
Proceedings of Recent Advances in Natural Language Processing, pages 904–911,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_105

904

A Neural Network Component for Knowledge-Based Semantic
Representations of Text

Alejandro Piad-Morffis1, Rafael Muñoz2, Yudivián Almeida-Cruz1,
Yoan Gutiérrez3, Suilan Estevez-Velarde1, and Andrés Montoyo2

1School of Math and Computer Science, University of Havana, Cuba
{sestevez,yudy,apiad}@matcom.uh.cu

2Department of Languages and Computing Systems, University of Alicante, Spain
3U.I. for Computer Research (IUII), University of Alicante, Spain
{montoyo,ygutierrez,rafael}@dlsi.ua.es

Abstract

This paper presents Semantic Neural Net-
works (SNNs), a knowledge-aware com-
ponent based on deep learning. SNNs
can be trained to encode explicit seman-
tic knowledge from an arbitrary knowl-
edge base, and can subsequently be com-
bined with other deep learning architec-
tures. At prediction time, SNNs provide a
semantic encoding extracted from the in-
put data, which can be exploited by other
neural network components to build ex-
tended representation models that can face
alternative problems. The SNN architec-
ture is defined in terms of the concepts
and relations present in a knowledge base.
Based on this architecture, a training pro-
cedure is developed. Finally, an experi-
mental setup is presented to illustrate the
behaviour and performance of a SNN for
a specific NLP problem, in this case, opin-
ion mining for the classification of movie
reviews.

1 Introduction

In recent years, the increase in the volume of avail-
able data has provided both new techniques and
new challenges for discovering relevant knowl-
edge. The huge amount of information produced
daily makes it impossible for humans to manu-
ally build organized representations of all this in-
formation. On the other hand, the surplus of in-
formation enables the design of statistical learn-
ing techniques which scale better with large data.
Deep learning approaches have successfully ob-
tained state-of-the-art results for many learning
problems, from image recognition to natural lan-
guage parsing. Instead of handcrafted representa-
tions designed by experts, deep learning automati-

cally builds representations from raw data that are
suitable for a given machine learning problem.

When deep learning is used, we can often iden-
tify structures inside a neural network, which can
be explained as high-level concepts that are au-
tomatically discovered during the learning pro-
cess (Bengio, 2012). For instance, in the im-
age recognition domain, often internal neurons or
groups of neurons can be identified to recognize
common visual features such as textures or pat-
terns or even specific objects (Le, 2013). Hence,
the neural network is able to build high-level con-
cepts from low-level input (i.e., pixels). This abil-
ity to discover higher-level features is one of the
main strengths of deep learning and representa-
tional learning in general (Bengio, 2012). How-
ever, one of the main challenges of deep learn-
ing is interpreting the internal representations of
a neural network in terms that can be understood
by humans and mapped to clearly defined domain
concepts (Montavon et al., 2017).

To address this challenge, our proposal is
to“persuade” a neural network to build repre-
sentations that can be interpreted in terms of a
formal conceptualization (such as a knowledge
base). This intuitive approach, as opposed to
hand-crafting features, would still allow the neural
network to learn the best representation of the in-
put, while enabling a better interpretation and ex-
planation of the whole learning process.

Our approach involves designing specific neu-
ral network components —Semantic Neural Net-
works (SNNs)— that are trained to learn how to
map raw input to specific domain concepts that
are extracted from a convenient knowledge base.
These components could then be included in larger
deep learning architectures, providing a semantic
representation of the input that the rest of the net-
work could learn to use for solving a specific prob-
lem.



905

In this work, SNNs have been designed to repre-
sent the relevant concepts of a knowledge base as
part of the artificial network architecture. Hence,
during the whole process, the structures that map
to specific concepts and relations are clearly iden-
tifiable inside the network. This process attaches
a semantic meaning to the network architecture,
which is useful for debugging and understanding
the learning dynamics. Furthermore, the SNN is
trained to learn the specific instances in the knowl-
edge base and their relations. This way, the SNN
not only encodes abstract concepts, but also true
facts about instances of those concepts. Prelim-
inary source code is available online for the re-
search community.1

When used as a component of a larger deep
learning architecture, a SNN that is trained for a
specific knowledge domain can be seen as a se-
mantic representational component. Its input con-
sists of a low-level representation of data, (for ex-
ample, words or entities), and its output consists of
an implicit representation of this data expressed in
terms of the learned domain. This representation
can be seen as a type of embedding that maps raw
input to a semantic space defined by the concepts
and relations of the learned knowledge base. The
SNN is used as a representational layer in a larger
neural network, for a natural language processing
problem in which the semantic representation in-
duced by the learned knowledge base is expected
to be a good representation.

