Cross-Family Similarity Learning for Cognate Identification
in Low-Resource Languages

Eliel Soisalon-Soininen
Department of Computer Science
University of Helsinki

eliel.soisalon-soininen@helsinki.fi

Abstract

We address the problem of cognate iden-
tification across vocabularies of any pair
of languages. In particular, we focus on
the case where the examined languages are
low-resource, to the extent that no train-
ing data whatsoever in these languages,
or even closely related ones, is available
for the task. We investigate the extent
to which training data from another, un-
related language family can be used in-
stead. Our approach consists of learning
a similarity metric from example cognates
in Indo-European languages and applying
it to low-resource Sami languages of the
Uralic family. We apply two models, fol-
lowing previous work: a Siamese convolu-
tional neural network (S-CNN) and a sup-
port vector machine (SVM), and compare
them with a Levenshtein distance base-
line. We test performance on three Sami
languages and find that the S-CNN out-
performs the other approaches, suggesting
that it is better able to learn such general
characteristics of cognateness that carry
over across language families. We also
experiment with fine-tuning the S-CNN
model with data from within the language
family in order to quantify how well this
model can make use of a small amount of
target-domain data to adapt.

1 Introduction

Cognate identification is a core task in the com-
parative method, a collection of techniques used
in historical linguistics for the inference of lan-
guage family trees, reconstruction of protolan-
guages, and other areas of study related to lan-
guage history (List, 2013). Cognate informa-

Mark Granroth-Wilding
Department of Computer Science
University of Helsinki

mark.granroth-wilding@helsinki.fi

tion can also be used to improve natural language
processing (NLP) applications, such as machine
translation (Gronroos et al., 2018). In addition,
knowledge of cognates can be useful for second-
language learning (Beinborn et al., 2014).

For a subset of the world’s languages, such
as Indo-European, language-family trees, pro-
tolanguages, and etymological databases are well-
established. However, the majority of languages
have only few speakers, and such resources are
scarce. Since the tasks of the comparative method
are laborious to do manually, computational ap-
proaches have been taken to automatize these
tasks. In addition to cognate identification, pre-
vious work addresses phonetic alignment (Kon-
drak, 2000; Prokié¢ et al., 2009; List, 2013), in-
ference of family trees (Chang et al., 2015; Jager,
2014; Bouckaert et al., 2012), and reconstruction
of proto-words (Bouchard-Coté et al., 2013).

Ideally, computational approaches to historical
linguistics should be applicable to any language,
even in the absence of hand-crafted resources and
analyses. Recent work addressing cognate iden-
tification for low-resource languages assumes ei-
ther the existence of high-resource relatives, to be
used as training data (McCoy and Frank, 2018),
or the availability of detailed dictionary definitions
(St Arnaud et al., 2017).

In this paper, we address cognate identifica-
tion in a scenario where we are only given a
set of unannotated vocabularies from truly low-
resource languages, namely South, North, and
Skolt Sami of the Uralic family, without the afore-
mentioned resources. We only assume a train-
ing dataset of example cognates in Indo-European
languages, highly unrelated to our languages of
interest. It might be expected that knowledge
of general tendencies in patterns of correspon-
dence between related languages, such as common
phoneme substitutions, might be of some use, even

1121

Proceedings of Recent Advances in Natural Language Processing, pages 1121-1130,
Varna, Bulgaria, Sep 24, 2019.

https://doi.org/10.26615/978-954-452-056-4_129



Word x Word y Meaning of x | Meaning of y
it: notte es: noche ‘night’ ‘night’

en: attend fr: attendre | ‘attend’ ‘wait’

fi: huvittava | et: huvitav | ‘amusing’ ‘interesting’
en: oath sv: ed ‘oath’ ‘oath’

fi: poytd sv: bord ‘table’ ‘table’

en: bite fr: fendre ‘bite’ ‘split’

Table 1: Examples of cognates, i.e. etymologi-
cally related words. The degree of similarity in
form and meaning may vary quite substantially.

when searching for potential cognates in a differ-
ent language family. Naturally, some knowledge
of more closely related languages, or of the lan-
guage pair in question, is more informative, and
we attempt to quantify how well one of these mod-
els is able to make use of that.

