues frequently duplicate the grammati­
cal relations already found, but the merit of the 
decision list approach is that probabilities are 
not combined, so such dependencies are not a 
problem. 

2.5 Sense Profiles 

The output of the algorithm is both a sense dis­
ambiguated corpus, and a decision list. The de­
cision list can be viewed as a lexical entry or 
as a WSD program. It will contain {Rel, W2} 
pairs (as in the original word sketch), bag-of­
words words, and n-grams. The components 
of the decision list which assign to a particular 
sense can be displayed as "sense profiles", in a 
manner comparable to the original word sketch. 
They will contain new clues, not originally seen 
in the word sketch and may point to new senses 

8 The user can set the value of k. The default is cur­
rently 30. 

or usages needing addition to the lexical entry. 
Users can then re-run the WSD algorithm, it­
erating until they are satisfied with the sense 
inventory, and with the accuracy of the disam­
biguation performed. 

3 Evaluating the workbench 
3.1 Lexicographic evaluation 

For the last two years, a set of 6000 word 
sketches has been used in a large dictio­
nary project (Rundell, 2002), with a team of 
thirty professional lexicographers covering ev­
ery medium-to-high frequency noun, verb and 
adjective of English. The feedback received is 
that they are hugely useful, and transform the 
way the lexicographer uses the corpus. They 
radically reduce the amount of time the lex­
icographers need to spend reading individual 
instances, and give the dictionary improved 
claims to completeness, as common patterns are 
far less likely to be missed. 

3.2 Results for senseval-2 
Performance as a WSD system was evaluated on 
the SENSEVAL-2 English lexical sample exercise. 

The words to be tested were divided between 
the first author and one paid volunteer, who had 
no previous experience of WASP-Bench. We 
carried out the procedure as above, with the 
difference that instead of having to establish a 
sense inventory, the inventory was already given 
as that of WordNet. After assigning sufficient 
clues to cover the various senses, these assign­
ments were submitted as seeds to the disam­
biguation algorithm. Using the example sen­
tences from the BNC this gave us a decision list 
of clues, which could then be used to disam­
biguate the test sentences. 
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The marking of senses took anywhere from 
3 to 35 minutes, depending upon the subtlety 
of the sense divisions to be made. The average 
time was around 15 minutes per word. A sub­
stantial part of this was taken up by reading and 
understanding the dictionary entry even before 
patterns were marked. Crucially we made no 
use of the training data,9 although this would 
certainly have been of use as a reference in clar­
ifying the sense distinctions to be made. U nfor­
tunately, due to severe time constraints, it only 
proved possible to carry out analysis for the 29 
nouns and 15 adjectives in the lexical sample, 
and there was no time to carry out the analysis 
of the verbs. 10 

Results on the task were 66.1% for coarse­
grained precision and 58.1% for fine-grained. 11 

This was significantly higher than other systems 
which did not use the training data (the best 
scores being 51.8% for coarse-grained and 40.2% 
for fine-grained precision), demonstrating that 
the relatively small amount of human interac­
tion is very beneficial. Indeed, the system's per­
formance was similar to the majority of systems 
which had used the training data. 

3.2.1 Significant problems 

The most pervasive problem was the difficulty 
of getting a clear conception of the sense dis­
tinctions made in the inventory, here WordNet. 
Without this, assigning putative senses to clues 
could be an exasperating and painful task. 

To illustrate, for the adjective simple there 
were no less than 13 sense distinctions to be 
made, the first two of which were particularly 
hard to distinguish: 

1. simple (vs. complex) - (not complex or 
complicated or involved): a simple problem 

2. elementary, simple, uncomplicated, un­
problematic - (not involved or compli­
cated): an elementary problem in statistics 

9 In fact, we had to download the data to find out the 
words to be tested, but made no other use of it. 

10 Also no results were returned for the noun day, as 
processing the 93,000+ examples in the BNC led to an 
processing delay that could not be fixed in time. 

11 Due to the limited number of words attempted the 
figures for recall were 36.3% and 31.9%. It should be 
understood that there was no precision/recall tradeoff 
here-the system returned an answer for all sentences in 
the words it covered. 
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U nsurprisingly, the system fared particularly 
badly here with 37.9% precision, while inter­
annotator agreement was also low at 67.8%. 

3.2.2 Previous results 
We previously measured the performance of the 
system on the dataset from the SENSEVAL-1 ex­
ercise (Kilgarriff and Palmer, 2000) under sim­
ilar conditions of use. Results for the WASP­
Bench here were significantly higher at 74.9% 
precision which was very close to the best super­
vised system (within 1%). This was undoubt­
edly due to the clearer sense distinctions and 
greater number of examples to be found in the 
sense inventory used for this task in SENSEVAL-

1, which made it possible to assign senses to 
clues with more confidence. 

4 Summary 
The results for the WASP-Bench show that 
high-quality disambiguation can be achieved 
with much less human interaction than is 
needed for preparing a training corpus. Further­
more, this interaction can be motivated since it 
has been shown to be of proven benefit for the 
users of the system: lexicographers. Establish­
ing this synergy may prove to be of great Im­
portance for both camps. 
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Abstract 

SENSEVAL-2 was held in Spring, 2001. It con­
sisted of several tasks in various languages. In 
this paper, we describe our system used for one 
of these tasks: the Japanese translation task. 
With an accuracy of 63.4%, our system was the 
third best system in the contest among nine sys­
tems developed by seven groups. 

