
Proceedings of Recent Advances in Natural Language Processing, pages 1364–1372,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_156

1364

An Open, Extendible, and Fast Turkish Morphological Analyzer

Olcay Taner Yıldız1, Begüm Avar2, Gökhan Ercan1

1 Department of Computer Engineering, Işık University, İstanbul, Turkey
2 Department of Linguistics, Boğaziçi University, İstanbul, Turkey

olcaytaner@isikun.edu.tr, begum.avar@boun.edu.tr
gokhan.ercan@isik.edu.tr

Abstract

In this paper, we present a two-level
morphological analyzer for Turkish which
consists of five main components: finite
state transducer, rule engine for suffixa-
tion, lexicon, trie data structure, and LRU
cache. We use Java language to imple-
ment finite state machine logic and rule
engine, Xml language to describe the fi-
nite state transducer rules of the Turkish
language, which makes the morphological
analyzer both easily extendible and eas-
ily applicable to other languages. Em-
powered with a comprehensive lexicon
of 54,000 bare-forms including 19,000
proper nouns, our morphological analyzer
is amongst the most reliable analyzers pro-
duced so far. The analyzer is compared
with Turkish morphological analyzers in
the literature. By using LRU cache and
a trie data structure, the system can ana-
lyze 100,000 words per second, which en-
ables users to analyze huge corpora in a
few hours.

1 Introduction

Morphological analysis is one of the key compo-
nents of computational language processing, es-
pecially in morphologically rich languages. Af-
ter some preprocessing stages such as stripping
nontextual parts from the corpus and sentence seg-
mentation, the first and foremost stage in computa-
tional analysis of the text is morphological analy-
sis, that is dividing the words into constituent mor-
phemes.

In this study, we deal with the morphology of
Turkish, which is a textbook example for an ag-
glutinative language. In Turkish, a word in its sur-
face form contains 3 to 4 morphemes on the aver-

age (Sak, 2011), and these morphemes can have a
semantic and/or syntactic content. Not only a sur-
face form can have a multimorpheme structure in
Turkish, but also has multi morphological analy-
ses.

In this paper, we will present a new morpholog-
ical analyzer, which is (i) open: The latest version
of source codes, the lexicon, and the morphotac-
tic rule engine are all available on the Internet1,
(ii) extendible: One of the disadvantages of other
morphological analyzers is that their lexicons are
fixed or unmodifiable, which prevents to add new
bare-forms to the morphological analyzer. In our
morphological analyzer, the lexicon is in text form
and is easily modifiable, (iii) fast: Morphological
analysis is one of the core components of any NLP
process. It must be very fast to handle huge cor-
pora. Compared to other morphological analyz-
ers, our analyzer is capable of analyzing hundreds
of thousands words per second, which makes it
one of the fastest Turkish morphological analyz-
ers available.

2 Turkish Morphology

In linguistics, the term morphology refers to the
study of the internal structure of words. Each word
is assumed to consist of one or more morphemes,
which can be defined as the smallest linguistic
unit having a particular meaning or grammatical
function. One can come across morphologically
simplex words, i.e. roots, as well as morphologi-
cally complex ones, such as compounds or affixed
forms.
(1) Batı-lı-laş-tır-ıl-ama-yan-lar-dan-mış-ız
west-With-Make-Caus-Pass-Neg.Abil-Nom-Pl-
Abl-Evid-A3Pl
‘It appears that we are among the ones that cannot
be westernized.’

1https://github.com/olcaytaner/TurkishMorphologicalAnalysis

1365

The morphemes that constitute a word combine
in a (more or less) strict order. Most morphologi-
cally complex words are in the ”ROOT-SUFFIX1-
SUFFIX2-. . .” structure. Affixes have two types:
(i) derivational affixes, which change the meaning
and sometimes also the grammatical category of
the base they are attached to, and (ii) inflectional
affixes serving particular grammatical functions.
In general, derivational suffixes precede inflec-
tional ones. The order of derivational suffixes is
reflected on the meaning of the derived form. For
instance, consider the combination of the noun göz
‘eye’ with two derivational suffixes -lIK and -CI:
Even though the same three morphemes are used,
the meaning of a word like göz-cü-lük ‘scouting’
is clearly different from that of göz-lük-çü ‘opti-
cian’.

Owing to its morphological properties, in Turk-
ish, the problem of parsing and disambiguation
constitutes a major challenge, as not only con-
tent words in their base forms but also func-
tional morphemes may be the source of ambiguity.
While certain affixes have clear functions/mean-
ings, there exist others, for which the meaning can
only be determined within a context. In fact, only
a few derivational suffixes (which are productively
used for word-formation) are semantically trans-
parent and some derived forms are no longer con-
sidered to be compositional in that their meaning
cannot be predicted from the morphemes they con-
tain.

