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Abstract

We assess the language specificity of re-
cent language models by exploring the po-
tential of a multilingual language model.
In particular, we evaluate Google’s multi-
lingual BERT (mBERT) model on Named
Entity Recognition (NER) in German and
English. We expand the work on language
model fine-tuning by Howard and Ruder
(2018), applying it to the BERT architec-
ture.
We successfully reproduce the NER re-
sults published by Devlin et al. (2019).
Our results show that the multilingual lan-
guage model generalises well for NER in
the chosen languages, matching the native
model in English and comparing well with
recent approaches for German. However,
it does not benefit from the added fine-
tuning methods.

1 Introduction

Language modelling (LM) has proven to improve
many natural language processing (NLP) tasks
across a wide set of tasks and domains (Dai and
Le, 2015; Peters et al., 2018; Radford et al., 2018;
Ruder, 2016; Devlin et al., 2019). These language
models encompass the requirements “for natural
language understanding technology to be maxi-
mally useful” generalising to multiple tasks, gen-
res and datasets (Wang et al., 2018).

We argue that language models could also gen-
eralise along the language axis. Cross-lingual
language understanding (XLU) significantly in-
creases the usability of language technologies for
international products such as Word, Facebook, or
Google (all utilising varying levels NLP, for exam-
ple translation, autocompletion or grammar cor-
rection). This interest is supported by Conneau

et al. (2018) from Facebook AI1, who laid one of
the first milestones by creating a multilingual nat-
ural language inference corpus (XNLI) for XLU
evaluation.

Therefore, our first research aim is to investi-
gate the cross-lingual potential of Google’s multi-
lingual BERT (mBERT). Our experiments aim to
establish a baseline under good transfer learning
conditions: closely related languages with enough
native data for fine-tuning. We expand the base-
lines Google published on natural lanugage infer-
ence (NLI) to named entity recognition (NER).

The second aim is to analyse if the BERT ar-
chitecture benefits from special fine-tuning meth-
ods proposed by Howard and Ruder (2018). These
showed significant performance increase for an
LSTM-based architecture, but have not been gen-
eralised to other architectures. Besides LSTMs,
Transformers are becoming an increasingly pop-
ular choice for language models, making BERT
an ideal candidate to incorporate these fine-tuning
methods.

Contributions: We make the following contri-
butions to current LM research:

• We validate the original results published by
Devlin et al. (2019), by replicating their NER
experiment in Pytorch. For this we compare
the method outlined in their paper and other
replication attempts.

• We show that for NER, Google’s multilingual
BERT model matches the monolingual BERT
model for English, and for German compares
with most of the recent native models.

• We adapt the fine-tuning methods by Howard
and Ruder (2018) for Google’s BERT model.
Our results show that slanted triangular learn-
ing rates improve the model, but gradual

1in collaboration with New York University
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unfreezing and discriminative learning rates
have no effect.

2 Related Work

There is a vast amount of pre-trained language
model research. We briefly review the ones that
this paper directly builds on.

2.1 Language Models
Bengio et al. (2003) published the first neural lan-
guage model in 2003. Their basic architecture
of (a) Embedding, (b) Encoding and (c) Pooling
layer(s) is still used by neural language and word
embedding models today. 2

With the rise of recurrent neural networks
(RNNs) in NLP, they became a better choice for
(b) the Encoding layer of the LM (Mikolov et al.,
2010). Especially the variation of a long-short-
term memory (LSTM) RNN (Jozefowicz et al.,
2016) which are still used by recent papers like
Howard and Ruder (2018) and Peters et al. (2018).
By combining a forward LM and a backward LM
Peters et al. (2018) created a bidirectional lan-
guage model (biLM).

Overall, the widely successful approach for lan-
guage models is to (1) pre-train the LM on general
text to predict the next sentence.3 Then this lan-
guage knowledge is transferred by (2) fine-tuning
the model for the target task (Devlin et al., 2019;
Howard and Ruder, 2018; Peters et al., 2018; Rad-
ford et al., 2018). The target tasks range from sen-
timent analysis in the movie domain (Howard and
Ruder, 2018); named entity recognition for news-
paper articles (Devlin et al., 2019); to question an-
swering on Wikipedia data (Devlin et al., 2019;
Peters et al., 2018; Radford et al., 2018).

2.2 Universal Language Model Fine-Tuning
Howard and Ruder (2018) introduced special LM
fine-tuning methods, including a further step in
between (1.5) where the language model is fine-
tuned on the unlabelled task data using the lan-
guage modelling objective.