Our aim is to investigate the extent to which
a similarity learning approach, that is learning a
similarity metric in a data-driven manner, is able
to generalize across language families. We ex-
periment with two similarity learning approaches
from previous work, namely a support vector ma-
chine (SVM, Hauer and Kondrak, 2011) and a
Siamese convolutional neural network (S-CNN,
Rama, 2016), compared with a Levenshtein dis-
tance baseline (LD, Levenshtein, 1966). We train
the models on examples of cognates in Indo-
European language pairs, then test how well they
are able to identify cognates in the Sami language
pairs, not seen at training time. In addition, we
fine-tune the S-CNN model on labelled target-
language pairs, in order to quantify how much the
lack of target-family training data affects perfor-
mance.

Next, we explain the cognate identification
problem and its difficulties, and review previous
approaches to the problem. Then we present the
approaches we use in our experiments, as well as
the experimental setup in more detail. Finally, we
analyse the results of the experiments.

2 The Cognate Identification Problem

The term cognate has several distinct uses in the
literature. In historical linguistics, two words are
considered cognates only if they have descended
from the same ancestor word in a common proto-
language, implying that they also belong to two
related languages (e.g. Jiger et al., 2017; List,
2013; Kondrak, 2009). Meanwhile, a number
of broader definitions have been used in NLP,
motivated by practical concerns. For example,

some authors refer to any etymologically related
pair of words (i.e. sharing a common origin) as
cognates, including, for example, loanwords (e.g.
Kondrak, 2001; Beinborn et al., 2013; Bloodgood
and Strauss, 2017). Others assume that cognates
share both a similar form and common meaning
(e.g. Nakov and Tiedemann, 2012; Bergsma and
Kondrak, 2007). This assumption is problematic
for historical linguistics, since it excludes cognate
words that have come to have different meanings
since the languages diverged, but it may be more
useful for some language learning applications. In
this paper, we regard any pair of etymologically
related words as cognates, including genetically
related true cognates as well as direct loanwords
or loans from a common origin.

We formulate the cognate identification prob-
lem as follows. We are given two string sets
X ={x1,...,xzp}and Y = {y1,...,yn}. The
task is to extract those pairs (z, y) in relation R:

R ={(x,y) € X x Y| xis cognate with y }.

Each element x € X and y € Y is a string over
alphabets >, and X, respectively. The alphabets
do not necessarily overlap, since the orthographies
of different languages may vary. This issue is
often circumvented by using phonetic transcrip-
tions of words. Lacking phonetic transcriptions
for our test data, we deal with orthographic forms.
Nonetheless, orthographic similarity often reflects
phonetic similarity, in particular in the Sami lan-
guages we take as examples here, where the or-
thography is largely phonemic.

Several factors have been found to predict cog-
nateness: phonetic similarity (reflected by ortho-
graphic similarity), semantic similarity, and the
presence of regular sound correspondences, word
segments regularly occurring in similar phonetic
positions and contexts (Kondrak, 2009).

The example cognates in Table 1 illustrate the
difficulty of cognate identification. A straightfor-
ward example is the Italian—-Spanish pair (notte,
noche), with a similar form and common mean-
ing. However, many cognates have similar surface
forms, but differ in meaning, such as the English—
French (actual, actuel) and Finnish—Estonian (hu-
vittava, huvitav). Such words are referred to as
false friends in the context of language learning.

Furthermore, cognates might look very different
on the surface. English—Swedish cognates (oath,
ed) and Finnish—-Swedish (poytd, bord) look quite
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different, but share a meaning (and common ori-
gin). On the other hand, English-French (bite,
fendre) are similar neither in form nor meaning.
The only way to recognise such cognates from
their surface forms alone is to identify regular cor-
respondences, such as th — d for English-Swedish.