The paper is organized as follows. Section 2
presents a review of related works and relevant
concepts in the domain of representational learn-
ing, with an emphasis on different semantic rep-
resentations of natural language. In section 3 the
architecture and training procedure for the SNN
is formalized and explained. Section 4 presents
a brief experimental setup designed to illustrate
the behavior and performance of a SNN in a spe-
cific natural language problem. Finally, section 5
discusses the main contributions of this proposal,
whereas section 6 presents the final conclusions of
the research and highlights possible future lines of
development.

2 Related Works

Building semantic representations of raw input
data, specifically for natural language text, is a

1https://github.com/
knowledge-learning/snn

common task for many machine learning prob-
lems. In this section we present different ap-
proaches to the design of semantic representations
for natural text.

Network-Based Approaches for semantic rep-
resentations usually consist of defining some sim-
ilarity metric based on the relations of terms in
some knowledge base, interpreted as a graph. It
is based in the assumption that words which are
connected by short paths in a knowledge base
should have similar semantics. WordNet is com-
monly used as a knowledge base where differ-
ent semantic relations among words can be ex-
ploited for defining similarity metrics. Using
WordNet (Miller, 1995), several semantic simi-
larity metrics are defined by exploring the graph
structure of the knowledge base, mostly depend-
ing on the graph structure of words, such as Hirst-
St-Onge (Hirst and St-Onge, 1998) and Leacock-
Chodorow (Leacock and Chodorow, 1998). In this
direction, other researchers include information
content formulae to measure appearances of terms
in a corpus, such as the Resnik metric (Resnik,
1999).

Corpus-Based Similarity Metrics are defined
by some measure of the co-occurrence of terms
in a corpus of natural text. The intuitive idea is
that words which co-occur within the same con-
text must have similar semantics. One such metric
is PMI-IR (point mutual information - information
retrieval) (Turney, 2001), which considers the in-
formation content of each pair of words (wi, wj),
measured as the relative number of co-occurrences
of wi and wj in a document, with respect to
the individual count of occurrences of each word.
Another corpus-based similarity metric based is
ESA (explicit semantic analysis) (Gabrilovich and
Markovitch, 2007), which considers Wikipedia as
a corpus for building a co-occurrence matrix of
words. A similar approach is HAL (hyperspace
analogue to language) (Lund and Burgess, 1996),
which also builds a co-occurrence matrix, but only
considering words within a small window.

Dimensionality Reduction Techniques such as
PCA (principal component analysis) (Martinsson
et al., 2011) can be interpreted as a projection
from the BOW (bag of words) or TF-IDF (term
frequency - inverse document frequency) space
to a semantic space. An interesting recent ap-
proach, that mixes ideas from the previous tech-

https://github.com/knowledge-learning/snn
https://github.com/knowledge-learning/snn


906

niques, is the family of word embedding algo-
rithms (Mikolov et al., 2013). In word embed-
dings, similar to PCA, each word is mapped to a
vector which encodes the semantics of the word.
The embedding is chosen such that a word’s vec-
tor contains an implicit representation of the prob-
abilistic distribution of the word’s context in a
given corpus. To achieve this, a neural network
is trained to predict, given a word wi’s embed-
ding, the probability that some other word wj ap-
pears in a small window centered around wi. In
this sense, word embeddings can be seen as a
generalization of corpus-based metrics, whereby
the best representation is learned from the data,
rather than handcrafted. Even though word em-
beddings don’t explicitly model specific semantic
relations (such as hypernymy, or synonymy), it has
been shown that several interesting semantic rela-
tions get encoded in specific directions in the em-
bedding space, enabling the solution of analogue
inference queries (Schnabel et al., 2015).