1 Introduction 

In the Japanese translation task, the senses of a 
word were defined in terms of the word's trans­
lations. Given an input sentence and a target 
word in the sentence, our system first estimates 
the similarity between the input sentence and 
parallel example sets called "Translation Mem­
ory". It then selects an appropriate transla­
tion of the target word by using the example 
set with the highest similarity. The similarity 
is calculated using dynamic programming and 
a machine learning model, which assesses the 
similarity based on the similarity of a string, 
words to the left and to the right of the target 
word in the input sentence, content words in 
the input sentence and their translations, and 
co-occurrence of content words in bilingual and 
monolingual corpora in English and Japanese. 

2 Japanese Translation Task 

In general, the definition of word senses depends 
on the goal of a task. The goal of the Japanese 
translation task is word selection in translation, 
where the target language is English. Therefore, 
word senses are defined as translations (trans­
lated words/ phrases). 

Before the contest, a Japanese-English par­
allel phrase/sentence set (Translation Memory, 
henceforth referred to as TM) was given to the 
participants as training data. In the TM, for 
each Japanese headword, there was a set of pairs 
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of a Japanese expression including a headword 
and an English translation of the expression. 
We call these pairs examples. Some of the ex­
amples are shown in Figure 1. 

<entry id= "1" headword= ".it,!j" > 
<sense id="l-1"> 

<jexpression> ffl;~: .it,!j'T .Q </jexpression> 
<eexpression>to feel constrained for one's 
mother</ eexpression> 

</sense> 
<sense id= "1-2" > 

<jexpression> ffl:"'-O).it,!j </jexpression> 
<eexpression>constraint toward one's 
mother</ eexpression> 
<transmemo> UC</transmemo> 

</sense> 
<sense id="1-3"> 

<jexpression> Mk~ ~ .it,!j l-c b G -5 
</jexpression> 
<eexpression>to request to refrain from 
donation</ eexpression> 

</sense> 

</entry> 
Figure 1: Examples in TM. 

In the formal test (contest), the participants 
were given a set of texts each of which was 
marked by a target word. For each target word, 
the participants were required to submit either 
a sense id of the example (the number assigned 
to each example in the TM), which can be used 
to translate the target word, or a translation of 
the target word. In the latter case, a translation 
of the word itself, a translation of a sequence of 
words including the target word, or a transla­
tion of the whole sentence could be submitted. 

Answers were prepared for each target word 
in the formal test. The answers could consist 
of one or more sense id's in the TM, or of pos­
sible translations. The output of each system 
was evaluated in terms of accuracy, defined as 
a percentage of answers identified correctly by 
the system. An answer was judged to have been 
identified correctly when a sense id or a trans­
lation selected by the system was found in the 
answer. 



3 Word Translation Model 
Given an input sentence and a target word in 
the sentence, our model selects an appropriate 
translation of the target word or a sense id of 
examples appropriate for the translation of the 
target word by using examples with the high­
est similarity, estimated between the examples 
and the input sentence. In this paper, we call 
this model a word translation model. The source 
language is Japanese and the target language 
in translation is English. Henceforth we call a 
headword translation an English headword. 

The similarity between an input sentence and 
examples is calculated by the following two 
methods: 

1. A method based on the similarity of a string 
of characters (Method 1) : The similarity is 
defined as the amount of agreement between 
an input sentence and a Japanese example, ex­
pressed as a percentage. 

2. A method based on machine learning models 
(Method 2) : The similarity is defined as the 
confidence or probability estimated by machine 
learning models. English headwords are used as 
classes (or categories) in machine learning mod­
els. Since the TM has examples with the same 
English headword, the similarity estimated by 
a model is the similarity between the input sen­
tence and a set of examples. 

A model is prepared for each Japanese head­
word. Given an input sentence, the similarity 
between the input sentence and each example is 
calculated by a model using Method 1. If the 
similarity is equal to or greater than a certain 
threshold, the model returns either the sense id 
of the example with the highest similarity or an 
English headword of the example. Otherwise, a 
model in Method 2 selects and returns an En­
glish headword. 

The following sections describe the two meth­
ods in greater detail. 

3.1 Method Based on the Similarity of 
A String of Characters (Method 1) 

When an example with the highest similarity 
is found, it is given the highest priority, and 
either the sense id or the English headword of 
the example is selected as an output. 

When calculating the agreement rate between 
an input sentence and an example, the right­
most word of the Japanese example is stemmed. 
In other words, when the rightmost word is 

a function word or a auxiliary verb such as 
"SURD (do)", it is eliminated. When the right­
most word is a predicate, its inflectional part 
is also eliminated. For example, the stemmed 
examples in Figure 1 are "f.J: ~=ill\", "f.J:"'-
0) ill\" , and "mt~ ~ ill\", respectively. The 
agreement rate is calculated as a percentage of 
characters in the Japanese example that cor­
respond to those in the input sentence. The 
correspondence is evaluated by comparing the 
Japanese example and the input sentence char­
acter by character. This can be done by using 
the UNIX command "diff" in a dynamic pro­
gramming method. 1 The similarity is calcu­
lated by using the following equation. 

Similarity 

( 
the number of characters ) 
corresponding to characters 
in input sentence 

--7----------.;- (1) 

( the number of characters in ) 
stemmed Japanese example 

When several examples with the highest sim­
ilarity are found, the one having the longest 
Japanese example is selected except when the 
length of corresponding part is shorter than that 
of the Japanese headword. 

However, it is unrealistic to expect that an 
example that is almost the same as the input 
sentence can be found because it is difficult 
to install all possible examples into the TM. 
So, when there is no example whose similarity 
is equal to or greater than the threshold, the 
method described in the next section is used. 