In addition, they propose three more meth-
ods: Slanted triangular learning rates, an adapta-
tion of the cyclic learning rates by Smith (2017,
2018). An individual learning rate for each layer
(Discriminative learning); and gradual unfreezing

2Retrieved May 20th, 2019, from http:
//ruder.io/word-embeddings-1/index.html#
classicneurallanguagemodel

3This is the most common language modelling objective.

where layers are slowly added to the training pool.
Howard and Ruder (2018) found that the combi-
nation of all these additions worked best, reducing
error rates by 18-24% on 6 text classification sets.

2.3 BERT

At the end of 2018, Google’s BERT was the
best performing model for the GLUE Benchmark4

(Devlin et al., 2019; Wang et al., 2018). In con-
trast to previous language models they utilise a
deeply bidirectional architecture for their trans-
former; meaning the model receives the whole
sentence (or sentence pair) as input and each cell
depends on the context of the previous and subse-
quent word in the sequence.

Due to this, BERT’s training differs from other
language models. The non-sequential input makes
the next-word prediction task impossible. Instead,
Devlin et al. (2019) train the model to predict
masked words in the input sentence. For further
cross-sentence context, they also trained it to clas-
sify if two sentences follow each other.

They argue that the added context improves
the model, making more suited for sentence level
tasks (Devlin et al., 2019). This is supported by
their results on the tasks in the GLUE Bench-
mark, overall achieving an absolute improvement
of 7.7%.

2.4 Multilingual Language Models

Out of the established language model architec-
ture, BERT is the only one that also provides
multilingual versions on their repository.5 The
mBERT model has been pre-trained on Wikipedia
text from the top 104 languages. They evaluated
their multilingual model on the cross-lingual nat-
ural language inference dataset (XNLI), showing
good performance for the 6 languages they re-
ported on (Conneau et al., 2018).

3 Multilingual BERT for NER

We use the multilingual BERT as our pre-trained
LM. To evaluate its cross-lingual potential we se-
lect a task and multiple language for the experi-
ments.

4Retrieved May 20th, 2019, from https:
//gluebenchmark.com/

5Retrieved May 20th, 2019, from https://github.
com/google-research/bert

http://ruder.io/word-embeddings-1/index.html#classicneurallanguagemodel
http://ruder.io/word-embeddings-1/index.html#classicneurallanguagemodel
http://ruder.io/word-embeddings-1/index.html#classicneurallanguagemodel
https://gluebenchmark.com/
https://gluebenchmark.com/
https://github.com/google-research/bert
https://github.com/google-research/bert
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3.1 Dataset & Languages

The CoNLL 2003 NER task (Tjong Kim Sang
and De Meulder, 2003) was used by Devlin
et al. (2019) to evaluate the English BERT model
on NER. Since it also provides German data,
it was the ideal candidate to validate our re-
implementation of the model, evaluate the per-
formance of the multilingual model on multiple
languages, and compare against the monolingual
model. The dataset is widely used for German
NER and provides a baseline evaluation for the
German model, that can be expanded to more re-
cent datasets such as GermEval 2014 (Benikova
et al., 2014).

The CoNLL dataset has been used with two dif-
ferent annotation types: IOB1 (described in the
original paper (Tjong Kim Sang and De Meulder,
2003)) and BIO.6 Since the BERT paper itself uses
both annotation types in the examples they pro-
vide, it is unclear which one they used (Devlin
et al., 2019). Our experiments compare the results
of both annotation types.

3.2 Method/Architecture

The overall structure of the NER experiments is
abstracted in figure 1. It shows that all experiments
only differ in the data pre-processing and BERT
model selected.

We follow the same structure outlined in the
BERT paper: The data is pre-processed using
Google’s WordPiece tokenization, and then con-
verted into a BERT input feature consisting of to-
ken ids, segment mask and attention mask. A to-
kenoptimal one classification layer7 is added to
convert the BERT output into label probabilities
over the set of annotations. We use the soft-
max cross-entropy loss and the standard hyper-
parameter optimisation for BERT.8

We evaluate the model using the F1 score
following the original CoNLL 2003 shared task
(Tjong Kim Sang and De Meulder, 2003).

3.3 Adaptation of Fine-Tuning Methods

Howard and Ruder (2018) described their fine-
tuning methods for their 4-layer LSTM. This sec-
tions described our adaptations to apply them to
BERT, a 12-layer transformer.

6Also called IOB2.
7Linear classification layer
8Linear learning rate warmup.