Entity Embeddings are a specific type of em-
bedding technique that encodes the context of en-
tities in a knowledge base. Several metrics can
be used to define the notion of “context similar-
ity” when using a knowledge base for entity em-
bedding. For example, embeddings can be de-
signed such that a particular direction dr is asso-
ciated with each particular relation of the knowl-
edge base, such that ei + dr ≈ ej whenever ei
and ej are related by r. These formulations allow
a semantic meaning to be attached to a particular
algebraic operation and properties, and enable a
whole new field of study that finds the “meaning”
of, say, other directions d which are orthogonal to
or linearly dependent on a specific relation. Entity
embeddings have been extended to encode also
the hierarchical structure of knowledge bases (Hu
et al., 2015) and mixed with word embeddings for
tasks such as entity disambiguation (Yamada et al.,
2016).

Word and entity embeddings in general are
promising approaches to deal with learning se-
mantic representations of data. Moreover, recent
research deals with finding ways to exploit the
structure of these representations to explain why a
specific answer is output by a neural network. Be-
ing able to explain neural networks is a first step
towards designing accountable machine learning
systems that humans can trust for solving the most

crucial problems (e.g.medical diagnosis or legal
advice). By carefully designing the learning crite-
ria and structure of embeddings, it is conceivable
that a semantic representation can be interpreted
in terms of a formal conceptualization defined a
priori.

3 Semantic Neural Networks

We define a Semantic Neural Network (SNN) as
an artificial neural network architecture that en-
codes knowledge. Two main semantic elements
are encoded from the Knowledge Base. First, the
graph structure of the Knowledge Base (i.e. en-
tity classes and their relations) is directly repre-
sented in the architecture of a SNN. Second from
a Knowledge Base KB, the information about
which instances belong to which entity classes
and their specific relations are encoded into the
weights of the SNN. By design, the architecture of
the SNN is built to represent each specific entity
class and relation in a clearly recognizable struc-
ture (a set of neurons with a pre-designed connec-
tion pattern). This allows a semantic meaning to
be attached to an activation of the SNN in terms of
the classes and relations defined in the Knowledge
Base.

The purpose of the SNN is to provide a semantic
representation of the input data that can be used as
component inside a larger deep learning architec-
ture, to solve a related learning problem L. If the
knowledge represented in KB is useful for solv-
ing the problem L, then the representation pro-
vided by the SNN should be richer than plain bag-
of-words or general purpose embeddings. With
the same computational power (same number of
parameters), a deep learning architecture using a
SNN is expected to achieve equal or better perfor-
mance than using other representations not specif-
ically designed to exploit the knowledge in KB.
Furthermore, the SNN architecture provides a se-
mantic explanation for the model’s predictions.

A SNN is built based on a specific Knowl-
edge Base KB which is of interest for solving
a related learning problem L. Figure 1 shows a
schematic representation of the process for con-
structing, training and using an SNN in an arbi-
trary learning problem L. First, given the prob-
lem L to solve, a relevant Knowledge Base KB
is chosen. The entity classes and relations of
KB are used to define the architecture of the
SNN (Section 3.1). Then, training instances are



907

Problem
(L)

Knowledge
Base
(KB)

Select

Define
architecture

SNN

Training

Class
and 

Relations

Instances

Insert in
model

Neural NetworkInstances Training

(1)

(2)

(3)

(4)

(5)

Figure 1: The process for constructing and using
a SNN for a specific learning problem (L) and a
suitable Knowledge Base (KB). The SNN is first
defined and pre-trained based on KB, and then
used in a larger neural network trained specifically
for L.

extracted from KB and used to pre-train the SNN
weights (Section 3.2.1). Afterwards, the SNN is
included in a deep learning model (which can con-
tain other components such as extra layers). Fi-
nally, this larger model is trained on instances
from L using standard optimization techniques
and loss functions suitable for the problem L (Sec-
tion 3.2.2).

Different Semantic Neural Networks can be
trained on different Knowledge Bases ahead of
time and reused for many related problems. In
this sense, SNNs are similar to pre-trained word
embeddings, since a SNN trained for a commonly
used Knowledge Base (i.e., DBPedia or Word-
Net) could be useful in solving different problems.
However, pre-trained SNNs can (and should) be
fine-tuned on a specific problem L after decid-
ing a convenient deep learning architecture for this
problem.