2.1 Allomorphy

Linguists speak of underlying representations
(UR) of morphemes, which is the representation
of a form in the mental lexicon, and surface repre-
sentations of morphs, which concerns their exact
pronunciation. While some morphemes may be
realized in a single way, others have several allo-
morphs, i.e. phonetic variants. There are, in gen-
eral, two major kinds of allomorphy with respect
to their source: (i) phonologically conditioned,
and (ii) morphologically or lexically conditioned.

2.1.1 Phonologically-Conditioned
Allomorphy

Turkish has a rich inventory of phonological rules
affecting the pronunciation of morphemes and dic-
tating what a well-formed word in Turkish may
look (or rather sound) like. There are restrictions
concerning the distribution of vowel segments (V),

a. kedi ‘cat’ + 1st person Poss = kedim ‘my cat’
b. ev ‘house’ + 1st person Poss = evim ‘my house’

Table 1: Example cases showing how morphology
must respect the rules of phonology.

UR Bare-form Accu. Plural
a. akl ‘mind’ a.kıl ak.l-ı a.kıl-lar
b. sırr ‘secret’ sır sır.r-ı sır-lar

Table 2: Example words whose underlying rep-
resentation ends in an impermissible cluster or a
geminate.

Bare-form Accu. Dative Plural
a. kas ‘muscle’ kas-ı kas-a kas-lar
b. kasa ‘safe’ kasa-yı kasa-ya kasa-lar

Table 3: Example Turkish words which do not
contain two successive vowels.

consonants segments (Cs) or their co-occurrence.
For instance, the nature of consonant clusters is
highly restricted. Due to the rules dictating the
so-called Vowel-Alternation, an epenthetic high
vowel is inserted to break up a disallowed se-
quence of consonants. Morphology must respect
the rules of phonology, and therefore, for in-
stance, an impermissible cluster cannot be formed
through morphological operations – an epenthetic
vowel comes to rescue as in (Table 1(b)), as op-
posed to (Table 1(a)).

There are some words in Turkish whose un-
derlying representation ends in an impermissible
cluster or a geminate. In the former case, vowel
epenthesis takes place (Table 2(a)) whereas words
of the latter kind undergo degemination (Table
2(b)), unless they are followed by a vowel which
results in the resyllabification of the second conso-
nant in the cluster (‘.’ indicates syllable boundary
in the examples below).

There are also restrictions on neighboring vow-
els. Typically, Turkish words do not contain two
successive vowels, except for some loanwords.
Therefore, if a vowel-initial suffix is attached to
a vowel-final word, a consonant (typically ‘y’)
emerges to avoid a VV sequence, as demonstrated
in (Table 3(b)).

A further phonological operation in Turkish is
Vowel Harmony, which requires any vowel to
agree in backness and any high vowel to agree
in rounding with the preceding vowel. Respect-
ing the rules dictating harmony, suffixes in Turkish
have various allomorphs. Turkish vowel harmony

1366

Bare-form Accusative Plural
a. at ‘horse’ at-ı at-lar
b. et ‘meat’ et-i et-ler
c. saat ‘hour, clock’ saat-i saat-ler

Table 4: Example Turkish words which obey/does
not obey vowel harmony while taking suffixes.

Bare-form Past
kal ‘stay’ kal-dı ‘She/he/it stayed’

Table 5: Example Turkish cases with consonant
harmony.

UR Bare-form Accu. Plural
a. kitab ‘book’ kitap kitab-ı kitap-lar
b. top ‘ball’ top top-u top-lar

Table 6: Example Turkish words with word-final
devoicing.

operates regularly on suffixes with a very few ex-
ceptions consisting of non-alternating suffixes, the
most productive of which being the progressive
suffix –(I)yor (e.g. when attached to git ‘to go’,
we get gidiyor ‘s/he goes’, instead of *gidiyör
or *gidiyir) and some words which take a front-
vowel suffix even though their last vowel is back
(Table 4)).

Other than Vowel Harmony, there is also Conso-
nant Harmony in Turkish according to which oral
stops and affricates agree in voicing with the pre-
ceding segment. Hence, a suffix, such as the past
tense morpheme –DI, has up to 8 allomorphs when
both consonant and vowel harmonies are applica-
ble (Table 5)).

Another process relating to the voicing proper-
ties of consonants is called ‘word-final devoicing’,
according to which word-final obstruents must be
voiceless. Words, or rather morphemes, that are
affected by this process have a voiced obstruent in
the final position in their UR (as in Table 6(a)),
which gets devoiced unless a vowel-initial suffix
follows.