3.2 Method Based on Machine 
Learning Models (Method 2) 2 

To select an appropriate example with the same 
usage as that of the input sentence, the sim­
ilarity must be calculated by extracting the 
most important information from various con­
flicting sources of information related to the in­
put sentence and examples. Since we want to 
avoid making complicated rules, we use machine 
learning models to calculate the similarity. In­
stead of all examples in the TM, English head­
words are used as classes in machine learning 
models. Therefore, examples having the same 
English headword are put into the same class 
and are considered to have the same similarity. 

1 A description on how to use "diff" can be found in 
(Murata and Isahara, 2001). 

2Work on using machine learning methods for the 
tra!lslation of tenses, aspects, and modalities can be 
found'in {Murata et al., 2001a). 
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Classes identified by machine learning mod­
els are basically English headwords in TM, and 
they are detected manually. For example, En­
glish headwords of the examples in Figure 1 
are "feel constrained", "constraint", and "re­
frain", respectively. When English headwords 
are verbs, they are represented by their basic 
forms. English words obtained when a Japanese 
headword is looked up in a Japanese-English 
dictionary are also used as classes. 

For the training data, we use not only ex­
amples in the TM but also other data col­
lected from bilingual dictionaries or a par­
allel corpus. The collected data consist of 
Japanese-English parallel phrases/sentences in­
cluding both Japanese and English headwords, 
and they are used as complements of the train­
ing data. 

For the machine learning models, we use SVM 
(Support Vector Machine), ME (Maximum En­
tropy), DL (Decision list), and SB (Simple 
Bayes). For each Japanese headword, the best 
model with the highest accuracy in 10-hold 
cross-validation on the training data is used for 
testing. The confidence of each class is esti­
mated by probability distribution p(a, b), where 
b is a context in a set of contexts, B, and a is a 
class in a set of classes, A. SVM is a classifier, 
and in this model, the confidence of each class 
cannot be represented by a probability distribu­
tion, but for the sake of convenience, we assign 
probability 1 to the most confident class esti­
mated by SVM, and 0 to all other classes. The 
parameters in each model follow those used in 
(Murata et al., 2001b). Context b is represented 
by a set of features, that is, information deriv­
able from the training data. The features used 
in our experiments were as follows: 

1. Morphological information 
The string, basic form, major and minor parts 
of speech, and inflection type on six mor­
phemes, three morphemes to the left and three 
morphemes to the right of the target word in 
an input sentence. 

2. Character n-gram 
Character n-grams in an input sentence. Each 
n-gram must include the target word. 

3. Highest matching 
An English headword in the example that has 
the longest string matching that of the input 
sentence and its length are used as features. 

4. Frequency of a content word and its translation 
candidates 
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We define a set of examples including the same 
English headword as an example set. For each 
English headword, we define the following six 
example sets: 

Example set 1 Japanese examples 

Example set 2 English examples 

Example set 3 Sentences similar to examples in 
Example set 1. They are collected from a 
Japanese monolingual corpus. 

Example set 4 Sentences similar to examples in 
Example set 2. They are collected from an 
English monolingual corpus. 

Example set 5 Union of Example sets 1 and 3 

Example set 6 Union of Example sets 2 and 4 

For each example set, Japanese-English par­
allel phrases/sentences including both Japanese 
and English headwords are collected from bilin­
gual dictionaries or parallel corpora, and are 
added to the example set. 

Sentences similar to a certain example are de­
fined as sentences that include a substring of 
the example. The substring must include the 
headword of the example. In our model, we use 
sentences collected from a monolingual corpus 
because we want the model to reflect a real dis­
tribution of words, both headwords and words 
to the left and right of the headwords. 

As content words, we used nouns, verbs, ad­
jectives, adverbs, and attributives, except head­
words, in the input sentence. For each content 
word in an input sentence and its translation 
candidates, the frequencies in each example set 
were used as features. The translation candi­
dates of a content word were obtained when 
the content word was looked up in a Japanese­
English dictionary. Each feature is represented 
by a combination of an example set, a head­
word, and the frequency of content words in the 
example set. When we find that the total fre­
quency of content words in an example set is n, 
we assume that every feature whose frequency 
is between 1 and n is observed. For example, 
when the content word found in the given sen­
tence is "mother", and it is found three times in 
the example set 1 for the headword "buy", the 
features "Example set 1 : buy : 1," "Example 
set 1 : buy : 2," and "Example set 1 : buy : 
3" are assumed to be observed. By using these 
features, our model handles information about 
co-occurrence words of a headword in each cor­
pus as a clue to translating the headword. 



4 Experiment 

4.1 Experimental conditions 

The input and evaluation of the systems fol­
lowed those of the Japanese translation task 
in SENSEVAL-2. A TM for 320 headwords 
was given to each participant in the middle of 
March, 2001. The average number of exam­
ples prepared for each headword was approxi­
mately 20. For the formal test, 40 target words 
(20 nouns and 20 verbs) were selected from the 
headwords. For each target word, 30 texts in­
cluding the target words were prepared. The 
total number of the target words was 1,200. 

As a bilingual dictionary, we used "EI­
JIRO" available at the web site of NIFTY 

' a network provider. As monolingual corpora, 
we used MAINICHI newspapers from 1991 to 
2000, NIKKEI newspapers from 1995 to 1999, 
SANKEI newspapers from 1994 to 1999, and 
LDC data collected in 1994 and 1995, which 
include English newspaper articles for several 
years published by the Wall Street Journal the 
Associated Press Writer, and the New York 
Times. 