Consequently, and in contrast to much previous
work, we make no strict assumptions about the de-
gree of similarity in form or meaning that any two
cognates should exhibit. Instead, following Jiger
(2014), we treat regular correspondences as the
main driving factor in the cognate relation and at-
tempt to capture these in a completely data-driven
manner.

3 Related Work

Earlier computational approaches to cognate iden-
tification attempt to design a string similarity (or
distance) metric that assigns a higher score to cog-
nate words and a lower score to unrelated ones. A
common approach is to extend the traditional Lev-
enshtein distance (Levenshtein, 1966) by associ-
ating specific weights to pairs of symbols using
linguistic knowledge (e.g. Kondrak, 2000; List,
2013), or sets of example cognates (e.g. Bergsma
and Kondrak, 2007; Rama, 2015).

Kondrak (2000) proposes the ALINE algo-
rithm using specific weights based on several pre-
determined phonetic features. In addition, Kon-
drak (2005) generalizes the Levenshtein distance
with the n-gram similarity measure. Turchin et al.
(2010) use a heuristic based on mapping conso-
nants to ten classes, and consider words matching
in their first two consonant classes to be cognates.
The SCA algorithm of List (2013) uses a larger
set of sound classes and also considers prosodic
aspects of words.

Other authors rely on learning regular corre-
spondences (sometimes called mismatches or sub-
stitution patterns) from example cognates using
an alignment algorithm. For example, Ciobanu
and Dinu (2014) and Bergsma and Kondrak (2007)
use a global alignment algorithm to align ortho-
graphic word pairs and extract substring pairs,
which they use as features for an SVM. Gomes
and Pereira Lopes (2011) use the same approach
to develop a weighted string similarity metric for
words in orthographic form. Rama (2015) use
gap-weighted subsequences as features. McCoy
and Frank (2018) use character embeddings and
cosine similarity to extend Levenshtein distance.

Hauer and Kondrak (2011) convert word pairs
into features for an SVM using a set of string sim-
ilarity metrics. This approach has been extended
with features for semantic similarity, for example
using the lexical database WordNet (Jdger et al.,
2017; St Arnaud et al., 2017; Kondrak, 2009).
Bloodgood and Strauss (2017) improve further
such an SVM model using global constraints and
reranking. In addition, St Arnaud et al. (2017)
utilise English and Spanish word embeddings of
dictionary definitions. This SVM classification
approach is one of the methods that we apply to
cross-language family learning.

Jager (2014) and Rama (2016) take data-driven
approaches not relying on hand-designed fea-
tures. Jdger proposes a similarity metric based
on weights for symbol pairs given by pointwise
mutual information, the values for which were
learned from a training set of cognate pairs. Rama
applies deep learning, encoding words into a grid-
like representation and applying a Siamese convo-
Iutional neural network to cognate identification
for multilingual wordlists. He uses two methods
to encode a phonetic symbol into vector, a one-
hot encoding and one based on phonetic features,
achieving better performance with one-hot encod-
ings for two out of three language families. This
approach is another method in our comparison of
models for cross-language family learning.

In recent work, Hamélédinen and Rueter (2019)
take an alternative approach of applying neural
machine translation methods to the problem of
predicting a cognate given a word in a related lan-
guage. The same model could in principle be ap-
plied to the task we present here and we intend to
make a direct comparison in future work.

4 Methods

In this section, we present the three approaches
to solving the cognate identification problem that
we have used in our experiments: a string similar-
ity metric based on the Levenshtein distance (Lev-
enshtein, 1966) used as a baseline, an SVM with
several string similarity metrics as features (Hauer
and Kondrak, 2011), and a Siamese convolutional
neural network (Rama, 2016).

