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Abstract

The detection of quotations (i.e., reported
speech, thought, and writing) has established
itself as an NLP analysis task. However,
state-of-the-art models have been developed
on the basis of specific corpora and incorpo-
rate a high degree of corpus-specific assump-
tions and knowledge, which leads to fragmen-
tation. In the spirit of task-agnostic modeling,
we present a corpus-agnostic neural model for
quotation detection and evaluate it on three
corpora that vary in language, text genre, and
structural assumptions. The model (a) ap-
proaches the state-of-the-art on the corpora
when using established feature sets and (b)
shows reasonable performance even when us-
ing solely word forms, which makes it applica-
ble for non-standard (i.e., historical) corpora.

1 Introduction

Quotation is a general notion that covers different
kinds of direct and indirect speech, thought, and
writing in text (Semino and Short, 2004). Quo-
tations are a prominent linguistic device used to
express claims, assessments, or attitudes attributed
to speakers. Consequently, the analysis of quota-
tions is gaining traction in computational linguis-
tics and digital humanities, providing evidence for
speaker relationships (Elson et al., 2010; Agarwal
et al., 2012), inter-speaker sentiment (Nalisnick and
Baird, 2013), politeness (Faruqui and Pado, 2012),
and narrative structure (Jannidis et al., 2018).

As is often the case with semantic phenomena,
manual annotation of quotations has shown to be
slow and resource-intensive, in particular when
undertaken in conjunction with the annotation of
speakers and information quality (Brunner, 2013;
Pareti, 2015). This provides the rationale for au-
tomatic quotation recognition methods. After a
first round of rule-based methods (Pouliquen et al.,
2007; Brunner, 2013), recent supervised models

use mostly sequence classifiers (Pareti et al., 2013;
Almeida et al., 2014; Scheible et al., 2016).

Not surprisingly, these corpora differ substan-
tially across a number of relevant dimensions. in-
cluding text genre, annotation scheme, and the-
oretical assumptions. For example, Pareti et al.
(2013) focus exclusively on newspaper text and
focus on developing a uniform annotation schema
that captures the shared properties of all kinds of
annotations. Thus, even though this corpus con-
tains direct, indirect, and mixed quotations, these
not marked as instances of their specific subtypes.
In addition, each quote is assumed to be introduced
by a cue (markables are shown surrounded by red
square brackets):

(1) Hillary Clinton on Saturday
[acknowledged]CUE [the state of the
economy is good]QUOTE.

This assumption is generally true for newspaper
text, and simplifies the task of quotation detection.

The situation is rather different in the literary
texts considered by Semino and Short (2004). Cues
are much more varied, and are sometimes omitted
entirely, such as in this exchange from Dickens’
Christmas Carol:

(2) [”Much!”]QUOTE – Marley’s voice, no doubt
about it.
[”Who are you?”]QUOTE

[”Ask me who I was.”]QUOTE

The study follows a generally more differentiating
approach. It develop and annotate a rich typology
of different subtypes of quotations to distinguish,
e.g., direct from indirect quotations, and speech
from thoughts from writing.

Not surprisingly, therefore, all models for quo-
tation detection were developed for one specific
corpus. This leads to two problems:
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1. The models inherit the corpora’s structural
and theoretical assumptions, such as the pres-
ence of a cue assumed by models for the Pareti
et al. (2013) corpus.

2. The models typically include domain-specific
features and knowledge sources that happened
to be available from the corpus, such as lists
of likely cue verbs or syntactic realizations of
quotations.

This corpus dependence amounts to conceptual
overfitting: while it leads to better fit for the orig-
inal corpus, models are not transferable to new
domains and analysis schemes. In other words, it
leads to serious fragmentation.

In this paper, we develop and evaluate a corpus-
agnostic neural model architecture for automatic
quotation recognition that makes as few assump-
tions as possible about the corpus to be modelled
but is still expressive enough to deal with the chal-
lenge of recognizing quotation spans of essentially
arbitrary length (Scheible et al., 2016). In this re-
spect, we see our study as a step towards transfer
learning (Pan and Yang, 2009) and task-agnostic
learning (Hashimoto et al., 2017). We find that our
model can perform reasonably well across corpora
differing in genre, language, and structure.