3.1 Architecture of the Semantic Neural
Network

The architecture of a Semantic Neural Net-
work (SNN) is composed of several instances of
two simple structures: entity blocks and relation
blocks. For each class of the knowledge base, an
entity block is created, and for each relation, a cor-
responding relation block.

An entity block is a computational graph with a
single input variable and a single output variable.
The input dimension and shape is determined by
the specific application, a sensible default consists
of a single one-hot encoding layer when using a
bag-of-words representation, but an alternative in-
put could be a general-purpose word embedding

representation. The output dimension is a fixed
size dense vector of small dimension (e.g., 10).
The input and output are connected by a linear
matrix operator. Additionally, a one-dimensional
indicator neuron is connected to the output layer
through a dot product operator with a sigmoid ac-
tivation function. The purpose of the indicator is
to signal when the activation of the output is large
in absolute value. This is interpreted as the impor-
tance of the corresponding concept in a particular
input text.

A relation block is a similar computational
graph, but with an input variable whose size is
twice the entity output size. Thus, the relation
input shape corresponds with the output shape of
the two entity blocks that will be connected. The
outputs from each incoming entity block are con-
catenated, forming a single vector, which is then
connected through a linear matrix operator to the
output variable. An identical indicator neuron is
connected to the output variable.

The overall architecture of an SNN consists of
several entity blocks, one for each class in the
knowledge base, and several relation blocks, one
for each relation defined. The entity blocks are all
connected to a single input (e.g., a bag of words
representation). Every relation block is connected
to the respective outputs of the entity blocks that
represent the classes for which the relation is de-
fined. Figure 2 shows a schematic representation
of an example SNN built from a knowledge base
in the cinematic domain (specifically the Internet
Movie Database, IMDB).

The input size of the SNN is the size of some
vocabulary chosen before hand. This vocabulary
should include the common terms in the knowl-
edge domain(s) of interest. An additional input
dimension can be added to account for unknown
words (those not present in the vocabulary at the
moment of training).

3.2 Training the Semantic Neural Network

The training procedure for a SNN is divided in
two phases, each of which solves a different learn-
ing problem. In the first phase, which we call
“structured pre-training”, the parameters of the en-
tity and relation blocks are adjusted. The learning
objective for this phase consists of predicting to
which instance of the knowledge base the sample
of natural text refers. In the second phase, in order
to deal with the original natural language process-



908

BoW

Entity
Blocks

Blocks

Indicators

Relation

Figure 2: Schematic representation of a Semantic
Neural Network, for an example knowledge do-
main in the film industry. The input layer consists
of a bag of words (BOW) representation. The mid-
dle layer contains all the entity blocks (Movie and
Person in this example) and the final layer con-
tains all the relation blocks. The indicator outputs
are one-dimensional sigmoid neurons.

ing problem, a standard training is performed. In
this phase, the parameters of the rest of the net-
work are adjusted. The internal parameters of the
SNN can either be frozen, or optionally, adjusted
together with the rest of the network in a post-
optimization phase.

3.2.1 Structured Pre-Training
During the structured pre-training step, a knowl-
edge base is used to extract random instances and
adjust the SNN parameters. This knowledge base
is the same as that chosen for designing the ar-
chitecture, i.e., to choose the entities and relations
which are represented in the SNN blocks. A ran-
dom instance of this knowledge base is a tuple
(ei, r, ej) which asserts the relation r between en-
tities ei and ej . In this instance, ei and ej are as-
sumed to have a natural text label associated (e.g.,
a name, description, tag, etc.).

The SNN learns to represent natural text in a
manner which resembles the entity extraction pro-
cess. Note that no natural text is associated to the
label of the relation. Hence, in order for the SNN
to accurately predict that relation r(e1, e2) is true
for a specific pair of entities e1, e2, but false for an-
other pair of entities, the “list” of pairs of entities

that hold in each relation must be encoded in the
Wr weights of the corresponding relation block.
Furthermore, in order to differentiate the relations,
the SNN needs to learn to differentiate the entities
implicitly because there is no requisite to define
the specific learning objective, namely represent-
ing different entities and their corresponding en-
codings.