A further alternation targets the word- or rather
morpheme-final ‘k’s. Dubbed ‘k-alternation’ in
the literature, this process results in the replace-
ment of morpheme-final ‘k’s with ‘ğ’ (which
phonologically means a lengthening of the vowel
preceding it) when they are followed by a vowel-
initial suffix. K-alternation may affect roots (as in
köpek ‘dog’ + ACC = köpeği instead of *köpeki)
as well as suffixes (as in göz ‘eye’ + lIK + ACC
forming gözlüğü instead of *gözlükü).

a. dur ‘stop, stand’→ dur-ur bil ‘know’→ bil-ir
b. kur ‘set up’→ kur-ar sil ‘wipe’→ sil-er

Table 7: Examples of unpredictable allomorphy.

a. it ‘push’→ it-tir bit ‘end’→ bit-ir
b. bak ‘look’→ bak-tır ak ‘flow, leak’→ ak-ıt

Table 8: Examples of unpredictable allomorphy
for the causative suffix.

The list of phonological processes presented in
this section covers some of the most frequently oc-
curring alternations, yet it is not exhaustive. For
one, there are also processes that do not have any
reflection on orthography, such as alternations on
vowel length. There are several others which have
a narrower distribution, such as vowel reduction
occurring in verbs ending in a vowel.

2.1.2 Morphologically or Lexically
Conditioned Allomorphy

The crucial difference between phonologically
conditioned allomorphy from other types of al-
lomorphy is that in the former case, the alterna-
tions are predictable and apply regularly, while in
the latter case the phonological features, by them-
selves, are not sufficient to define the environment
in which the change takes place. Among the suf-
fixes having several allomorphs, which cannot be
accounted for by phonological premises only, is
the aorist. While some of its forms are phonologi-
cally conditioned and thus predictable, others (Ta-
ble 7(a) vs. Table 7(b)) are unpredictable from the
phonological shape of the base they are attached
to. A similar allomorphy is found for the causative
suffix, as demonstrated in Table 8.

2.2 Inflectional Categories

Inflectional markers encode grammatical informa-
tion and are category-selective. For instance, (i)
Number (Singular vs. Plural); (ii) Case (nomina-
tive, accusative, dative, locative, ablative, genitive,
comitative); and (iii) Possessive are encoded by in-
flectional suffixes (or the lack of them) on nominal
stems.

Inflectional suffixes attached to verbal stems
encode (i) Tense/Aspect/Modality (such as Past,
Future, Aorist, Progressive, Evidential, Optative,
Conditional, Ability/Possibility, Obligative etc.);
(ii) Agreement (person & number); (iii) Voice
(Passive, causative, reflexive, reciprocal); and (iv)
Polarity (Affirmative vs. Negative).

1367

Due to spatial restrictions, only a brief overview
of morphological processes in Turkish is presented
in this paper. For further information on the lin-
guistic structure of Turkish in general, and on
Turkish morphology in particular, the reader is re-
ferred to (Lewis, 1967), (Kornfilt, 1997), (Under-
hill, 1976), (Göksel and Kerslake, 2005), and (Er-
guvanlı, 2015).

3 Related Work

3.1 Available Resources
There exist several morphological analyzer re-
sources in the Turkish NLP literature. In this sec-
tion, we aim at analyzing currently available re-
sources in terms of their usage, technology, struc-
ture, availability, and extendibility. Table 9 shows
a comparison table of such resources along with
our utility. Publicly unavailable resources such
as widely known KIMMO-based (Karttunen et al.,
1983) analyzer (Oflazer, 1994) were decidedly left
out of scope of this study.

Sak et al. (2008) released the Finite-State Mor-
phological Parser (SakMP) which uses AT&T
FSM parser (Mohri, 1997). Although it is not pub-
licly available, authors provide compiled Linux li-
brary (*.so file) upon requests. As it does not de-
pend on any external components on runtime, re-
searchers can call the services through the com-
mand line or Python scripting without making any
installations on Linux systems. Since it is deliv-
ered as a single compiled file, its lexicon, suffixa-
tion rules and the transducer is not extendible for
researchers.

TRMorph (Çöltekin, 2010) is another morpho-
logical analyzer implementation which is built
upon an existing FST engine. Its latest ver-
sion2 (2.0 pre-release) uses Foma FST compiler
(Hulden, 2009) which is basically a C compiler
converting regular expressions to finite automata
and transducers. TRMorph’s lexicon files are in a
raw text file format which makes them easily up-
datable for the researcher. It has a special regu-
lar expression based syntax (through *.xfst files)
that enable researchers to update suffixation rules
in compile time. Once the output file (*.fst) com-
piled for the platform, it can be queried with the
help of Foma executables through the command
line or Python scripts. The author has also intro-
duced a web service integration with the WebLicht
environment (Hinrichs et al., 2010) which allows

2https://github.com/coltekin/TRmorph

serving TRMorph’s functionality through the web
interfaces (Çöltekin, 2015).