2 Related Work: Datasets and Models

We now review the state of the art in automatic
quotation annotation, describing the three major
quotation corpora for English and German and the
corresponding models. We exclude corpora that
focus on one specific quotation subtype such as the
Columbia Speech Attribution corpus (Elson and
McKeown, 2010) which only covers direct speech.

2.1 PARC Dataset

Dataset. The Penn Attribution Relation Corpus
(Pareti, 2015), version 3 (PARC3) is a subset of the
Penn Treebank, annotated with quotations and at-
tribution relations. It consists of English newswire
text from the Wall Street Journal. Each attribu-
tion relation consists of a cue, optionally a source
(speaker), and content (quotation span), all marked
as text spans. As part of the Penn Treebank, PARC3
provides manually annotated tokenization, POS
tags, lemmas, and constituency parses.

Quotation spans are not labeled with more spe-
cific types, but PARC3 distinguishes informally

(based on the surface form) between direct quo-
tations (starting and ending with quotation marks),
indirect quotations (without any quotation marks),
and mixed quotations (everything else).

Pareti model. Pareti (2015), an extension of
Pareti et al. (2013), presents a pipeline architecture
for quotation annotation. It first applies a k-NN
classifier to identify quotation cues within the cor-
pus. Then, a linear-chain conditional random field
(CRF) is used to identify quotation spans in the
vicinity of each cue. The Pareti model builds on
corpus-specific knowledge, including lists of cue
verbs, and handcrafted features sensitive to punctu-
ation conventions in English newswire text.

Scheible model. Scheible et al. (2016) retain the
pipeline architecture of Pareti (2015) and its feature
set, but replace the components. Cue annotation is
performed with an averaged perceptron. More im-
portantly, they replace quotation annotation proper
with a sampling-based procedure: a perceptron
samples tokens as likely span boundaries, which
are then combined into complete quotation spans,
using a semi-Markov model.

2.2 STOP Dataset
Semino and Short (2004) presents a corpus-based
ontology of quotations in English text. It intro-
duces two dimensions: (a), speech vs. thought
vs. writing; and (b), direct vs. indirect vs. free
indirect vs. reported, yielding a Cartesian product
of twelve quotation subclasses. These are used to
annotate the Speech, Thought, and Writing Presen-
tation corpus (STOP). It comprises 120 sections,
split evenly across three genres (fiction, newspaper,
and biographies), of about 2,000 words each (To-
tal size: 250,000 tokens; 8,000 quotations). The
corpus has no linguistic annotation: the only fea-
tures available are words’ surface forms. To our
knowledge, there are no models for this dataset.

2.3 Redewiedergabe Dataset
Dataset The Redewiedergabe (’reported speech’)
corpus (RWG) (Brunner, 2013) is a corpus of Ger-
man narrative text, comprising thirteen public-
domain German narratives (1787–1913). The quo-
tation annotations in RWG adopt the scheme by
Semino and Short (2004) and distinguish direct, in-
direct, free indirect, and reported variants of speech,
thought, and writing. The total size of the corpus
is 57.000 tokens, and 17.000 quotation spans.

Unlike STOP, RWG contains some linguistic in-
formation, namely POS tags, lemmas, and mor-
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“ Hello , ” she said .
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Figure 1: The NQD architecture. Tokens are represented as a bag of feature embeddings, and each token sequence
is processed by a 2-layer bi-LSTM network, before a max-entropy classifier labels each token.

phological features (case, number, gender). This
information is obtained automatically, though.

Models. Brunner (2013) proposes two models
for quotation annotation on RWG. Both models
work at the sentence level and predict only the
presence of absence of quotations, not their spans
(even though this information is annotated). The
first model is rule-based (Brunner RB). It uses a
set of handcrafted rules to identify direct, indirect,
reported, and free indirect quotations. The second
model (Brunner ML) is a simple classification
model based on random forests.