3.2.2 Unstructured Training
After the pre-training phase is completed, standard
training proceeds. In this phase, given the char-
acteristics of the learning problem, the training is
performed. For example, if the problem consists
of text classification (i.e., opinion mining, topic
detection, etc.), then the training examples con-
sist of pairs of single-hot encoded text and the cor-
responding class label. The exact parameters of
the training depend on the problem characteristics,
and are thus left unspecified in this proposal. Dur-
ing this training phase, the parameters of the SNN
are frozen, i.e., they remain unchanged through-
out the training procedure. The reason for this is
that the parameters of the SNN have already been
adjusted, and the rest of the parameters are ran-
domly initialized. Therefore, allowing the training
algorithm to change the SNN parameters would
destroy the learned mappings.

After the standard training, a final phase of fine-
tunning can be optionally performed. In this final
phase, all the parameters, both those of the SNN
and those of the rest of the network, are allowed
to change. In this phase, only small parameter up-
dates are expected to happen, since the network
should have converged in the previous phase.

4 Experimental Analysis

To analyze the behavior of the SNN, we selected
a classic NLP problem and a suitable knowledge
base. The selected problem is opinion mining in
movie reviews, using the dataset from Pang and
Lee (2004). The corpus contains 1000 positive
and 1000 negative movie reviews written in En-
glish. For building the knowledge base, raw data
from IMDB2 was processed obtaining a graph rep-
resentation with 2 classes (Person and Movie), 11
relations and a total 27,044,985 tuples. Table 1
summarizes the statistics of the knowledge base.

The SNN obtained from the IMDB knowledge
base has the structure shown in figure 3. The input

2https://datasets.imdbws.com

https://datasets.imdbws.com


909

Classes Instances

Person 2 854 359
Movie 2 361 769

Relations

actor 6 531 498
actress 4 561 176
archive footage 160 467
archive sound 1 643
cinematographer 1 016 444
composer 1 030 405
director 2 871 640
editor 946 097
producer 1 646 903
production designer 221 315
self 4 739 853
writer 3 256 270

Table 1: Summary statistics of the knowledge base
built from IMDB data.

size is 267,178 (number of unique words in a stan-
dard English dictionary), the output size of each
entity block is 10, and of each relation block is 20.
The total number of indicator outputs is 14 (total
number of concepts present in the IMDB knowl-
edge base). Hence, the total number of trainable
parameters in the SNN is 5,350,873.

The pre-training phase is executed for 10
epochs, each one with 100 batches, and each batch
comprising 100 training examples. This cycle was
repeated three times, first only with entities, then
only with relations, and finally with both entities
and relations. Hence, a total of 300,000 training
examples were used in the pre-training phase. The
final validation accuracy was 0.976 for the entities
cycle, 1.00 for the relations cycle and 0.987 for the
combined cycle. Since there are far fewer different
relation types than actual entities, convergence is
expected earlier when only training with relations.

4.1 Evaluating in the Opinion Mining
Problem

The performance of the pre-trained SNN was eval-
uated by including it as an internal component
in a larger neural network. This neural network
was applied to the original problem of classifying
movie reviews. The architecture of this extended
neural network consists of a single-hot encoding
input which is connected to the SNN. The output
of the SNN is connected to three sequential dense

BoW

Person

Movie

Indicators

Actor

Director

etc.

dense ReLU

binary
output

Figure 3: Schematic representation of the Seman-
tic Neural Network trained in IMDB. Not all rela-
tion blocks are shown, given space constraints.

layers with ReLU activation. A final dense layer
with sigmoid layer was used, since the movie re-
views problem is a binary classification problem.
This network had an additional 141,361 trainable
parameters.

Training was performed only on these new
parameters for 10 epochs, using 100 batches
each one with 100 samples per epoch. After
this process, the SNN parameters were unfrozen,
and a fine-tune training was performed with all
5,491,981 parameters.

This final training was performed for 50 epochs,
until convergence was achieved. The validation
accuracy obtained at this point was 0.702. Finally,
an independent test set was used to measure test
accuracy, obtaining 67.82% precision in the movie
reviews problem.

For comparison purposes, a fully-connected
feed forward neural network, with 4 dense ReLU
layers and a total of 5,494,681 trainable param-
eters was also trained from scratch in the movie
review corpus. This network achieved a test accu-
racy of 64.47% in the same test set used for testing
the SNN. Hence, with roughly the same number
of trainable parameters the SNN obtains a small,
but statistically significant advantage (p ≈ 10−39).
Results are summarized in Table 2.