4.1 Levenshtein Distance-Based Similarity

The Levenshtein distance d (s1, $2), or string edit
distance, between strings s; and so over an alpha-
bet X is the minimum number of insertion, dele-
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Figure 1: Architecture of the S-CNN. Col-
umn vectors in input matrices represent one-hot-
encoded characters. The same filter W is con-
volved with both inputs.

tion, or substitution operations needed to trans-
form one string to the other. To obtain the nor-
malised Levenshtein distance, this number is di-
vided by the length of the longer word, equal to
the maximum possible distance between s; and ss.
The similarity metric is then:

dr(s1,s2)

simp =1— ————— 22 |
max(|s1],|sz2|)

For example, for the cognate pairs (coupe, Kopf)
and (poytd, bord), the respective similarities are
1-— % =04and 1 — g = 0. It is assumed that
both strings are drawn from overlapping alphabets,
since the similarity is always zero for disjoint al-
phabet sets.

Previous work has introduced a variety of
Levenshtein-based measures by defining different
ways of learning or computing the cost associated
with a character substitution. Here we apply the
basic version, in which a matching pair of charac-
ters have a zero cost and any other a unit cost.

4.2 Support Vector Machine

The support vector machine (SVM) is a supervised
learning model trained by finding the optimal
separating hyperplane between multi-dimensional
data points of different classes. The basic SVM
is a non-probabilistic, linear binary classifier. For
data that is linearly separable, the optimal hy-
perplane creates the maximum margin between

training points in the two classes. When the
data classes are not linearly separable, the margin
can still be maximised while allowing some data
points to be on the wrong side of the optimal hy-
perplane. Another approach is to use a non-linear
kernel function, which enlarges the feature space
using basis expansions, such as a polynomial or a
radial-basis function.

For the model comparison in our experiments,
we have implemented the SVM model used by
Hauer and Kondrak (2011). In this model, a pair
of strings (s1, s2) is represented by a feature vec-
tor x € R such that

x1 is the Levenshtein distance dr,(s1, $2),
® 15 is the number of common bigrams,

e 13 is the prefix length,

e 1,4 is the length of s,

e 15 is the length of so, and

e ¢ is the absolute difference between the
lengths, i.e. x5 = |4 — 5.

We have chosen this SVM model as it is based
on string similarity measures that are applicable
to the low-resource language setting. More recent
SVM-based approaches to cognate identification
exist, but they either require detailed dictionary
definitions in a high-resource language with high-
quality pre-trained word embeddings (St Arnaud
et al., 2017), or multilingual word lists aligned by
concepts (Jager et al., 2017).

4.3 Siamese Convolutional Neural Network

The Siamese convolutional neural network
(S-CNN) is a supervised learning model origi-
nally proposed by Chopra et al. (2005) for the
task of face verification, and applied with some
modification to cognate identification by Rama
(2016). Our implementation is based on the latter
model. The architecture is presented in Figure 1.
The S-CNN is a two-input version of the convo-
lutional neural network (CNN) specialized in pro-
cessing data with a grid-like topology. CNNs have
been very successful in computer vision, and they
have also been applied to several NLP tasks, such
as text classification (e.g. Zhang et al., 2015).
When applied to NLP tasks, the CNN requires
a grid-like representation of the input. In the case
of cognate identification, it is convenient to rep-
resent a word as a matrix X € {0, 1}/**" such
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Dataset # cognate # all pairs |2
IE-TRAIN | 73,238 732,380 329
sma—sme 1,460 11,234 x 47,312 | 42 (27)
sma-sms 838 11,234 x 29,401 | 75 (27)
sme—sms 2,188 47,312 x 29,401 | 77 (38)

Table 2: The datasets used in the experiments. Etymological WordNet is used for training, and other
datasets are used for testing (see Table 3 for smaller fine-tuning sets). |X| is the number of all characters
observed in a dataset. The number of overlapping characters is given in parentheses (for language pairs).
Languages: South Sami (sma), North Sami (sme), Skolt Sami (sms).

Dataset # cognate | # all pairs
SAMI-FT 986 100,000
SAMI-FT-TEST 3,500 350,000

Table 3: The small-scale datasets sampled from
the Sami vocabularies in Table 2. We use these in
experiment 2 to fine-tune the S-CNN and analyse
how the number of in-family training pairs affects
the performance.

that X = [x1X2...X,], where each column vec-
tor x; € {0,1}*l is a one-hot vector representing
a character in the alphabet .. The training data
D = {(Xai, Xp;), yi 1Y, then consists of pairs of
words such that y; = 1 if X,; and Xy, are cog-
nates, and y; = 0 otherwise.