In the formal test, the threshold of similarity 
used in Method 1 was 1. JUMAN (Kurohashi 
and Nagao, 1999), a Japanese morphological an­
alyzer, was used for morphological analysis in 
Method 2. As sentences similar to a certain 
example in Method 2, sentences that included 
a string obtained by stemming Japanese exam­
ples were extracted for Japanese examples, and 
sentences that included English headwords were 
extracted for English examples. As for the rna­
chine learning models, we could not select the 
most appropriate set of models by cross vali­
dation because not all learning processes could 
be finished by the deadline for submission. The 
models finally selected for the formal test were 
as follows: 

• SVM : 23 words (12 nouns and 11 verbs) 
• DL : 12 words (8 nouns and 4 verbs) 
• SB : 5 words (5 verbs) 

4.2 Experimental Results and 
Discussion 

The accuracy obtained by our system in the 
formal test was 63.4% (761/1,200). The accu­
racy obtained by Method 1 and 2 were 91.0% 
(91/100) and 60.9% (670/1,100), respectively. 
Based on our results, we can draw the following 
conclusions: 
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• The system performance was related to the 
amount of training data per class in Method 2. 

• The accuracy obtained for words whose En­
glish headwords were general words was not 
high even though there were more training data 
for these words than for other headwords for 
which the accuracy was high. We believe that 
this is due to the quality of automatically col­
lected training data because general words ap­
pear in corpora quite frequently, and sometimes 
parallel sentences where Japanese and English 
headwords are not related to each other are 
collected. Therefore, we need to select auto­
matically collected parallel sentences by align­
ing Japanese and English headwords. 

• Method 1 improved the accuracy, especially for 
idiomatic expressions that rarely appeared in 
the training data. We applied Method 2 to the 
target words to which Method 1 was applied 
in the formal test, and achieved an even lower 
accuracy of 34.0%(34/100). 

• The accuracy obtained by the SB model was 
low. We speculate that the SB model is not 
suitable for the feature sets used in the test. 

5 Conclusion 
This paper described our system used in 
SENSEVAL-2. Our model for word translation 
has the following characteristics: (1) It puts to­
gether examples having the same English head­
word into a set of examples, and selects a set of 
examples most similar to the input sentence by 
using machine learning models. (2) If an exam­
ple that is almost the same as the input sentence 
is found, our model gives it the highest priority. 
(3) It automatically collects training data and 
information used for training from other lan­
guage resources that are not only a bilingual 
corpus but also monolingual corpora of English 
an.d Japanese. We do not have to supervise any­
thmg except the detection of headword pairs in 
the examples. 

References 
Sadao Kurohashi and Makoto Nagao, 1999. Japanese Mor­

phological Analysis System JUMAN Version 3.61. De­
partment of Informatics, Kyoto University. 

Masaki Murata and Hitoshi !sahara. 2001. NLP using DIFF. 
In IPSJ~WGNL NL144-18, pages 127~134. (in Japanese). 

Masaki Murata, Kiyotaka Uchimoto, Qing Ma, and Hi­
toshi !sahara. 2001a. Using a Support-Vector Machine 
for Japanese-to-English Translation of Tense, Aspect, and 
Modality. In ACL Workshop on the Data-Driven Machine 
Translation. 

Masaki Murata, Masao Utiyama, Kiyotaka Uchimoto, Qing 
Ma, and Hitoshi !sahara. 2001b. Experiments on Word 

Sense Disambiguation Using Several Machine-leaning 
Metheds. In IEICE~WGNLC2001-2. (in Japanese). 



Automatic WSD: Does it make sense of Estonian? 

Kadri Vider and Kaarel Kaljurand 
University of Tartu 

Department of General Linguistics 
Tiigi 78, 50410 Tartu, Estonia 

kvider@psych.ut.ee and kaarel@ut.ee 

Abstract 

This paper describes a fully automatic Esto­
nian word sense disambiguation system called 
semyhe which is based on Estonian WordNet 
(EstWN) hyponymjhypernym hierarchies and 
meant to disambiguate both nouns and verbs. 

1 Short description of the system 

The main inspiration for our system is Agirre 
and Rigau (1996) similar system that disam­
biguates the English noun senses based on 
WordNet hyponymjhypernym hierarchy, tak­
ing into consideration the distances between 
the nodes corresponding to the word senses 
in the WordNet tree as well as the density of 
the tree. They have also experimented with 
using meronyms/holonyms in addition to hy­
ponyms/hypernyms but report that it does not 
improve the results. 

Our main object was not to focus on the 
homonymous words only (lexical sample), but 
to try to disambiguate all nouns and verbs in 
the text. The Estonian WordNet (EstWN) 
also contains adjectives but they are not linked 
by hyponym/hypernym relations. The word 
sense disambiguation could also try to describe 
a unique sense for adverbs but in our case such 
words have not yet been included in the the­
saurus. 

As far as we know this is the first attempt on 
automatic Estonian word sense disambiguation. 

1.1 Input 

The input text for our system must be mor­
phologically analyzed, meaning that each word 
is provided with its lemma and morphological 
reading. Taking those two into account we can 
localize the senses that correspond to the word 
in EstWN hyponym/hypernym tree (Vider et 
aL 1999). It must be mentioned that although 
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the morphological description in the input can 
be quite detailed, we only use the information 
on whether the word is a noun or a verb. 

A simple morphological analysis that only 
looks at the word-form and not its context can 
result in very ambiguous output. On average 
45% of the words are morphologically ambigu­
ous in Estonian texts (Kaalep, 1997). The am­
biguity can be greatly reduced by also apply­
ing the Estonian morphological disambiguator 
(Kaalep and Vaino, 1998) to the text before the 
word sense disambiguation. Since even then the 
words can in principle stay morphologically am­
biguous, our system doesn't require each word 
to have exactly one morphological reading as­
signed to it in the input text. 

1.2 Output 

Similarly to the morphological analysis, we do 
not try to provide each word with exactly one 
sense. In case two (or more) senses have equal 
evaluation results then both of those prevail in 
the output. 