Similarly, ITU Turkish NLP Web Service
(ITUWS) (Eryiğit, 2014) offers a publicly avail-
able3 NLP user interface4 and a web service for
Turkish language which covers common tools
such as tokenizer, morphological analyzer/disam-
biguator and dependency parser. ITUWS requires
an access token on http requests in order authen-
ticate researchers to web services. According to
their paper, ITUWS wraps the morphological ana-
lyzer tool ITUMORPH (Şahin, 2013)(Şahin et al.,
2013) which depends on another external tool
HFST (Lindén et al., 2009) for its FST implemen-
tation. Since ITUWS is a web service-based re-
source, it is not suitable for tasks that require mil-
lions of analyses. Another downside of the web
service-based model is the researcher could not
modify any of its components such as lexicon, suf-
fixes, and suffixation rules.

Lastly, Zemberek5 is a popular open-source
NLP framework which includes tools for Turk-
ish such as morphological analyzer/disambigua-
tor, tokenizer, and spell checker. It has been us-
ing as a spelling checking extension for LibreOf-
fice6 and the Turkish national Linux Distribution
Pardus.7 Although the project is still actively de-
veloped and maintained, its original paper is quite
outdated (Akın and Akın, 2007). In documenta-
tion pages, authors note that the latest version of
the library almost written from the scratch. While
the original goal of the project was to abstract lan-
guage specific components form the parser to sup-
port all Turkic languages (e.g., Turkmen, Azeri,
Uzbek), its current focus seems on the Turkish
language only. Unlike the generally accepted ap-
proach in the literature, Zemberek does not use a
FST for morphological parsing. Whereas it allows
developers to easily modify the lexicon through
text files and the API, updating the suffixation and
morphotactic rules require recompilation because
of they are represented in the core Java code.

4 Core Components

Our morphological analyzer consists of five main
components, namely, a lexicon, a finite state trans-

3http://tools.nlp.itu.edu.tr/
4http://tools.nlp.itu.edu.tr/MorphAnalyzer
5https://github.com/ahmetaa/zemberek-nlp
6https://extensions.libreoffice.org/extensions/zemberek-

turkce-yazim-denetleyicisi
7https://www.pardus.org.tr/

1368

Resource Ours SakMP TRMorph ITUWS Zemberek
Paper this paper Sak et al. (2008) Çöltekin (2010) Eryiğit (2014) Akın and Akın (2007)
Availability open-source by request open-source free, by request open-source
Form Java library binary Foma impl. web service Java library
Compile-time Java runtime AT&T FSM Foma, C proc. invisible Java runtime
Runtime Dep. Java runtime no dep. Foma, Unix tools any REST Java runtime
Operating Sys. Win, OSX, Linux Linux Win, OSX, Linux Any OS Win, OSX, Linux
FST Impl. custom Java AT&T FSM Foma HFST no FST
Lexicon text file embedded text file invisible text file
Suffix Rules xml file embedded regex, C, lexc invisible Java code

Table 9: Comparison of available morphological analyzer resources.

ducer, a rule engine for suffixation, a trie data
structure, and a least recently used (LRU) cache.

4.1 Lexicon

For the purposes of the present study, we will
assume all idiosyncratic information to be en-
coded in the lexicon. While phonologically condi-
tioned allomorphy will be dealt with by the trans-
ducer, other types of allomorphy (including the
ones discussed in Section 2.1.2), all exceptional
forms to otherwise regular processes, as well as
words formed through derivation (except for the
few transparently compositional derivational suf-
fixes) are considered to be included in the lexicon.

Table 10 shows 10 example words taken from
our lexicon, where the lexicon is sorted alphabeti-
cally. Each line in the lexicon consists of the bare-
form and a set of attributes separated by white
space.

4.1.1 Bare-Forms
The bare-forms in the lexicon consists of nouns,
adjectives, verbs, adverbs, shortcuts, etc. Each
bare-form appears the same in the lexicon except
verbs. Since the bare-forms of the verbs in Turkish
do not have the infinitive affix ‘mAk’, our lexicon
includes all verbs without the infinitive affix. For
instance, in Table 10, verbs ‘abanmak’ and ‘abart-
mak’ appear as ‘aban’ and ‘abart’ respectively.

