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Abstract

Cross-lingual word embedding models learn
a shared vector space for two or more lan-
guages so that words with similar meaning
are represented by similar vectors regardless
of their language. Although the existing mod-
els achieve high performance on pairs of mor-
phologically simple languages, they perform
very poorly on morphologically rich languages
such as Turkish and Finnish. In this pa-
per, we propose a morpheme-based model in
order to increase the performance of cross-
lingual word embeddings on morphologically
rich languages. Our model includes a sim-
ple extension which enables us to exploit mor-
phemes for cross-lingual mapping. We ap-
plied our model for the Turkish-Finnish lan-
guage pair on the bilingual word translation
task. Results show that our model outper-
forms the baseline models by 2% in the nearest
neighbour ranking.

1 Introduction

Cross-lingual word embeddings (CLEs) have
drawn a lot of attention in recent times. CLE
models learn vectors of words in two or more
languages and represent them in a shared cross-
lingual word embedding space, where words with
similar meaning have similar vectors, independent
of their language. Most popular approaches for
CLEs are mapping-based approaches which are
also called offline approaches. These kinds of
approaches require only pre-trained monolingual
embeddings and a small seed dictionary so that the
CLE model learns a mapping that minimizes the
distance between word pairs in the seed dictionary
to align the pre-trained embedding spaces.

CLE models enable multi-lingual modeling
which has direct applications on cross-lingual
tasks such as unsupervised machine translation
(Lample et al., 2017), and cross-lingual trans-
fer for downstream NLP tasks and low-resource

languages. Document classification (Klementiev
et al.,, 2012), information retrieval (Vuli¢ and
Moens, 2015), dependency parsing (Guo et al.,
2015), and sequence labelling (Zhang et al., 2016)
are examples of downstream NLP tasks in which
CLEs serve as a source of cross-lingual knowl-
edge.

Although the existing models achieve high per-
formance, agglutinative languages, such as Turk-
ish, Finnish and Estonian, pose a challenge to
learn cross-lingual word embeddings due to three
main reasons. First, with respect to the mono-
lingual aspects, morphological complexity causes
high sparsity which decreases the quality of mono-
lingual embedding spaces (Cao and Rei, 2016;
Ustiin et al., 2018). Second, in the context
of CLEs, the rich morphology causes inaccu-
rate mappings especially for complex words be-
cause the existing CLE models cannot access
the sub-word level information to align complex
words with the correct morphological counter-
parts. Sggaard et al. (2018) shows that the ex-
isting CLE models underperform on rich mor-
phological complexity. On the bilingual dictio-
nary induction task, while the baseline method
achieves 82.62% score on English-Spanish, it per-
forms very poorly on English-Finnish (28.01%),
English-Estonian (31.45%) and English-Turkish
(39.22%). In the Estonian-Finnish dictionary in-
duction experiment in which both languages are
morphologically complex, the baseline model per-
forms even worse (24.35%). Last, in addition to
this limitation, word-based CLE models are also
unable to map an inflected word in the morpho-
logically complex language to a counterpart which
corresponds to a phrase in a language with simple
morphology.

In this study, we propose a morphologically-
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sensitive cross-lingual word embedding model' in
order to overcome the second limitation. We build
a cross-lingual model to learn the morpheme rep-
resentations in the source languages so that a word
can be represented through its morphemes in the
target space. We design a supervised learning
setting as in the baseline model that contains a
small bilingual dictionary consisting of morpho-
logically complex word pairs. We perform exper-
iments on Turkish and Finnish as a pair of mor-
phologically complex languages and compare our
approach with the baseline models.

2 The Morpheme-Based Alignment
Model

e

Target Word Vector (y)

Source Word Encoder

Figure 1: Morpheme-based cross-lingual alignment
model that contains a source side word encoder for
morphemes. The encoder is trained to learn morpheme
representations in the target space

Baselines In this paper, we consider two base-
line models. As the first baseline, we employ a
simple projection-based CLE method which learns
a mapping between embedding spaces by solv-
ing the Procrustes problem (Smith et al., 2017;
Artetxe et al., 2016). This method first learns a
linear transformation matrix to minimize the dis-
tance between vectors of word pairs in a seed dic-
tionary by imposing the orthogonality constraint
(Gower et al., 2004) and then it uses this matrix to
transform the source language embedding space to
represent both languages in a shared embedding
space. The baseline method is denoted by Pro-
crustes in this paper.