1.3 Sense disambiguation algorithm 

We apply the exact same algorithm for both 
nouns and verbs. Nouns and verbs cannot be 
compared with each other since in terms of hy­
ponym/hypernym hierarchy they are located in 
different trees in the thesaurus. So the disam­
biguation is carried out in 2 runs, first nouns 
are disambiguated, then verbs, or vice versa. 

A window is shifted on the text and as a word 
moves through the window its senses are com­
pared with the senses of other words in the win­
dow. The context is either made out of nouns 
or verbs depending on which part of speech is 
being disambiguated. 

The basis of the comparison is the similar­
ity between the senses which is defined through 



the notion of conceptual distance, the distance 
between the nodes corresponding to the senses 
in Est WN tree. \Vinners are the senses that 
minimize· the total distance between the word 
senses in the window, all the rest are removed 
from the list of candidates for the correct read­
ing. semyhe leaves the word ambiguous when 
there are more than one senses with equal re­
sult. This usually happens when the senses of 
the context vmrds are located in different hierar­
chies and hence can not be compared. Currently 
there are 108 different top nodes in EstVVN, 29 
corresponding to nouns and 79 to verbs. 

In addition, the work of the system can be 
modified via several options in the configuration 
file: 

• The window-size can be changed, increas­
ing it makes the output less ambiguous 
since there is a higher possibility that the 
comparable senses end up in one window. 
On the other hand a bigger window may 
span across several sentences making the 
compared words possibly irrelevant to each 
other. For the moment we have used win­
dow of 5 words. 

• Since we use no syntactic analysis before 
word sense disambiguation, the context of 
any word under observation is unstruc­
tured, the only syntactic information that 
we can use is therefore only the distance of 
the words from each other in terms of run­
ning texL A set of weights can be defined 
that is mapped to the distances, so that the 
similarity of the senses of the words that are 
far away from each other is less relevant for 
the total score. 

• We can also take into account the average 
depth of the compared nodes in the tree -
the bigger the depth the more reliable the 
score. 

So far we haven't yet experimented with any 
of those options much. 

2 Analysis of the results 
For the purposes of analyzing the quality of dis­
ambiguation, tests were made with 12 manu­
ally sense tagged texts. These text samples 
were mainly from fiction, in a part also from 
newspapers and they contained approximately 
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10,000 tokens that corresponded to either nouns 
or verbs. 

Manual tagging naturally had to remove all 
the morphological ambiguity, therefore the re­
sults obtained on those texts should be bet­
ter than on the texts that have only been 
treated automatically before the word sense dis­
ambiguation. Words that occurred in the text 
but were not present in Est WN were marked 
as having 0 senses, approximately 30% of such 
words are proper names. 

Manual tagging also recognized multi-word 
units, which in our case are mostly non­
contiguous verbal phrases that are hard to de­
tect automatically even if we had a complete list 
of such units. 

Using semyhe, we set out to disambiguate 
all the nouns and verbs contained in the texts. 
Since semyhe can leave a word ambiguous, it 
makes sense to evaluate its work in terms of re­
call and precision. Table 1 lists semyhe results 
when the window of context words has size 5. 
The table also shows the results obtained with a 
random method which chooses exactly one sense 
for every word randomly (in this case recall and 
precision have equal values). 

The row groups of the table refer respectively 
to the results with polysemous words and the 
overall results. Note that the words which were 
manually marked as having 0 senses were con­
sidered monosemous and so they are always cor­
rectly analyzed, with unique sense selected for 
every word. 

POS recall 
.. 

random preCISIOn 
polysem nouns 0.543 0.347 0.423 

verbs 0.495 0.249 0.251 
both 0.514 0.283 0.292 

overall nouns 0.839 0.700 0.773 
verbs 0.601 0.338 0.412 
both 0.745 0.522 0.630 

Table 1: semyhe results with 10,000 nouns and 
verbs 

Figure 1 shows the distribution of words be­
tween cliff:'erent number of senses according to 
those texts. This shows the ambiguity that any 
automatic analysis has to cope with. 

No,te that there is an unusually large num­
ber of words with 9 different senses. The main 
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Figure 1: distribution of words in running text 

reason for this is the frequent word 'olema' (to 
be, to have). Fortunately the distribution of its 
senses is highly skewed, meaning that mostly 
this word is used in one or two senses. In­
cluding the sense frequency information in the 
disambiguation process could considerably im­
prove the results. 

3 Proble1ns and solutions 
Several problems have been discovered concern­
ing the relatively simple approach described 
above. 

The output of the morphological analyzer 
often contains valuable information for word 
sense disambiguation which we have currently 
ignored. 

• in some cases the word-form used in the 
text can uniquely specify the sense of the 
word, although its lemma is ambiguous, 
e.g. the word 'palk' can either mean salary 
or log, tree trunk, but its genitive form is 
different in each meaning (either 'palga' or 
'palgi'). By using only the lemma we ig­
nore this distinction that can be explic­
itly present in the text. The number of 
words behaving this way, though, is not 
very large. 

• the modal verbs are explicitly marked in 
the output of the morphological disam­
biguator, when a verb is marked as such, 
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then the senses that don't correspond to 
the modal senses could be removed and the 
winning sense should be chosen from the 
prevailing ones, e.g. the word 'saama' has 
all together 12 senses in the thesaurus, but 
only 2 of them correspond to the modal use 
of the word (either can or may). 

Right now the frequency information of the 
senses has not been used. Most probably there­
sults that could be obtained with the "common­
est" baseline (Kilgariff and Rosenzweig, 2000) 
would beat the results of semyhe. We think 
that even the frequency information that could 
be calculated using the 10,000 manually sense­
tagged words can be very useful for disam­
biguating purposes. 