Since our morphological analyzer must support
all types of texts, the bare-forms with diacritics are
included in two forms, with and without diacrit-
ics. For example, noun ‘rüzgâr’ appear both as
‘rüzgâr’ and ‘rüzgar’.

Special markers are included as bare-forms
such as <doc>, <s>, etc.

Some compound words are included in their af-
fixed form. For instance, ‘acemlalesi’ appears as
it is, but not as ‘acemlale’.

Foreign words, especially proper noun foreign
words, are included, so that the system can eas-

ily recognize them as proper nouns. In Table 10,
the words ‘abbott’, ‘abbigail’ are example foreign
proper nouns. Including foreign proper nouns,
there are 19,000 proper nouns in our lexicon.

From derivational suffixes, we only include
words which has taken -lI, -sIz, -CI, -lIk, and
-CIlIk derivational affixes. In Table 10, the
bare-forms ‘abacı’, ‘abdallık’, ‘abdestli’ and ‘ab-
destlilik’, are included, since they have taken one
or more derivational affixes listed above.

abacı CL ISIM aban CL FIIL F5PR
abart CL FIIL F5PR abbott IS OA
abbigail IS OA abdallık CL ISIM IS SD
abdestli IS ADJ abdestlilik CL ISIM IS SD
rüzgar CL ISIM rüzgâr CL FIIL CL ISIM

Table 10: 10 example words from our lexicon.

4.1.2 Attributes
Each bare-form has a set of attributes give in Table
11. For instance, in Table 10, ‘abacı’ is a noun,
therefore, it includes CL ISIM attribute. Sim-
ilarly, ‘abdestli’ is an adjective, which includes
IS ADJ attribute. If the bare-form has homonyms
with different part of speech tags, all correspond-
ing attributes are included.

4.2 Finite State Transducer

Given a possible bare-form, depending on the pos-
sible part of speech(es) of that bare-form, the fi-
nite state transducer (FST) starts with one or more
initial state. FST is responsible from state tran-
sitions, where at each transition FST (i) changes
from one state to another state, (ii) appends a suf-
fix to the current surface form to generate a new
surface form, (iii) produces an output, which is
the current morphological analysis of the current
surface form. After a set of transitions, the cur-
rent surface form will be equal to the word, for
which morphological analysis sought, and if also
the current state is a final state, FST will output
current morphological analysis as a possible mor-

1369

Name Purpose
CL ISIM,
CL FIIL, . . .

Part of speech tag(s)

IS OA Proper noun
IS DUP Part of a duplicate form
IS KIS Abbreviation, which does not obey vowel

harmony while taking suffixes.
IS UU, IS UUU Does not obey vowel harmony while tak-

ing suffixes.
IS BILEŞ A portmanteau word in affixed form,

such as ‘adamotu’
IS B SI A portmanteau word ending with ‘sı’,

such as ‘acemlalesi’
IS CA Already in a plural form, therefore can

not take plural suffixes such as ‘ler’ or
‘lar’.

IS ST The second consonant undergoes a resyl-
labification.

IS UD, IS UDD,
F UD

Includes vowel epenthesis.

IS KG Ends with a ‘k’, and when it is followed
by a vowel-initial suffix, the final ‘k’ is
replaced with a ‘g’.

IS SD, IS SDD,
F SD

Final consonant gets devoiced during
vowel-initial suffixation.

F GUD,
F GUDO

The verb bare-form includes vowel re-
duction.

F1P1, F1P1-NO-
REF, . . .

A verb, and depending on this attribute,
the verb can (or can not) take causative
suffix, factitive suffix, passive suffix etc.

Table 11: Attributes of the bare-forms

phological analysis. Depending on the number of
initial states, the number of possible paths FST has
sought, FST can output one or more possible mor-
phological analyses.

In our morphological analyzer, FST is encoded
in an xml file. Table 12 shows three example states
from our Turkish FST xml file. <state> tag shows
the properties of a state including; name of the
state, if the state is a start state, if the state is a
final state, the pos (part of speech) of the state if
the state is a start state.
<to> tag shows the properties of state transi-

tions from the current state including; name of the
next state, output of the transducer while doing
this transition, if the transition changes the part of
the speech, pos of the produced surface form.
<with> tag has a text showing the suffix to ap-

pend to the current surface form in this current
state. null transitions are shown with ‘0’ suffix.
Similar to the <to> tag, <with> tag may have
output of the transducer while doing this tran-
sition; if the transition changes the part of the
speech, pos of the produced surface form.