As the second baseline, we use relaxed cross-
domain similarity local scaling (RCSLS) (Joulin
etal., 2018). RCSLS optimizes the transformation
matrix by maximizing the cross-domain similarity

'Code available at: https://bitbucket.org/
ahmetustunn/morphology—-sensitive-cle

local scaling (CSLS) score, instead of minimizing
the distance between word pairs in the training dic-
tionary. CSLS is a modification of cosine similar-
ity commonly used in information retrieval. In this
way, RCSLS relaxes the orthogonality constraint
used in Procrustes according to a retrieval crite-
rion.

Note that for the both baseline models and our
model, we use fastText (Bojanowski et al., 2017)
to generate monolingual word embeddings. Fast-
text represents words as sequence of character n-
grams but in many cases this is suboptimal since
not all character n-grams are morphemes (Ustiin
etal., 2018). Besides that the aim of this study is to
incorporate morphology into cross-lingual train-
ing, whereas fastText is designed for monolingual
training.

Morpheme-based Model In the morpheme-
based model, we extend the projection-based
baseline (Procrustes) in order to exploit sub-
word (morpheme) level information for the cross-
lingual mapping. Our model starts by splitting all
words in the source language into morphemes by
using a morphological analyzer. A vector is then
computed for each generated morpheme, by using
fastText (Bojanowski et al., 2017), as fastText is
able to generate a vector for any sub-word since it
is based on character n-gram representations.

After the resulting morpheme vectors are in-
serted into the source vector space, we apply a
linear transformation based on the seed dictio-
nary by using the Procrustes method to initialize
source and target side vectors in a shared embed-
ding space. Then, our model learns an encoder
that encodes each word as a morpheme sequence
and transforms them by aligning to their counter-
parts in the target language. In this way, the result-
ing encoder learns to represent source side mor-
phemes in the target embedding space.

The model architecture is given in Figure 1. In
the figure, = denotes the fixed length word repre-
sentation generated by the word encoder through
morphemes and y represents the target side word
embedding. The source encoder is trained to
mimic target word embeddings in the bilingual
dictionary by minimizing the loss function:

Lalign = diSt(:Ua y) - )‘(diSt(l‘m y) + diSt(xv yc))

where (x,y) corresponds to the source and tar-
get word embeddings, (z.,y.) is a contrastive
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term. A> controls the effect of the negative sam-
ples in the alignment loss. We use the cosine sim-
ilarity for the distance measure.

For the encoder model, following (Conneau
et al., 2017a), we use bidirectional LSTMs with
max pooling. It encodes the words in both the for-
ward and the backward direction to capture uni-
directional information, then it combines the re-
sulting numbers to form a fixed-size vector by se-
lecting the maximum value over each dimension
of the hidden units. Figure 2 shows the encoder
model. In the figure, each word vector u is com-
puted from morphemes m,, through the bidirec-
tional LSTM encoder.

._ max-pooling

Figure 2: An overview of the word encoder which is
used for the source language. It consists of bidirec-
tional LSTMs and a max pooling layer. The inputs of
the encoder are the morpheme sequences for each word

3 Morphologically Sensitive Bilingual
Lexicon

In order to build a bilingual dictionary for the
Turkish and Finnish word pairs, we use the MUSE
dataset (Conneau et al., 2017b). Since the MUSE
bilingual lexicon consists of translations to or from
English for these two languages, we use the inter-
section of their translation to English. These bilin-
gual lexicons are built with an automatic transla-
tion system and the dictionaries handle well the
polysemy of words. However, the dictionaries
mostly consist of morphologically simple word
pairs since English is used as a pivot language.
Considering the morphological variations in
these languages, we enriched the dictionary with
morphologically complex word pairs. To this end,
we first create a lookup table for the lemmas, their
inflections and the corresponding morphological

2Following Conneau et al. (2018), we set A to 0.25

features for both languages by using the Univer-
sal Dependency Treebanks (Nivre et al., 2016)
and the Universal Morphology (Sylak-Glassman,
2016) project.> Each word pair in the dictionary
is then searched in these lookup tables to list their
inflections. The inflected word forms which have
the same morphological features for a pair are then
added to the bilingual dictionary. Table 1 shows
the inflected wordforms found in lookup table for
the seed pair golge-varjo.* The morphological
features that occur in both languages are given in
Table 2.