As shown in Figure 1, the S-CNN model is an
extension of the CNN: first, one filter W ¢ RP*¢
is convolved (cross-correlated) over character se-
quences of length ¢ from both input matrices X,
and X, producing a feature map for each input
matrix. These are run through a rectified linear
function, whereafter max-pooling is applied to the
results. The number of rectified and max-pooled
feature maps produced from each input matrix is
equal to the number of filters. We fix the filter
height at p = |X|, equal to the size of the alphabet
and the height of the input matrix.

The representation vectors r, and r; are ob-
tained by concatenating all the feature maps into
single vectors. These vectors are then merged into
one vector m using some distance metric. We
use the absolute vector difference such that m =
ta—ro| = [[rar—7p1l, [raa—7v2l, - - s [rar—ruil]”
where [ = |r,| = |rp|. Finally, the merged vector
m is fed as input to a fully-connected layer, itself
connected to the output neuron. The dropout tech-
nique of Srivastava et al. (2014) is applied to the
fully-connected layer, and the output neuron is ac-
tivated with the sigmoid function. The output of a

trained model can be regarded as a learned simi-
larity metric between pairs of inputs.

5 Experiments

In this section, we present our datasets, experi-
mental setup, training and fine-tuning procedures,
and our evaluation scheme.

5.1 Datasets

A summary of the datasets is shown in Table 2.
All source data for training and testing is publicly
available and we release the exact processed train-
ing and test sets for reproducibility’.

We use the Etymological WordNet (Gerard de
Melo, 2014) as our training data for the SVM and
S-CNN models. This is a database containing in-
formation of etymological origin, cognateness, as
well as derivational and compositional links be-
tween words. The database consists of word pairs
that each belong to one of the aforementioned re-
lations. The database has been mined from Wik-
tionary, and its entries are mostly from widely spo-
ken Indo-European languages.

Since we are concerned with the identification
of cognates across languages, we only use as our
training data those word pairs that are either cog-
nates, or where one word is the root of the other.
Thus, we exclude derivationally and composition-
ally linked word pairs from our training set. Fur-
thermore, we filtered out those pairs where both
words belong to the same language. In total, there
were 73,238 cognate pairs in the filtered training
set. In order to train a discriminative classifier, we
generated negative examples by randomly pairing
unrelated words, so that the ratio of cognate to un-
related word pairs was 10%. We refer to the re-
sulting training set as IE-TRAIN.

'All datasets released at https://github.com/
soisalon/LRCognates.
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As a source of unannotated word lists from low-
resource languages, we use a set of three vocabu-
laries from North, South, and Skolt Sami of the
Uralic family. We have retrieved these vocabu-
laries from dictionaries compiled by Giellatekno?.
We filtered out all words with upper-case (proper
nouns) or non-alphabetic characters. We retrieved
gold-standard cognate sets for evaluation and fine-
tuning from Algu?, the etymological database for
Sami languages. This database contains (positive-
only) cognate information for only a subset of
all the words in the vocabularies. We refer to
this dataset as SAMI-FULL and average results
over the three pairs of languages. The evaluation
scheme is explained in detail in section 5.3.

In addition, to fine-tune and evaluate models in
experiment 2 (see section 5.4), we sample small-
scale sets with a higher proportion (1%) of cog-
nates, presented in Table 3, SAMI-FT and SAMI-
FT-TEST.

5.2 Training and Fine-Tuning

In our implementation of the S-CNN model, we
used ten filters with width ¢ = 2 and height
p = |X| (alphabet size). The alphabet was the
set of all characters observed in both the train-
ing and test datasets, and its size was |X| = 336.
We fixed the input matrix width to n = 20. For
words shorter than this, the input matrices were
zero-padded, and longer words were truncated at
this length. In the fully-connected layer, we used
a dropout rate of 0.5.