In Table 12, first state is the ConjunctionRoot
state, which shows the initial state for conjunc-
tions. Since in Turkish conjunctions can not take
suffixes, it is also a final state with no additional
transitions. Second state is the VerbalRoot(F4PW)
state, which shows the initial state for a specific

<state name=”ConjunctionRoot” start=”yes”
final =”yes” pos=”CONJ”>
</ state>
<state name=”VerbalRoot(F4PW)” start=”yes”
final =”no” pos=”VERB”>

<to name=”Reciprocal” output=”RECIP”>
<with>Hs</with>

</to>
<to name=”PassiveHn”>

<with>0</with>
</to>

</ state>
<state name=”NominalRootPlural” start=”yes”
final =”no” pos=”NOUN”>

<to name=”Possessive”>
<with output=”A3PL+PNON”>0</with>
<with output=”A3PL+P1SG”>Hm</with>
<with output=”A3PL+P2SG”>Hn</with>
<with output=”A3PL+P1PL”>HmHz</with>
<with output=”A3PL+P2PL”>HnHz</with>

</to>
</ state>

Table 12: Example states from Turkish FST.

class of verbs. These verbs can take a reciprocal
suffix ‘Hs’, a causative suffix ‘t’, a passive suffix
‘n’, and null passive suffix. Third state is the Nom-
inalRootPlural state, which shows the initial state
for root nouns already in plural form. Since they
are already in plural form, the morphological out-
puts always start with ‘A3PL’ and depending on
the possesive suffix, the person of the possessive
is determined.

4.3 Morphotactic Rule Engine

Given the FST and a possible transition, the rule
engine’s job is to apply morphotactical rules to ap-
pend the suffix (in the transition) to the current sur-
face form to produce the suffixed surface form.

When the suffixes are appended to the bare-
form, for the categorical exceptional cases, rule
engine uses the attributes of the bare-forms given
in Section 4.1.2. So, for example, if the bare-form
is ‘saat’, and since it has an attribute IS UU, when
the accusative suffix is appended to that word, we
get the surface form ‘saati’ (Table 4c)).

The most important function of morphotactic
rule engine is to solve allomorphic cases, that is
phonetic realization of metamorphemes such as
‘Hs’. There are a total of four allomorphs defined
in our FST. The allomorphs, the metamorphemes
which use those allomorphs, and their possible
phonetic realizations are given in Table 13).

There are also well known exceptions in the
application of morphotactical rules, for example,
when the pronouns ‘bu’, ‘şu’, ‘o’ get the suf-

1370

A.morph M.morpheme Real.
D DA, DAn, DH, DHk d, t
A Ar, CA, cAsHnA, DA a, e
C CA, CH, CHk c, ç
H cAsHnA, CH, CHk, DH ı, i, u, ü

Table 13: Allomorphs defined in our FST and
some of the metamorphemes and their realiza-
tions.

fix ‘ylA’, the surface form is not ‘buyla’, ‘şuyla’,
‘oyla’; but ‘bununla’, ‘şununla’, ‘onunla’. An-
other example is, when the pronoun ‘ben’ gets
the suffix ‘ya’, the surface form is not ‘bene’ but
‘bana’. The engine must also handle these kind of
irregularities.

4.4 Trie Data Structure

One of the most important tasks of a morpho-
logical analyzer is to guess possible bare-forms
given a surface form. The speed of the analyzer
mainly depends on the number of initial bare-
forms it starts with. When extraneous bare-forms
are present, FST deals with unnecessary morpho-
tactics and / or phonetic realizations, which de-
creases the speed of the analyzer significantly.

The naive approach of taking the k (1 ≤ k ≤
length of the surface form) leftmost characters
as possible bare-forms does not work well, since
there are many irregularities. For instance, if the
word ‘ahenk’ takes an accusative suffix, ‘k’ is re-
placed with ‘g’, resulting in the word ‘ahengi’. In
this case, we can not get the bare-form ‘ahenk’
by taking any leftmost characters of the word
‘ahengi’.

To overcome these irregularities and also to ac-
celerate the search for the bare-forms, we use a trie
data structure in our morphological analyzer, and
store all words in our lexicon in that data structure.
For the regular words, we only store that word in
our trie, whereas for irregular words we store both
the original form and some prefix of that word. Let
sk represent the leftmost k characters of a string
s, s[m] represent the m’th character of a string s,
and l represent the length of string s. The irregu-
lar cases occur, when the bare-form has one of the
following attributes.

In these cases, we insert token t into the trie.
Figure 1 shows the above cases on a trie data struc-
ture. After inserting all of the lexicon into the
trie, we are ready for searching the candidate bare-
forms of a given surface form. We just traverse the
trie and select matched words in the trie as candi-
date bare-forms.