Turkish Finnish

golgem varjoni N; SG;PSS1S
golgenin varjojen | N; SG; GEN
golgelerin | varjoja N;PL;PSS2S
golgelerde | varjoissa | N; ESS; PLS

Table 1: The inflected wordforms with the same mor-
phological features for the word pair golge-varjo which
mean shadow

Attribute Morphological Classes
Number Sing, Plu
Polarity Neg, Pos
Person {Pss1,Pss2,Pss3}+{Sg,Pl}
Case {in,on,at}+{Ess,Abl}, Gen, Prt
Tense Pst, Prs, Imp
Agreement P1,P2,P3
Voice Pass
Mood Ind, Imp, Cond

Table 2: Morphological features which are common in
both Turkish and Finnish

The training dictionary comprises the first 5000
Turkish words and their Finnish counterparts
while the test set is composed of the following
1500 word pairs in the lexicon.

4 Experiments

We compare our morpheme-based model with
Procrustes (Smith et al., 2017; Artetxe et al., 2016)
and relaxed cross-domain similarity local scaling
(RCSLS) (Joulin et al., 2018), as explained in Sec-
tion 2.

*During the preprocessing step, the default morphological
features which are language specific are removed from the
datasets.

“Both words mean shadow in English
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Model NN CSLS
Turkish-Finnish (TR-FI)

Procrustes 16.54 17.89
RCSLS 18.26 21.06
Our model 20.35 20.40
TR-FI on English

Procrustes 12.72  14.89
RCSLS 15.10 17.05

Table 3: Bilingual word translation performance of the
models at P@1 (%). First three rows show the re-
sults after training with Turkish-Finnish morpholog-
ically sensitive seed dictionary. The last two rows
present the results when English is used as a pivot lan-

guage.

Evaluation Task In order to evaluate the mod-
els, we used the bilingual word translation task.
Bilingual word translation has become the stan-
dard evaluation task for mapping-based CLE mod-
els. Given a shared embedding space which is
learned by a CLE model, the task is to translate
source language words to the target language by
retrieving a word in the target language. As the
retrieval criterion, either nearest neighbor search
(NN) or cross-domain local scaling (CSLS) can be
used.

Implementation Details Our evaluation com-
prises Turkish and Finnish which are both mor-
phologically complex languages. We use the [>-
normalized fastText word and morpheme vectors
(Bojanowski et al., 2017) trained on Wikipedia for
these languages. We initialize source side embed-
dings with a linear transformation defined by a
Procrustes operation based on the seed dictionary.
In order to split words into morphemes, we use
the Zemberek toolkit (Akin and Akin, 2007)° for
Turkish and the Omorfi project (Pirinen, 2015)°
for Finnish. Both morphological analyzers are
rule-based and run with high accuracy. All models
are trained with the same seed dictionary and eval-
uated on the same test set. We evaluated the model
by the scores of precision at rank 1 (P@1) so that
the results can be morphologically sensitive.

5 Results

Table 3 shows the results on the bilingual word
translation performance of the models for the
Turkish-Finnish language pair. According to the

5https ://github.com/ahmetaa/zemberek-nlp
6https ://github.com/flammie/omorfi

Model ‘ Spearman
Morph2Vec (Ustiin et al., 2018) 52.90
Our model 42.05
Fasttext (Bojanowski et al., 2017) 20.80

Table 4: The comparison of the Spearman correlation
between human judgments and the word similarities
obtained by computing the cosine similarity between
the learned word embeddings for Turkish.

CSLS scores, RCSLS (Joulin et al., 2018) out-
performs our models by a slight margin (0.66%).
This is expected because the RCSLS model is ex-
plicitly designed to maximize the CSLS objec-
tive which causes better performance on the bilin-
gual word translation task according to the CSLS
score. However, according to nearest neighbor
ranking, our model displays the strongest perfor-
mance compared to Procrustes and RCSLS with a
2.09% score difference. Table 5 show examples
of the nearest neighbour predictions of different
models including our model.

We also run Procrustes and RCSLS on the
Turkish-English and Finnish-English language
pairs so that all three languages share the mono-
lingual English embedding space. We use the
MUSE (Conneau et al., 2017b) training dictionar-
ies for both language pairs. In this setting, both
Procrustes and RCSLS perform worse on Turkish-
Finnish bilingual word translation suggesting that
a third language (as a pivot language) does not pro-
vide benefit for word translation across morpho-
logically rich language pairs even if it has high-
quality word vectors. As our model requires the
translations of inflected (morphologically com-
plex) words in the target language, we can not run
our model on Turkish-English or Finnish-English
pairs because the translations mostly correspond
to phrases instead of words.