We trained the S-CNN model using binary
cross-entropy as the loss function, and the
Adadelta optimizer (Zeiler, 2012) with initial
learning rate o = 1.0, decay rate p = 0.95, and
the constant ¢ = 1-1075. The batch size was set at
128, and number of epochs was 50. In fine-tuning
(experiment 2), the respective values were 32 and
20. Otherwise, we used the same hyperparame-
ters when fine-tuning the model. We implemented
the model using the Keras library with Tensorflow
backend *.

For the SVM implementation, we used the
SVM module of the Scikit-learn library for Python
(Pedregosa et al., 2011), based on the C'-support

2The research group of Sami language technology at the
University of Tromssa. http://giellatekno.uit.
no/index.eng.html.

3 Available at: http://kaino.kotus.fi/algu/

4Github repository available at: https://github.
com/fchollet/keras.

vector classification implementation of Chang and
Lin (2011). We trained the model using a lin-
ear kernel and regularization parameter C' = 1.
For probabilistic prediction, the module uses Platt
scaling (Platt et al., 1999), which is based on
fitting a logistic regression on the initial binary
scores using cross-validation.

5.3 Evaluation

A difficulty in evaluating on the Sami datasets is
that the set of word pairs annotated as cognates in
the Algu database is known to be far from com-
plete for the vocabularies covered. As a result,
there are many word pairs in the vocabularies that
are cognates, but are evaluated as unrelated. Mea-
sures such as accuracy and precision are therefore
not useful for our problem setting, since we do
not know whether a given word pair not among
the annotated cognates is a cognate pair. We can,
however, evaluate the recall of the known cognate
pairs: what proportion of the annotated pairs make
it into the set ranked as most likely cognates by
the model. We use SAMI-FT-TEST to compute
precision-recall curves for the fine-tuned S-CNN,
unadapted S-CNN, SVM, and the baseline LD.

Computing scores for all pairs of words be-
tween two vocabularies is time consuming. There-
fore, when evaluating on whole vocabularies, we
only take those words ¢ in vocabulary X that we
know have at least one cognate in the other vo-
cabulary Y. Then, we compute scores between
each of these words, and all words in the other
language. In order to evaluate these scores, we use
recall@k averaged over the words ¢, the queries,
and the set of language pairs in the test set. We
call this metric the mean average recall@k:

11 &
MAR@k = Z ZR@k,

where R@k — F##cognates within top-k results

9

#cognates in Y

where () is the number of queries, and L is the
number of language pairs. That is, for each word
query ¢, we rank the pairs (g,y;)Vi and get the
top 100 words y for each g. We then compute the
recall@k for k = 1,...,100 for g, that is, count-
ing the cognates found within the k highest-ranked
words divided by the total number of cognates for
q in Y. For most words ¢, there is only one, and
for some there are several cognates in Y.
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5.4 Experimental Setup

We present two experiments. We first train the
SVM and S-CNN models on IE-TRAIN. (LD re-
quires no training.)

In experiment 1, we apply these three mod-
els directly to the three pairs of Sami vocabular-
ies (SAMI-FULL) to measure how well methods
trained only on Indo-European data can identify
cognates in Sami languages. This tells us how well
the methods can exploit information from a differ-
ent language family. In this experiment, we evalu-
ate the models using the MAR @k metric (see sec-
tion 5.3).

In experiment 2, we fine-tune the S-CNN on
a small set of Sami cognates (SAMI-FT), con-
taining example cognate pairs from all three lan-
guage pairs. We test it on SAMI-FT-TEST to see
how much of the performance loss from language
transfer can be regained by providing the model
with just a small amount of data from the target
language family. We also analyse how the perfor-
mance of the S-CNN improves with the amount of
fine-tuning data it is given. In this experiment, we
evaluate the models using precision-recall curves.