5 Discussion

The experimental results obtained show that us-
ing a SNN provides some benefits over a stan-



910

Model Parameters Accuracy

SNN + 3 ReLU 5,491,981 67.82
4 Dense ReLU 5,494,681 64.47

Table 2: Comparison of performance in the opin-
ion mining problem between different SNN-based
architectures.

dard architecture. No comparison has been per-
formed with more advanced architectures, such as
Long Short Term Memory (LSTM) or Convolu-
tional (CNN) networks. However, the purpose of
SNNs is not to compete with, but rather to com-
plement existing architectures with a new type of
component that is knowledge-aware. Hence, the
fact that the SNN performs effectively when com-
bined with more traditional architectures encour-
ages its use with other state-of-the-art deep learn-
ing components.

The most significant advantage of using a SNN
is that it provides a semantic interpretation of the
network’s behavior. The one-dimensional indica-
tors used for guiding the SNN training could po-
tentially act as a signaller for the high-level con-
cepts that are being activated in any given exam-
ple. By looking at the activation patterns inside
the SNN, it may be possible to obtain an explana-
tion of the network’s prediction for a given exam-
ple, in terms of the concepts in the knowledge base
learned. Figure 4 presents an illustrative example
in the context of the NLP problem presented in
Section 4.

Another advantage of SNNs is that once pre-
trained with a given knowledge base, they can
be reused in many different architectures. In a
sense, SNNs can be seen as feature extractors or
representational components that are associated
with a given knowledge domain. It is also con-
ceivable to use multiple SNNs trained in differ-
ent knowledge domains in the same neural net-
work. This provides a strategy for knowledge
integration, when different and possible incom-
patible knowledge domains are considered rele-
vant for a particular problem. This opens the
door to new strategies for transfer learning, from a
more semantic perspective, where the transferred
or reused knowledge can be tied to a particular do-
main.

In our experimental setup we used a small natu-
ral language dataset, since our purpose was not to
obtain state-of-the-art results in the opinion min-

BoW

Entity
Blocks

Relation
Blocks

Indicators

Ben

Kinsley

is

amazing

in 

Schindler's

List

Person

Movie

Actor

Figure 4: Illustrative example of a Semantic Neu-
ral Network activation in response to a particular
input.

ing problem, but rather to illustrate the design of
the SNN and explain its main architectural char-
acteristics. We demonstrated that the SNN model
provides effective support to learning approaches
for resolving NLP problems.

6 Conclusions and Future Work

In this paper, we present Semantic Neural Net-
works (SNNs), which allow the inclusion of ex-
plicit semantic knowledge in traditional neural
networks without affecting performance. This
knowledge is extracted from available knowledge
bases, built by domain experts. We considered
that the SNN is a first step towards raising the
abstraction level in neural networks and build-
ing semantically-aware architectures that can be
self-explained. A possible line of future research
consists of combining multiple SNNs for multi-
ple knowledge domains in a single problem, and
studying how the different representations output
by each network can be merged. Further, in the
current design, the core of the SNN is a simple
linear operation. In future works, we will explore
other, more complex operations, which will po-
tentially improve accuracy. It is also necessary to
compare the performance of SNN-powered archi-
tectures with other state-of-the-art deep learning



911

architectures, such as LSTMs, CNNs and differ-
ent embedding strategies. Finally, the SNN inter-
nal structure has a semantic meaning attached to
each neuron block. This opens the door for the
design of interpretation models that can automat-
ically output an explanation of a neural networks
response in terms of human-defined concepts.

Acknowledgments

This research has been supported by a Carolina
Foundation grant in agreement with University
of Alicante and University of Havana. More-
over, it has also been partially funded by both
aforementioned universities, the Generalitat Va-
lenciana and the Spanish Government through the
projects SIIA (PROMETEU/2018/089), LIVING-
LANG (RTI2018-094653-B-C22) and INTEGER
(RTI2018-094649-B-I00).