3 Neural Quotation Detection (NQD)

We now define a neural architecture, NQD, with
the goal of modeling the quotations in all three cor-
pora described in Section 2. We design our model
to leverage the commonalities across datasets,
while not depending on the features of any dataset
in particular. As all datasets involve long quotation
spans with long-distance dependencies, an LSTM-
based approach was natural, given such models’
ability to capture very long-distance dependencies
of up to 200 tokens (Khandelwal et al., 2018). Con-
versely, given the structural differences between
corpora, we decided against a pipeline model like
those employed by Pareti (2015) and Scheible et al.
(2016) which predict cues first and then quotation
spans. NQD predicts quotations directly without

explicitly identifying cues.

NQD frames quotation prediction as token
classification, classifying each token as either
beginning a quotation (BEGIN), ending a quotation
(END), or neither (NEITHER). Quotation spans
then consist of all tokens starting with a BEGIN

tag, up to (but not including) the next END or
BEGIN tag, or the end of sequence. This model
is not limited to the sentence level: it is able
to make predictions for a whole document and
in this manner can capture very long quotation
spans (Scheible et al., 2016). Concretely, the
sequence-to-sequence architecture comprises a
2-layer bi-LSTM network, with the outputs of the
second bi-LSTM feeding into a 3-class softmax
classifier. Thus, the model takes token sequences
as input and produces a sequence of token labels.
Figure 1 shows a schematic diagram of the NQD
architecture. For datasets with multiple quotation
types, NQD uses a separate sequence-to-sequence
model for each span type, connecting them by
weight sharing. All NQD code is available from
https://www.ims.uni-stuttgart.de/
forschung/ressourcen/werkzeuge/
index.en.html.

In the input token sequences, each token is a
bag of features. Each feature value is represented
as an n-dimensional continuous vector, and each
token is represented as the sum of these vectors.

https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/index.en.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/index.en.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/index.en.html
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This approach to feature representation allows our
model to work with corpora with arbitrary types
of token-level features. In the simplest case, when
only raw text is present in the corpus, each token
is given a single feature for that token’s word. If
other token-level features are present, such as POS-
tags, lemmas, or even parse tree information, these
can be incorporated as additional feature vectors,
without requiring any changes to the model archi-
tecture. Feature vectors can also be initialized to
pre-trained representations (e.g. word embeddings)
when these are available, or initialized randomly
and learned when they are not. Section 2 describes
in detail which features are used for the corpora we
experiment with.

4 Experimental Evaluation

We now train and test NQD on the three corpora
and compare against the state-of-the-art.

4.1 Experimental Setup

PARC3. For PARC3, we train a single classifier
on the quote content spans and ignore the cue and
source spans. As features, we use token surface
forms, lemmas, POS tags, as well as, for each token,
the bags of constituents that start with, end with,
and contain it. These features are a subset of the
features used by Scheible et al. (2016) and Pareti
(2015), and like these studies, we use gold standard
annotation. We initialize the features for word sur-
face forms with the default GloVe Wikipedia word
embeddings (Pennington et al., 2014). Our model
makes predictions on entire documents at a time.
We use performance on the corpus’s development
set to guide early stopping during training, and we
evaluate on the corpus’s test set.

STOP. For STOP, we train four classifiers for
the four quote types (direct, indirect, free indirect,
reported). We train and evaluate our model on a
per-document basis as for PARC3. We use word
surface forms (and their GloVe embeddings) as
features, we used no other features in this model.
As the corpus contains no held-out development
or test sets, we used 10-fold cross validation to
evaluate our model, using 8 folds for training, 1 for
development, as 1 as for testing in each iteration.

RWG. For RWG, we adopt the same four-
classifier setting as for STOP, using the word,
lemma, POS, and morphological features available.
For the sake of comparability with (Brunner, 2013),
we train and evaluate on individual sentences, as

opposed to entire documents. We use 10-fold cross
validation again, randomly partitioning all corpus
sentences into 10 subsets. We use GloVe embed-
dings pre-trained on the German Wikipedia.1

Evaluation. Previous studies on PARC3 adopted
an exact span match setting, i.e., only those pre-
dicted spans that exactly match a gold standard
span count as true positives. We report precision,
recall, and F1 in this setting for PARC3 and STOP.
For RWG, we report the sentence-level accuracy
used by Brunner (2013). In this mode, we train and
predict with our model as before, but for evalua-
tion we just record whether the model predicts the
presence of a quotation type in a sentence.