Figure 1: NER model architecture

Slanted Triangular Learning Rates This fine-
tuning method is already used by BERT, however,
Devlin et al. (2019) call it linear warmup. There-
fore, we do not need to adapt this method, instead
we compare BERT’s performance with and with-
out.

Discriminative Fine-Tuning Howard and
Ruder (2018) used the following formula to
calculate the learning rate for each layer:

ηn =
η0

δn
(1)

where η0, the learning rate of the top layer is man-
ually selected. They empirically found a δ = 2.6
to work well for their model. In the most recent
ULMFiT implementation taught by Howard in his
new course9 η0, on the other hand, decreases after
every epoch.

Since a δ of 2.6 would lead to minuscule learn-
ing rates for the lower levels for BERT, we com-
pare δ values: 2.6, 1.6 and 110. Further, we mea-
sure several η0’s for each epoch to find the most
optimal one.

9Retrieved May 20th, 2019, from https:
//nbviewer.jupyter.org/github/fastai/
course-v3/blob/master/nbs/dl1/
lesson3-imdb.ipynb

10Meaning a constant learning rate for all layers.

https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-imdb.ipynb
https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-imdb.ipynb
https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-imdb.ipynb
https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-imdb.ipynb
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Gradual Unfreezing The difference in layer
count also affects the unfreezing procedure. Go-
ing from top to bottom, Howard and Ruder (2018)
added a single layer to the set of trained layers
after each epoch, resulting in 4 epochs of fine-
tuning.

Applying the same procedure to BERT would
lead to 12 epochs, which is 3 to 4 times as much as
the standard BERT task fine-tuning of 3-4 epochs.
Instead we unfreeze the layers in groups of 3, thus,
fine-tuning the model for 5 epochs.

4 Experiments

This section discusses the results of the NER ex-
periments.

hyperparameter options
batch size 16, 32
learning rate 2e-5, 3e-5, 5e-5
epochs 3,4

Table 1: BERT fine-tuning hyperparameters

4.1 Replication of English Results

For the replication, we performed a grid search
over the hyperparameter options listed by Devlin
et al. (2019) (see Table 1) and evaluate them on
the development set. The best parameters11 were
then used to evaluate on the test set.

Table 2 shows that our implementation of
BERTBASE for NER matches the original for the
IOB1 annotation style. Therefore, validating the
original results and our re-implementation. We
use the same structure for the multilingual experi-
ments.

11Batch size: 16; learning rate: 3e-5; epochs: 4

System Annot. Dev Test
BERTLARGE - 96.6 92.8
BERTBASE - 96.4 92.4

our BERTBASE
IOB1 96.4 92.6
BIO 95.9 92.2

Multilingual BERT
IOB1 96.4 91.9
BIO 96.5 92.1

Table 2: [English Data] BERT model F1 results,
compared to original paper. All results recorded
are averaged out of 5 randomly initialised runs.

System Annot. Dev Test
Ahmed & Mehler IOB1 - 83.64
Riedl & Pado - - 84.73
Akbik et al. (2018) - - 88.33

Multilingual BERT
IOB1 88.44 85.81
BIO 87.49 84.98

Table 3: [German Data] F1 Score evaluation on
German CoNLL-2003 data, development and test
set. Comparing our results with the state-of-the-art
native models.

4.1.1 Multilingual BERT

We evaluate the multilingual BERT model on both
the German and English dataset.

German We compare our results for the Ger-
man data against the most recent state-of-the-art:
for example Ahmed and Mehler (2018) used a
Long-Short-Term Memory (LSTM) model with a
Conditional Random Field (CRF) on top. Riedl
and Padó (2018) lead with their bidirectional
LSTM, which has been pre-trained on GermEval
NER data.

As seen in Table 3 the multilingual model out-
performs these first two models; notably for IOB1
annotation, and slightly exceeding Riedl and Padó
(2018) with BIO. Riedl and Padó (2018) pre-
trained on German data and fine-tuned for 15
epochs, in contrast to our multilingual pre-training
and 3 epochs of fine-tuning.

The most recent and leading approach by Ak-
bik et al. (2018), uses an LSTM + CRF with their
novel contextual string embeddings 12 concate-
nated with Glove embeddings (Pennington et al.,
2014), and task-trained character features. The
contextual string embeddings were trained on half
a million German words.

Using only these proposed contextual string
embeddings, their models achieves 85.78 for F1
on the CoNLL dataset, similar to our multilin-
gual model. Their research shows that the embed-
dings chosen strongly influences the models per-
formance. We find that further comparison and
analysis is needed to see how the multilingual
model might benefit from concatenating multiple
embeddings.