At the moment the input text contains no 
information about its syntactic structure, most 
importantly the verbal phrases and other multi­
word units are not marked as such, there­
fore the analyzer tries to disambiguate all the 
components of a multi-word unit separately, 
this of course results in an incorrect analysis. 
Also, having the information about the syntac­
tic structure of the sentences could help to re­
duce the number of possible senses to choose 
from. For example the word 'olema' that was 
already mentioned above has five more frequent 
senses: 

1. be - copula, used with an adjective or a 
predicate noun 

2. exist - have an existence, be extant 

3. stay in place, be stationary or spend a cer­
tain length of time 

4. be somewhere, occupy a certain area, oc­
cupy a certain position 

5. have, have got, hold - have or possess, ei­
ther in a concrete or an abstract sense 

The first sense is present in complementary 
clauses; senses 2, 3 and 4 appear in existen­
tial sentences and the last one in possessive sen­
tences. If the information about the nature of 
the sentence was present in the input text it 
would certainly help the disambiguation pro­
cess. 

The output of semyhe stays often very am­
biguous. This either happens when the sense-



nodes of the context words are located in dif­
ferent trees so that their similarity cannot be 
calculated; or when different nodes of one word 
have the same parent node and are equally dis­
tant from the rest of the sense-nodes so that 
the similarity measure for them will be equal. 
The second reason may not be a big problem 
considering WordNet's fine-grainedness and the 
fact that for some applications a detailed sense 
distinction is not needed. The disambiguation 
result in this case can be simply seen as the 
union of the prevailed senses. Often, though, 
this approach does not hold, e.g. it is crucial for 
translation that the senses of the word 'naine' 
which can either stand for woman, wife or gen­
erally female person, are fully disambiguated, 
although the senses stand for more or less the 
same thing. 
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Abstract 
This article describes the Johns Hopkins Univer­
sity ( JHU) sense disambiguation systems that par­
ticipated in seven SENSEVAL2 tasks: four super­
vised lexical choice systems (Basque, English, Span­
ish, Swedish), one unsupervised lexical choice sys­
tem (Italian) and two supervised all-words systems 
(Czech, Estonian). The common core supervised 
system utilizes voting-based classifier combination 
over several diverse systems, including decision lists 
(Yarowsky, 2000), a cosine-based vector model and 
two Bayesian classifiers. The classifiers employed a 
rich set of features, including words, lemmas and 
part-of-speech informatino modeled in several syn­
tactic relationships (e.g. verb-object), bag-of-words 
context and local collocational n-grams. The all­
words systems relied heavily on morphological anal­
ysis in the two highly inflected languages. The un­
supervised Italian system was a hierarchical class 
model using the Italian WordNet. 

1 The Feature Space 
The JHU SENSEVAL2 systems utilized a rich fea­
ture space based on raw words, lemmas and part­
of-speech (POS) tags in a variety of positional re­
lationships to the target word. These positions in­
clude traditional bag-of-word context, local bigram 
and trigram collocations and several syntactic re­
lationships based on predicate-argument structure 
(described in Section 1.2). Their use is illustrated 
on a sample English sentence for train in Figure 1. 

1.1 Part-of-Speech Tagging and 
Lemmatization 

Part-of-speech tagger availability varied across the 
languages included in this sense-disambiguation sys­
tem evaluation. Transformation-based taggers (Ngai 
and Florian, 2001) were trained on standard data 
for English (Penn Treebank), Swedish (SUC-1 cor­
pus) and Estonian (MultextEast corpus). For Czech, 
an available POS tagger (Hajic and Hladka, 1998), 
which includes lemmatization, was used. The re­
maining languages - Spanish, Italian and Basque -
were tagged using an unsupervised tagger ( Cucerzan 
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"Many mothers do not even try to toilet trmn 
their children until the age of 2 years or later ... " 

.t<eature Word POS Lemma type 
Context . . . . . . ... 
Context try VB tryjv 
Context to TO to/T 
Context toilet NN toilet/N 
Context train VBP train/v 
Context their DT their/D 
Context . . . . . . ... 

Syntactic {predicate-argument) features 
Object children NNS child/N 
Prep until IN until/I 

ObjPrep age NN age/N 
Ngram collocational features 

-1 bigram toilet NN toilet/N 
+1 bigram their DT their/D 

-2/-1 trigram to toilet • TO-NN tojT toilet/N • 
-1/H trigram to • their TO-DT to/T • their/D 
+1/+2 trigram their children DT-NN their/D child/N 

Figure 1: Example sentence and extracted features 

and Yarowsky, 2000). Lemmatization was per­
formed using a combination of supervised and un­
supervised methods (Yarowsky and Wicentowski, 
2000), and using existing trie-based supervised mod­
els for English. 

1.2 Syntactic Features 

Extracted syntactic relationships in the feature 
space depended on the keyword's part of speech: 

• for verb keywords - the head noun of the 
verb's object, particle/preposition and object­
of-preposition were extracted when available. 

• for noun keywords - the headword of any verb­
object, subject-verb or noun-noun relationships 
identified for the keyword. 

• for adjective keywords - the head noun modified 
by the adjective (if identifiable). 

These syntactic features were extracted using sim­
ple heuristic patterns and regular expressions over 
the parts-of-speech surrounding the keyword. 



2 Supervised Lexical Choice Systems 
The supervised JHU systems utilize classifier com­
bination merging the results of five diverse learning 
models. 