4.2 Results

PARC3. The results in Table 1 show that NQD can-
not beat the performance of Scheible et al. (2016),
but does almost as well as Pareti et al. (2013).
Given that our model is substantially simpler than
either of these two (both include a special cue clas-
sifier, dictionaries, etc.), we see this as a success.
Our model is competitive with the Scheible et al.
model with regard to recall, but shows subpar preci-
sion for all quotation types, indicating a remaining
weakness in the input encoding: for direct quota-
tions, quote characters should provide strong indi-
cators for quotation boundaries.

Note that these results, as well as the earlier
studies (Pareti et al., 2013; Scheible et al., 2016),
use unrealistic gold standard features. Therefore,
we ran a second version of NQD using only word
features, but no tags or structural information. The
model is clearly worse, but still surprisingly good at
61% F1. Not surprisingly, we see the highest drop
for indirect quotations, which are most sensitive
to syntactic structure. This indicates that NQD
does a reasonable job in a setting that is realistic in
general, and particularly so for non-standard corpus
varieties (e.g., historical and literary corpora) that
are often used in Digital Humanities.

STOP. To our knowledge, the results in Table 2
are the first modeling results on STOP. In com-
parison to PARC3, the results are noticeably lower.
It is still the case that direct quotations are easi-
est to find, but their F1 is somewhat lower than in
PARC3. Indirect quotations are much more diffi-
cult, and free indirect quotations essentially impos-
sible. This involves multiple factors: (a) STOP is

1Available from deepset at https://deepset.ai/
german-word-embeddings

https://deepset.ai/german-word-embeddings
https://deepset.ai/german-word-embeddings
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Model Features Overall Direct Indirect Mixed

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

Pareti et al. (2013) word, syn, domain 63 80 71 88 94 91 56 78 65 60 67 63
Scheible et al. (2016) word, syn, domain 71 79 75 93 94 94 64 73 69 68 81 74
NQD word, syn 71 67 69 94 82 88 64 64 64 70 59 64
NQD word 61 61 61 90 84 87 53 56 54 60 54 57

Table 1: Results on PARC3 (exact span match evaluation)

Model Features Overall Direct Indirect Free Indirect Reported

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

NQD word 51 66 57 78 83 80 33 49 40 01 04 01 46 58 51

Table 2: Results on STOP (exact span match evaluation)

Model Features Overall Direct Indirect Free Indirect Reported

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

Brunner (2013) RB word, syn 71 67 69 87 81 84 62 81 71 44 24 31 64 51 57
Brunner (2013) ML word, syn 63 77 69 85 88 87 47 62 53 29 63 40 45 56 50
NQD word, syn 60 78 68 77 86 82 52 69 60 31 68 42 34 56 43
NQD word 59 73 65 77 83 80 40 69 50 14 62 23 41 50 45

Table 3: Results on RWG (sentence-level accuracy evaluation)

significantly smaller, but more varied, than PARC3,
providing sparser training data; (b) STOP covers a
wider variety of quotation types, some of these are
intrinsically difficult to model – in particular free
indirect quotations (McHale, 2009).

RWG. The results in Table 3 show a picture that
is overall similar to PARC3:2 NQD does not out-
perform the state-of-the-art, but approximates it
closely despite the lack of corpus-specific tuning.
As in STOP, we see the lowest results for free indi-
rect quotations, showing that this class is generally
hard to classify. In general, even though this re-
source’s size and annotation are similar to STOP,
we see significantly higher numbers. This is mostly
due to the different evaluation we use for RWG to
compare to previous work: detecting the presence
of quotes is easier than identifying their spans.

On RWG, we also run a basic NQD with only
word form information. With this corpus and eval-
uation, this results in a drop of merely 3 points
F1 – due to losses on the indirect and free indirect
categories – which bolsters the potential of this
configuration.