Overall, the multilingual Bert model compares
well against the current state-of-the-art given that
it is the only model using non-native embeddings.

12Forward + Backward character embeddings
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Model Optim Epoch 3 Epoch 4
English BERT with BertAdam 96.31 ± 0.13 96.42 ± 0.09

without BertAdam 95.76 ± 0.47 94.80 ± 2.39
Multilingual BERT with BertAdam 96.51 ± 0.18 96.55 ± 0.21
(English) without BertAdam 95.88 ± 0.74 96.25 ± 0.06
Multilingual BERT with BertAdam 88.44 ± 0.35 88.23 ± 0.46
(German) without BertAdam 86.69 ± 1.12 85.24 ± 2.17

Table 4: Comparing the multilingual/English model with and without the BertAdam optimiser using the
learning rate warmup. The scores reported are on the development set (IBO1). The optimal hyperparam-
eters from the previous section were used for each model. Scores are averaged out of 4 random initialised
runs.

The results by Akbik et al. (2018) show that our
LM could be improved through richer embeddings

English Table 2 shows that the multilingual
model matches the native for the development
scores, yet it does not generalise as well to the test
set.

4.2 Additional Fine-Tuning

First, we analyse the effect of the linear learning
rate warmup: the results in Table 4 show that the
warmup improves the scores and their stability.

Second, the other fine-tuning methods are
added to the task fine-tuning step. For each layer
the best discriminative learning rate is selected,
from a set of manually selected η0 values and the
varying δ.

We measure the effectiveness of the additional
LM fine-tuning on the target data by comparing (1)
the “plain” BERT for task fine-tuning, (2) adding
the additional fine-tuning methods and (3) adding
the LM fine-tuning for 10/20 epochs.

The results in tables 5 and 6 show that the added
fine-tuning methods do not exhibit any improve-
ment over the “plain” BERT model. Further, there
is no significant difference when adding the extra
LM fine-tuning.

Our adaptation of the fine-tuning methods, how-
ever, are not fine-grained enough to allow for more
detailed analysis. Compared to the multilingual
model, the quick conversion does not yield re-
sults, instead a more in-depth approach is required
to identify how a transformer is affected by these
methods.

5 Conclusion

Pre-trained language models have led to signif-
icant empirical improvements for English natu-

English BERT Dev Test
Plain 96.4 92.6
+ Task fine-tuning 95.60 92.38
+ 10e LM & Task fine-tuning 95.58 92.42
+ 20e LM & Task fine-tuning 95.91 92.36

Table 5: English BERT fine-tuning F1 results. Av-
eraged over 2 runs.

Multilingual BERT Dev Test
Plain 88.44 85.81
+ Task fine-tuning 87.50 85.78
+ 10e LM & Task fine-tuning 87.11 84.98
+ 20e LM & Task fine-tuning 87.93 85.16

Table 6: Multilingual BERT fine-tuning F1 results
for German. Averaged over 2 runs.

ral language understanding. We validate parts of
those findings by replicating the BERT result for
NER.

Further, our work demonstrates that the expan-
sion to cross-lingual language models holds a lot
of potential. For German we outperform most
recent models, leaving some room for improve-
ment. The English the multilingual model closely
matched the native one, in contrast to the BERT
results reported for the XNLI task, where the En-
glish model noticeably outperformed the multilin-
gual one.13

The investigation into LM fine-tuning methods
proposed by Howard and Ruder (2018) showed
that they do not improve the BERT model, with
exception of slanted triangular learning rates that

13Retrieved May 20th, 2019, from https://github.
com/google-research/bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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are already used by BERT.

5.1 Future Work
Our experiments support the hypothesis of cross-
lingual language models for general NLP. The
improvements Akbik et al. (2018) achieved with
their embedding work, should be used on language
models; to evaluate if they provide a similar bene-
fit, not only for NER but general NLP tasks.

In the future, this should be expanded to more
tasks and languages. Such as Wu and Dredze
(2019), who concurrent to our work showed
mBERT’s zero-shot transfer learning potential.

Possible areas of focus are morphologically
complex languages such as Finish, Korean and
Tamil 14 since typological properties of languages
can impact ”language-agnostic” models (Gerz
et al., 2018).

Further, Lample and Conneau (2019) show that
cross-lingual language models can be improved
on by cross-lingual language model (XLM) pre-
training.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Darina Benikova, Chris Biemann, Max Kisselew, and
Sebastian Pado. 2014. Germeval 2014 named entity
recognition shared task: companion paper .

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing. pages 2475–2485.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems. pages 3079–3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). pages
4171–4186.
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