Attribute t Example
IS BILEŞ sl−1 ademot
IS B SI sl−2 acemlale
IS UD, IS UDD, F UD sl−2 + s[l] +

s[l − 1]
aklı

IS KG sl−1 + ‘g’ aheng
IS SD, IS SDD, F SD sl−1 + (‘b’ | ‘c’

| ‘d’ | ‘ğ’)
açlığ

F GUD, F GUDO sl−1 açıkl

Table 14: Tokens to be inserted for the selected
attributes.

Figure 1: An example trie in our analyzer.

4.5 LRU Cache

The speed of a morphological analyzer is usu-
ally calculated on large corpora. These corpora
contains millions (sometimes billions) of surface
forms and as expected include many surface forms
repeatedly. Since the morphological analyses of a
surface form does not depend on the neighboring
words, one can safely assume that, once we have
extracted the morphological analyses of a word,
we do not need to reextract those analyses. We
can just look up the analyses of that surface form
from a cache.

The idea of caching items for fast retrieval goes
back nearly to the beginning of the computer sci-
ence. We also use that idea and use a LRU
cache for storing morphological analyses of sur-
face forms. Before analyzing a surface form, we
first look up to the cache, and if there is an hit, we
just take the analyses from the cache. If there is
a miss, we analyze the surface form and put the
morphological analyses of that surface form in the
LRU cache. As can be expected, the speed of the
caching mechanism surely depends on the size of
the cache. In our experiments, our cache contains
up to 100K (sometimes 1M) surface forms.

1371

5 Evaluation

5.1 Functional Evaluation
The main motivation behind our functional ex-
periments is to test our morphological analyzer’s
parsing capability against known suffixation cases
based on our own lexicon entries and their at-
tributes described in the section 4.1.2. To achieve
this, first, we synthetically generated test cases for
14 attributes by applying suffixes to bare-forms us-
ing our FST as a word generator. Then reversely,
we tried to analyze the generated words using the
same engine. After fixing some incorrectly gen-
erated cases manually, we ended up with 28,900
generated test cases in total. Lastly, we ran gener-
ated test cases on all available morphological ana-
lyzers. Table 15 shows the passed case counts of
14 group of test cases for each morphological ana-
lyzer. Our analyzer successfully parsed generated
tests cases with 99.36% accuracy.

Test oracles for test cases slightly differ based
on their group of attributes. For instance, IS OA
group test cases check whether the parser success-
fully yields any analysis which contains the given
proper noun. This is the most simple group of test
cases where its success depends heavily on the ex-
istence of such proper nouns in lexicons. Another
example from group IS UU has the test oracle
”saat | saatler” meaning that at least one analy-
sis (e.g., ”saat+NOUN+A3PL+PNON+NOM”) of
the second string ‘saatler’ should contain the first
string ‘saat’ as a bare-form. All analyzers have
marked as ’passed’ in this specific test case. One
last special test oracle example is the IS BI SI at-
tribute. This time the test oracle marks the case
as passed even if the last two characters of the
parsed bare-form does not match the given bare-
form. This special oracle resolves the falsely
failed cases caused by the incompatible bare-form
structures of different analyzers as in the example
of ”geceyarısı | geceyarıları” where the parsed
bare-form of the second string can be accepted for
both ‘geceyarı’ or ‘geceyarısı’. In this study, our
test oracles do not check for any special tags (i.e.,
POS, MTAG) or suffixes while marking the test
case as passed or not. We leave the test cases with
more advanced oracles for future work.

5.2 Performance Evaluation

For the performance comparison, we used three
corpora in different sizes: Milliyet (Hakkani-Tür
et al., 2002), BounCorpus (Sak et al., 2008), and

Groups Cases Ours Zemb. TRMo. SakMP ITUWS
F GUD 1,367 1,366 1,324 337 1,261 1,333
IS BILES 1,186 1,084 547 109 260 1,186
IS UD 176 175 151 151 132 116
IS ST 38 37 32 25 24 14
IS UU 347 324 265 231 243 309
IS KG 26 26 24 24 22 25
IS CA 415 415 348 296 326 415
F SD 90 90 90 62 76 82
IS UUU 10 10 7 7 6 8
IS BI SI 201 199 77 3 38 200
F UD 12 12 10 6 2 2
F GUDO 2 2 2 2 2 2
Subtotal 3,870 3,740 2,877 1,253 2,392 3,692

100% 96.64% 74.34% 32.38% 61.81% 95.4%
IS SD 5,970 5,917 2,591 2,025 3,085 -
IS OA 19,060 19,054 14,649 15,005 12,646 -

100% 99.78% 68.88% 68.04% 62.85% -
Overall 28,900 28,716 20,117 18,283 18,123 -

100% 99.36% 69.61% 63.26% 62.71% -

Table 15: The number of passed test cases on func-
tional evaluations, grouped by attributes.