2 Brunner (2013) does not report overall results. We com-
pute them as micro-averages over reported per-type results.

5 Error Analysis

To gain some insights into the failure modes of
NQD, we perform a brief qualitative analysis of
the cases where our model gave false predictions.

These errors can broadly be divided into three
categories: cases where the model predicts the
presence of extraneous quotations (false positives),
cases where the model fails to identify existing quo-
tations (false negatives), and cases where the model
correctly identified the presence of a quote, but did
not correctly determine its boundaries (boundary
mismatch, leading both false positives and false
negatives in our exact span evaluation). We focus
our error analysis on PARC, the previously best ex-
plored of our three corpora. In the examples, gold-
standard quotations are marked with red square
brackets, as above, and model-predicted quotations
are marked with blue parentheses.

5.1 False Positives

Among the false positives produced by our model
was a surprising number of quotations that are cor-
rect according to PARC’s guidelines, but which
are not annotated in the corpus. As an example,
our model correctly identifies the presence of an
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unannotated quotation in the following sentence:

(3) (Britain’s retail price index rose 0.7% in
September from August and was up 7.6%
for the year), the Central Statistical Office
said.

Outside of these cases, proper false positives seem
to be rare. Many of the false positives we found
were boundary mismatches, discussed separately
below.

5.2 False Negatives
Among the false negatives we analyzed, we found
that the model is most likely to miss “tricky” quota-
tions that are unusual in their grammatical structure.
In particular, it tends to miss a class of quotations
that are expressed as short noun phrases or adjecti-
val phrases embedded within a non-quotation sen-
tence such as

(4) Mandela, considered [the most prominent
leader of the ANC] remains in prison. But
[his release within the next few months] is
widely expected.

According to the PARC guidelines, these are cases
of quotations since they are attributable statements,
but they are difficult for the model to retrieve since
they are hard to distinguish from “non-quotation”
nominal phrases – in particular in cases like this
one, where there are not even overly realized speak-
ers. In STOP and RWG, these cases might arguably
not even be annotated as quotations.

5.3 Boundary Mismatches
A large proportion of the errors of NQD are bound-
ary errors, where the model identifies the presence
of a quotation, but fails to identify its exact bound-
aries. This can happen when our model correctly
predicts one quotation boundary, but not the other.

For example, in the following sentence, our clas-
sifier identified the first quotation’s beginning, but
not its end (it also failed to identify the second
quotation entirely – a false negative):

(5) He reiterated ([his opposition to such fund-
ing], but expressed [hope of a compro-
mise].

This type of error occurs both for noun phrases
and verb phrases and embedded sentences, but for
different reasons: noun phrases are difficult to rec-
ognize since they are not marked by punctuation as

are almost all other cases of quotation spans; verb
phrases, on the other hand, can become arbitrar-
ily complex. In the case above, the segmentation
problems are exacerbated by the fact that the noun
phrase quotation span occurs in a complex syntac-
tic environment involving coordination.

6 Conclusion

In this paper, we have argued that existing models
of automatic quotation annotation suffer from the
tight relation between corpus annotation and model
properties in particular in terms of model reusabil-
ity. As an alternative, we have presented a general
neural architecture, NQD, that can be trained “as
is” on various corpora that differ in terms of genre,
structure, and language. While the model does not
reach the state of the art on any particular corpus,
it performs close to it on all of them. Notably,
the model is also able to deal relatively graciously
with the absence of linguistic information. We will
release an implementation with pre-trained models.

As NQD makes independent predictions for
each token, it cannot model correlations and mutual
exclusions between labels, and there is no guaran-
tee for well-formed output class sequences. We in-
vestigated a number of extensions, including linear-
chain CRF layers that are effective for Named En-
tity Recognition (Lample et al., 2016), but did not
obtain improvements. We believe this is due to
the unbounded length of quotation spans which is
challenging for CRFs (Scheible et al., 2016).

The overall greatest challenge that NQD faces
is data scarcity — all existing corpora with manual
annotation are small, and our results show consis-
tently bad performance for infrequent quotation
types. In this situation, transfer learning seems
like a natural proposition, and our model makes it
possible for the first time to apply straightforward
transfer learning to quotation annotation. In future
work, we will explore this direction.
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