6 Results

6.1 Experiment 1: Indo-European Models
for Sami Cognates

Figure 2 shows the MAR@F£ curves for Sami cog-
nate identification for the three models trained
on Indo-European data: S-CNN (without fine-
tuning), SVM, and the baseline LD. The S-CNN
outperforms the other approaches by a substan-
tial margin, across values of k. This result sug-
gests that the neural networks in the S-CNN are
able to capture aspects of the cognateness relation
that transfer across language families more effec-
tively than the hand-designed features of the SVM.
The SVM also outperforms LD — unsurprising,
since the Levenshtein distance is included among
its features.

Since the S-CNN performs best in this experi-
ment, we use it in experiment 2, where we fine-
tune the model on the target language family.

6.2 Experiment 2: Fine-Tuning on Target
Language Family

Figure 3 shows how the number of cognate pairs
used in fine-tuning improves average precision.
Naturally, the average precision increases together
with the number of cognates used in training. The

1.0

0.8

MAR@k

0.0

20 40 60 80 100

Figure 2: MAR@E for k£ = 1...100, for SAMI-
FULL, using models trained on IE-TRAIN. One
curve is the average over all pairs of Sami lan-
guages.
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Figure 3: The learning curve of S-CNN fine-
tuned on SAMI-FT, having been pre-trained on
IE-TRAIN.

improvement converges with about 500 training
pairs, which is the number used for the fine-tuned
model in Figure 4.

Figure 4 shows the precision-recall curves for
each approach for the small-scale Sami test set
(SAMI-FT-TEST). The corresponding values for
average precision are given in Table 4. The pat-
tern of results reflects that in Figure 2: the S-CNN
outperforms the other two approaches based on
string similarity metrics. The fine-tuned S-CNN
substantially outperforms the untuned model. In
terms of average precision, the improvement is ap-
proximately 11%.

This result tells us that, in addition to learning
more general information about cognates that can
be carried across language families than the SVM,
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Approach AP

S-CNN + FT | 0.825
S-CNN 0.741
SVM 0.608
LD 0.540

Table 4: Average precision in the small-scale Sami
test set for each approach.
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Figure 4: The precision-recall curves for each ap-
proach tested on SAMI-FT-TEST. S-CNN + FT
was pre-trained on IE-TRAIN and fine-tuned on
SAMI-FT. The unadapted S-CNN and SVM were
trained on only IE-TRAIN.

the S-CNN is also able to make use of even a small
number of annotated examples from the target lan-
guages to improve its predictions.

7 Conclusion and Future Work

We have addressed the problem of cognate iden-
tification within a set of three truly low-resource
Sami languages of the Uralic family. We have
examined the extent to which training data from
a completely unrelated, higher-resource language
family can be utilised for this task. We have
taken two approaches to learn a similarity metric
for cognateness from Indo-European etymological
data, namely an SVM and an S-CNN, both applied
to cognate identification in previous work, com-
pared with a Levenshtein distance baseline. In ad-
dition, we have compared these with a fine-tuned
S-CNN that has access to a small amount of train-
ing data in the target language family.

The results of our experiments have shown
that the S-CNN is able to generalize more effec-
tively across language families, compared with the
SVM. Furthermore, a substantial improvement in

performance can be attained by fine-tuning the
model with only a small number of cognate ex-
amples from the target language set.

In future work, we will investigate whether lan-
guage transfer for cognate identification can be
further improved by making use of unsupervised
multilingual character embeddings (Granroth-
Wilding and Toivonen, 2019) instead of one-hot
encoded characters. This could allow the model
to exploit cross-lingual similarities in the usage
patterns of symbols, replacing some of the man-
ually encoded knowledge about correspondences
across language pairs in previous work without the
need to specify features by hand. In addition, due
to the incomplete evaluation cognate sets, the ex-
perimental set-up could be complemented with a
manual evaluation of top cognate suggestions in a
manner similar to Himaildinen and Rueter (2019).

Another avenue for future work is to investigate
qualitatively how similar data-driven models gen-
eralize across other languages and language fam-
ilies, and how the choice of training language(s)
affects performance. With such experimentation,
we could gain more insight of what properties of
sound change are carried over across families. In
addition, we could investigate how the data-driven
models presented here perform compared with
models with more linguistically-informed hand-
crafted features.
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