Ours TRMorph Zemberek
Corpus (words) Dur. Par. Dur. Par. Dur. Par.
Milliyet (810K) 22 sec 1.2M 39 sec - 17 sec 1.6M
Gazete (19M) 219 sec 37M 950 sec - 330 sec 47M
BounC. (433M) 24 min 839M 161 min - 72 min 1.1B

Table 16: Durations (Dur.) and parse counts (Par.)

our corpus Gazete. All datasets are constructed
from daily news websites. We excluded ITUWS
and SakMP from the experiments. Since their us-
age models and platform (web service-based and
Linux) is different, it would not yield comparable
results with others. Table 16 shows final durations
and number of analyses/parses of our performance
tests. Number of returning parses vary depending
on the authors’ design choices for morphological
analysis process. Parse counts are not related with
the execution performances.

Our performance experiments show that our an-
alyzer can analyze a big corpus with 37.2 mil-
lion sentences in 24 minutes. Compared to the
other analyzers, our tool’s built-in cache mecha-
nism leverages the memory efficiently which leads
to the reduction of the analysis times.

6 Conclusion

In this paper, we have presented common chal-
lenges of morphological analysis task for Turk-
ish caused by the rich morphology of the lan-
guage. Then we extensively explained the internal
structure of our open-source morphological ana-
lyzer toolkit which is designed to deal with such
challenges. Finally, we analyzed the currently
available morphological analyzer resources in the
Turkish literature and reported the functional and
performance-wise comparisons we have made.

1372

References
Ahmet Afsin Akın and Mehmet Dündar Akın. 2007.

Zemberek, an open source nlp framework for Turkic
languages. Structure 10:1–5.

Çagrı Çöltekin. 2010. A freely available morphologi-
cal analyzer for Turkish. In LREC. volume 2, pages
19–28.

Çagrı Çöltekin. 2015. Turkish nlp web services in
the weblicht environment. In Proceedings of the
CLARIN Annual Conference.

Muhammet Şahin, Umut Sulubacak, and Gülsen
Eryigit. 2013. Redefinition of Turkish morphol-
ogy using flag diacritics. In Proceedings of The
Tenth Symposium on Natural Language Processing
(SNLP-2013), Phuket, Thailand, October.

E.T. Erguvanlı. 2015. The Phonology and Morphol-
ogy of Turkish. Boğaziçi University Press, İstanbul,
Turkey.

Gülşen Eryiğit. 2014. ITU Turkish nlp web service. In
Proceedings of the Demonstrations at the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics. pages 1–4.

A. Göksel and C. Kerslake. 2005. Turkish: A Compre-
hensive Grammar. Routledge, New York, USA.

Dilek Z Hakkani-Tür, Kemal Oflazer, and Gökhan Tür.
2002. Statistical morphological disambiguation for
agglutinative languages. Computers and the Hu-
manities 36(4):381–410.

Marie Hinrichs, Thomas Zastrow, and Erhard W Hin-
richs. 2010. Weblicht: Web-based lrt services in a
distributed escience infrastructure. In LREC.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 29–32.

Lauri Karttunen et al. 1983. Kimmo: a general mor-
phological processor. In Texas Linguistic Forum.
volume 22, pages 163–186.

J. Kornfilt. 1997. Turkish. Routledge, London, UK.

G. Lewis. 1967. Turkish Grammar. Clarendon, Ox-
ford, UK.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. Hfst tools for morphology–an efficient
open-source package for construction of morpholog-
ical analyzers. In International Workshop on Sys-
tems and Frameworks for Computational Morphol-
ogy. Springer, pages 28–47.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational lin-
guistics 23(2):269–311.

Kemal Oflazer. 1994. Two-level description of Turk-
ish morphology. Literary and linguistic computing
9(2):137–148.

Muhammet Şahin. 2013. Itumorph: Türkçe İçin
Daha Geniş Kapsamlı Ve Başarılı Bir Biçimbilimsel
Çözümleyici. Master’s thesis, Fen Bilimleri En-
stitüsü.

Hasim Sak. 2011. Integrating morphology into auto-
matic speech recognition: morpholexical and dis-
criminative language models for Turkish. Ph.D. the-
sis, PhD thesis, Boğaziçi University, Istanbul.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish language resources: Morphological parser,
morphological disambiguator and web corpus. In
International Conference on Natural Language Pro-
cessing. Springer, pages 417–427.

R. Underhill. 1976. Turkish Grammar. Cambridge
University Press, Oxford, UK.