References
Yoshua Bengio. 2012. Deep Learning of Representa-

tions for Unsupervised and Transfer Learning. In
JMLR: Workshop and Conference Proceedings. vol-
ume 27, page 17–37.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In IJCAI Inter-
national Joint Conference on Artificial Intelligence.
https://doi.org/10.1145/2063576.2063865.

Graeme Hirst and David St-Onge. 1998. Lexical
chains as representations of context for the detec-
tion and correction of malapropisms. WordNet:
An electronic lexical database 305(April):305–332.
https://doi.org/citeulike-article-id:4893262.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric P Xing. 2015. Entity hierarchy embed-
ding. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers). Association for Computational Linguistics,
Stroudsburg, PA, USA, volume 1, pages 1292–1300.
https://doi.org/10.3115/v1/P15-1125.

Quoc V Le. 2013. Building high-level features us-
ing large scale unsupervised learning. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, pages 8595–
8598.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining Local Context and WordNet Similarity for
Word Sense Identification. In: WordNet: An elec-
tronic lexical database. (January 1998):265–283.
https://doi.org/citeulike-article-id:1259480.

Kevin Lund and Curt Burgess. 1996. Pro-
ducing high-dimensional semantic spaces
from lexical co-occurrence. Behavior Re-
search Methods, Instruments, and Computers
https://doi.org/10.3354/ame01683.

Per Gunnar Martinsson, Vladimir Rokhlin, and
Mark Tygert. 2011. A randomized algo-
rithm for the decomposition of matrices. Ap-
plied and Computational Harmonic Analysis
https://doi.org/10.1016/j.acha.2010.02.003.

Tomas Mikolov, Greg Corrado, Kai Chen, and
Jeffrey Dean. 2013. Efficient Estimation of
Word Representations in Vector Space. Proceed-
ings of the International Conference on Learn-
ing Representations (ICLR 2013) pages 1–12.
https://doi.org/10.1162/153244303322533223.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2017. Methods for interpreting and
understanding deep neural networks. Digital Signal
Processing .

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the ACL.

Philip Resnik. 1999. Semantic Similarity in a Taxon-
omy: An Information-Based Measure and its Ap-
plication to Problems of Ambiguity in Natural Lan-
guage. Journal of Artificial Intelligence Research
11:95–130. https://doi.org/10.1613/jair.514.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. pages 298–307.

Peter D Turney. 2001. Mining the Web for Synonyms:
PMI-IR versus LSA on TOEFL. Lecture Notes
in Computer Science https://doi.org/10.1007/3-540-
44795-4 42.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint Learning of the
Embedding of Words and Entities for Named Entity
Disambiguation http://arxiv.org/abs/1601.01343.

https://doi.org/10.1145/2063576.2063865
https://doi.org/10.1145/2063576.2063865
https://doi.org/10.1145/2063576.2063865
https://doi.org/citeulike-article-id:4893262
https://doi.org/citeulike-article-id:4893262
https://doi.org/citeulike-article-id:4893262
https://doi.org/citeulike-article-id:4893262
https://doi.org/10.3115/v1/P15-1125
https://doi.org/10.3115/v1/P15-1125
https://doi.org/10.3115/v1/P15-1125
https://doi.org/citeulike-article-id:1259480
https://doi.org/citeulike-article-id:1259480
https://doi.org/citeulike-article-id:1259480
https://doi.org/citeulike-article-id:1259480
https://doi.org/10.3354/ame01683
https://doi.org/10.3354/ame01683
https://doi.org/10.3354/ame01683
https://doi.org/10.3354/ame01683
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1162/153244303322533223
https://doi.org/10.1162/153244303322533223
https://doi.org/10.1162/153244303322533223
https://doi.org/10.1613/jair.514
https://doi.org/10.1613/jair.514
https://doi.org/10.1613/jair.514
https://doi.org/10.1613/jair.514
https://doi.org/10.1613/jair.514
https://doi.org/10.1007/3-540-44795-4{_}42
https://doi.org/10.1007/3-540-44795-4{_}42
https://doi.org/10.1007/3-540-44795-4{_}42
https://doi.org/10.1007/3-540-44795-4{_}42
http://arxiv.org/abs/1601.01343
http://arxiv.org/abs/1601.01343
http://arxiv.org/abs/1601.01343
http://arxiv.org/abs/1601.01343