2.1 Core Algorithm Design 

The lexical choice task can be cast as a classifica­
tion task: training data is given in the form of a set 
of word-document pairs T = [(w;, D;j), S;jJi,j (Sij 
being the sense associated with the document D;j 
of keyword wi), labeled with the corresponding gold 
standard class. The goal is to establish the clas­
sification of a set of unlabeled word-document pairs 
T' = { (wi, D~J·)} .. , not previously seen in the train-

•J . 
ing data. The training data T is used to estimate 
class probabilities and then the sense classification 
is made by choosing the class with the maximum a 
posteriori class probability: 

S = argmaxP (s'ID) = argmaxP (S') · P (DIS') 
S' S' 

The disambiguation models used in our exper­
iments are feature-based models. A feature is a 
boolean function defined as f w : F x 1J -+ { 0, 1}, 
where F is the entire set of features and 1J is the 
document space. An overview of the exploited fea­
ture space was given in Section 1. 

2.2 Vector-based Algorithms 

Our Bayesian and cosine-based models use a com­
mon vector representation, capturing both tra­
ditional bag-of-words features and the extended 
Ngram and predicate-argument features in a single 
data structure. 

In these models, a vector is created for each doc­
ument in the collection: 

D; = (D;J)j=l,IFI 

where F is the entire utilized feature space 
Cij 

Dij = NWJ 
where c;j is the the number i of times the feature fJ 
appears in document D;, Ni is the number of words 
in the document D; and Wj is the weight associated 
with the feature fi. 

To avoid confusion between the same word in mul­
tiple feature roles, feature values are marked with 
their positional type (e.g. children_ object, toilet_ L, 
and their R as distinct from children, toilet and 
their in u;marked bag-of-words context). 

The basic sense disambiguation algorithm pro­
ceeds as follows: 

1. Vectors in the training data are assigned to 
classes based on their classification; 

2. For each vector in the test data, the a posteriori 
class distribution is computed as 

P (SID)= Sim (D, Cs) 
2:: Sim (D, Cs') 
S' 
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where Cs is the centroid corresponding to the 
sense S and Sim is the similarity measure used 
by the algorithm (cosine or Bayes). 

3. The sample D is labeled with sense S if S = 
argmaxP (S'ID). 

S' 

2.2.1 The Cosine-based Model 
In this model, traditional cosine similarity is used 
to compute similarity between a document D and 
a centroid C. The weight associated with a feature 
(Fj) is its inverse document frequency Wj =log!:;, 
where N is the total number of documents and Nj 
is the number of documents containing feature fJ. 
Function words and POS tags were excluced from 
the cosine vectors. 

2.2.2 The Bayesian Models 
In the Bayes model, the Bayes similarity is computed 
as: 

and the following assumption of independence is 
made: 

P (D;ICs) = II P (!JIGs) 
/jED; 

The probability distribution P (!jiGs) is obtained 
by smoothing the word relative frequencies in the 
cluster C s. Given the lack of independence between 
the word-based and lemma-based feature spaces, 
these are utilized in two separate Bayesian models 
with output combined in Section 2.5. 

2.3 Decision Lists 
The decision list model we used in our system is 
a non-hierarchical variant of the method of inter­
polated decision lists described in Yarowsky (2000). 
For each feature fi a smoothed log of likelihood ratio 
(log P(fdSi) ) is computed for each sense Sj, with 

P(f;i~Si) . . . 
smoothing based on an empmcally estimated func-
tion of feature type and relative frequency. Can­
didate features are ordered by this smoothed ra­
tio (putting the best evidence first), and the re­
maining probabilities are computed via the interpo­
lation of the global and history-conditional proba­
bilities. By utilizing the single strongest-matching 
evidence in context, non-independent feature spaces 
combine readily without inflated confidence, and can 
be mapped to accurate and robust probability esti­
mates as shown in Figure 2. 
2.4 Additional Details 

The English task differs slightly from the other 
lexical-choice tasks in that phrasal verbs are ex­
pljcitly marked in the training and test data. To 
make reasonable use of this information, when a 
phrasal verb is marked, only corresponding phrasal 
senses are considered; conversely when a phrasal 
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Figure 2: Mapping between raw confidence scores 
and classification accuracy for English decision lists 

verb is not marked, no phrasal senses are considered. 
Likewise, when a training or test sentence matches 
a compound noun in the observed sense inventory 
(e.g. art_gallery%1:06:00::) only the matching 
phrasal sense(s) are considered unless there is at 
least one non-phrasal sense tagged in the training 
data for that compound (indicating the potential for 
both compositional and non-compositional interpre­
tations). 

2.5 Classifier Combination 

Several classifier combination approaches were inves­
tigated in the system development phase. They are 
outlined below, along with their cross-validated per­
formance on the English lexical-sample training data 
(in Table 1). In each case four individual classifiers 
were combined: the cosine model, two Bayes models 
(one based on words and one based on lemmas 1), 

and the decision-list model. 
The first two model combination approches sim­

ply averages the output of the participating clas­
sifiers over each candidate sense tag, in terms of 
P(SjiDi) and rank(SjiDi) respectively, with each 
classifier given an equal vote2 • 

The remaining methods assign potentially vari­
able weights to the votes of different classi­
fiers. Interestingly, Equal Weighting of all four 
classifiers slightly outperforms classifier weighting 
proportional to each model's aggregate accuracy 
(Performance-Weighted voting), similar to the tech­
nique used for classifier combination in part-of­
speech tagging in van Halteren et al. (1998). Finally, 
it was observed that on sentences where decision lists 
have high model confidence their accuracy exceeds 
other classifiers. Thus the most effective approach, 
based on training-data cross validation, was found 
to be a very basic Thresholded Model Voting: 

10n training-set cross-validation it was observed that the 
two systems were uncorrelated enough to make it useful to 
keep both of them. 