Monolingual Impact Similar to the RCSLS,
our model changes the cosine distance between
word vectors in the same language, that is, it
also has an impact on the monolingual embedding
space. We evaluate this impact on the Turkish
morphologically complex wordlist (Ustiin et al.,
2018). Results are given in the Table 4.

The Morph2Vec model (Ustiin et al., 2018)
learns a morpheme-based encoder which is mono-
lingually trained on the large Turkish wordlist
which consists of 100K unique words. Although
our model is trained on 5K Turkish-Finnish word
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No | Source Word (Turkish) |

Target Translations (Finnish)

Procrestus RCSLS Our Model
1 sptitm suutelit suutelen suitelin
(you kissed) (I kiss) (I kissed)
. erhe erheet erheet
2 aileler (o amily) (gzmilies) (zzmilies)
3 B— aikani aikani aikamme
(my time) (my time) (our time)
4 acemilerden aloitteljjoilla aloittelijasta aloittelijoilta
(in the beginners)  (from the beginner)  (from the beginners)
5 makineler koneet koneet koneissa
(machines) (machines) (in machines)

Table 5: Examples comparing the translations of different models which also includes the glosses in English.
Bolding indicates the correct translation. In Examples 1-4, our model predicts correct word considering the mor-
phological structure but in the Example 5, our model gives wrong translation.

pairs, it improves the monolingual quality of
Turkish word vectors for morphologically com-
plex words. The reason behind this impact is
that our model also changes the cosine similar-
ity among Turkish word vectors according to mor-
phologically sensitive cross-lingual signals, dur-
ing the cross-lingual transformation. However,
the Morph2Vec model still outperforms our model
by a high margin. The results demonstrate that
even if training a morpheme-based encoder on
cross-lingual word pairs improves the monolin-
gual embedding quality, the same training strat-
egy still performs substantially better on a mono-
lingual wordlist.

Error Analysis Here we study the errors pro-
duced by our model on Turkish-Finnish word
pairs. Although our model is motivated by mor-
phology, a small portion of the wrong transla-
tions is caused by the prediction of wrong inflec-
tions of a correct root word. The model trans-
lates the Turkish word santralin (of the power
plant) as voimalaa (in the power plant) instead of
voimalan. However, the majority of errors have in-
correctly translated root words with correct inflec-
tions. These observations can suggest two short-
comings. Firstly, our model over-focuses on mor-
phemes so that in some cases it lost the meaning of
the content word. Secondly, especially for the dis-
tant language pair, some morphological features
have different meanings which depend on the sen-
tence syntax and contextual meaning, even if they
have the same label. This issue could be alleviated
by modeling and processing sentence-level con-
text.

Limitations Similar to the baseline models, the
main limitation of our model is that it can not

generate multi-word expressions such as phrases
on the target side, although our model is able to
represent a sequence of strings in the source en-
coder. However, a morphologically complex word
in the source language such as Turkish or Finnish,
in most cases corresponds to a phrase, containing
more than one word, in morphologically simple
target languages such as English. For this reason,
our model does not have any direct benefit for the
morphologically simple languages and this issue
will be the focus of follow-up studies.

Another limitation is that, our model requires a
morphological segmenter to split words into mor-
phemes. A simple solution for this could be to
employ an unsupervised morphological segmenter
which is commonly used in the literature such as
Morfessor (Creutz and Lagus, 2005).

6 Conclusion

In this work, we extend the simple mapping-
based cross-lingual embedding (CLE) model to
learn a morphology-sensitive transformation be-
tween embedding spaces for morphologically rich
language pairs. We start with the baseline transfor-
mation to initialize the source and target embed-
ding spaces and then our model learns an encoder
based on morphological segments in the source
side and their counterparts in the target space.
Thus, the transition matrix which is computed to
produce a shared cross-lingual embedding space,
is learned through morpheme representations and
their composition in the source language.

We evaluated our model on the bilingual word
translation task and compare our results with Pro-
crustes and RCSLS (Joulin et al., 2018) scores.
Results show that our morpheme-based cross-
lingual embeddings model learns slightly better
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alignments for complex word pairs for languages
having rich morphology compared to the base-
line models. In this work, we have made the first
step towards the comprehensive evaluation of CLE
models according to the morphology of languages,
however, our evaluation is limited to the bilingual
word translation task. For further analysis, we
are planning to evaluate our model on other lan-
guage pairs which consists of both morphologi-
cally complex and simple languages and on down-
stream NLP tasks such as POS tagging and depen-
dency parsing.
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