2 Decision lists are not included because they only assign a 
probability to their selected classifier output but not to lower­
ranked candidates. 
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• If the decision_list_confidence;::: 0.985 (an em­
pirically selected threshold) then return the out­
put of the decision list; 

• Otherwise, each system votes for the sense that 
is most likely under it and, another vote is ob­
tained from the most probable class yielded by 
linear interpolation of the 4 classifiers. 

This simple top-performing approach was utilized in 
the evaluation system, and is reasonably close to the 
performance of an Oracle upper bound for classifier 
combination (using the output of the single best clas­
sifier on each test instance - unknowable in practice). 

Accuracy 

Model Averaging (excluding decision lists): 

Weighted Model Voting (includes decision lists)' 
Equal-weighted Model Voting .667 .736 
Performance-Weighted Voting .655 .724 

Thresholded Model Voting .676 .746 
Oracle Voting (Upper Bound) .734 .761 

Table 1: Comparison of classifier combination meth­
ods on English (using 5-fold cross-validation) 

3 Supervised All-Words Systems 

3.1 Estonian All-words Task 
Because of the importance of morphological analy­
sis in a highly inflected language such as Estonian, 
a lemmatizer based on Yarowsky and Wicentowski 
(2000) was first applied to all words in the train­
ing data (and, at evaluation time, the test data). 
For each lemma, the P (sensejlemma) distribution 
was measured on the training data. For all lem­
mas exhibiting only one sense in the training data, 
this sense was returned. Likewise, if there was in­
sufficient data for word-specific training (the sum of 
the minority sense examples for the word in training 
data was below a threshold) the majority sense in 
training was returned for all instances of that lemma. 
In the remaining cases where a lemma had more than 
one sense in training, with sufficient minority exam­
ples to adequately be modeled, the generic JHU lex­
ical sample sense classifier was trained and applied. 

3.2 Czech All-words Task 
Czech is another example of a highly inflected lan­
guage. A part-of-speech tagger and lemmatizer 
kindly provided by Jan Hajic of Charles Univer­
sity (Hajic and Hladk:a, 1998) was first applied to 
the data. Consistent with the spirit of evaluating 
sense disambiguation rather than morphology, the 
JHU system focused on those words where more 
than one sense was possible for a root word (e.g. 



the -1 and -2 suffixes in the Czech inventory). In 
these cases, the fine-grained output of the Czech 
lemmatizer was ignored (in both training and test) 
and a generic lexical-sample sense classifier was ap­
plied to the sense-distinction tags extracted from the 
lemmatized training data (see Section 2), using the 
classification models employed in Estonian. When­
ever insufficient numbers of minority tagged exam­
ples were available for training a word-specific clas­
sifier, the majority sense for the POS-level lemma 
was returned. Likewise, if only one possible sense 
tag was observed for any POS-levellemma analysis, 
then this unambiguous sense tag was returned. 

4 Unsupervised Italian System 
The Italian task stands out from the group of lexical 
choice tasks because no labelled training was data 
provided for Italian; instead a subset of the Italian 
Wordnet was provided. To obtain a sense classifier 
for Italian, we employed an unsupervised method 
that used hierarchical class models of the Wordnet 
relationships among words (synonymy, hypernomy, 
etc) and a large unannotated corpus of Italian news­
paper data to obtain sense centroids. 

First, every relationship type in the Italian Word­
net received an initial weight, based on a roughly es­
timated measure of the relative dissimilarity of two 
words in that relationship. For instance, the syn­
onymy relationship received a small weight (words 
are semantically "close"), while other relationships 
(has_ near_ synonym, causes, has_ hypemym) re­
ceived proportionately larger weights (words are 
more semantically distant). Starting from the senses 
Sofa target k, the wordnet relationships graph was 
explored, up to a given distance (two links away), 
creating "clouds" of similar words, Ms, together with 
a similarity3 to the original sense, S. 

For each of the words win Ms, we extracted sen­
tences from the unannotated corpus that contained 
the word w, and then considered them as being ex­
amples of context for the sense S of target k, and as­
signed them to the centroid C s (the centroid of the 
sense S) with a weight corresponding to the similar­
ity between the word w and the sense S (computed 
using the wordnet graph). After all the documents 
were distributed, the test documents were also as­
signed to the most probable cluster, similar to the 
other lexical choice tasks. 

The centroids were then allowed to adjust in a 
manner similar to k-means clustering. At each 
step, the centroids were recomputed, after which 
each document migrated to the closest cluster (i.e. 
argmaxs P (CsiD)), and the process was repeated. 
After the process converged, each test document was 

3The weight on a path was computed as the sum of the 
weights on the path, and the similarity was computed as 
Sim ( w, S) = e-c(w,S) -large weights result in 0 similarity. 
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Accuracy on Test Data 
Task Fine.:Grained Coarse-Grained 

Basque .757 .971 
English .642 .713 
Spanish .712 -

Swedish .701 1.00 
Italian .353 .423 
Czech .935 -

Estonian .666 -

Table 2: Official JHU system performance 

assigned the label corresponding to the sense cen­
troid it converged into. This process is completely 
unsupervised, and the only structured resource that 
was used is the provided Italian Wordnet subset. 

5 Results 
Table 2 lists the official performance of the JHU sys­
tems on unseen test data in the final SENSEVAL2 
evaluation. Coarse-grained performance scores are 
based on a hierarchical sense clustering given by the 
task organizers in 4 of the languages. In the lexical 
sample tasks, these scores were obtained after cor­
rection of a simple bug in the merger of final system 
output as provided for in the SENSEVAL evaluation 
protocols. 

As illustrated in the comparative performance ta­
bles elsewhere in this volume, the JHU systems are 
consistently very successful across all 7 languages 
and 3 major system types described here. 
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