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Abstract

Very short texts, such as tweets and in-
voices, present challenges in classification.
Although term occurrences are strong in-
dicators of content, in very short texts, the
sparsity of these texts makes it difficult to
capture important semantic relationships.
A solution calls for a method that not only
considers term occurrence, but also han-
dles sparseness well. In this work, we in-
troduce such an approach, the Term Based
Semantic Clusters (TBSeC) that employs
terms to create distinctive semantic con-
cept clusters. These clusters are ranked
using a semantic similarity function which
in turn defines a semantic feature space
that can be used for text classification. Our
method is evaluated in an invoice classifi-
cation task. Compared to well-known con-
tent representation methods the proposed
method performs competitively.

1 Introduction

Bag-of-words approaches (Harris, 1954) to text
classification rely on measures of term occurrence,
or co-occurrence, such as ¢f -idf (Salton and Buck-
ley, 1988), log-likelihood (Dunning, 1993), and
mutual information (Church and Hanks, 1990).
Such methods, despite their enduring popularity,
are well known for their shortcomings in deal-
ing with numerous natural language issues, such
as morphological, semantic, and other types of
variation and ambiguity (Augenstein et al., 2017).
These issues become more critical in very short
texts, such as microblogs, chat logs, reviews and
invoices, because of the lack of data and context
that could provide more reliable measures and a
source for semantic disambiguation.
Distributional semantic models (Baroni and
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Lenci, 2010) such as pre-trained word embeddings
(Pennington et al., 2014; Grave et al., 2018) encode
words as fixed sized real-valued vectors. Embed-
dings may address the issues of data sparseness and
lack of extensive context, by providing a semantic
representation model that is not as sensitive to lit-
eral word occurrence in the data, thus providing se-
mantic information coverage of out-of-vocabulary
words (Bojanowski et al., 2017). This is because
embeddings may allow for any given word to be
mapped to a real-valued vector (e.g. by using char-
acter n-grams), even if it hasn’t been observed dur-
ing training. Additionally, embeddings implicitly
capture semantic, syntactic and lexical properties,
thereby representing implicit relationships. In this
way, embeddings provide a rich representation that
is otherwise difficult to attain. In a short text sce-
nario, despite early findings that a small corpus
size may not be sufficient for representing the re-
lationships between words and documents (Song
etal., 2014), availability of pre-trained embeddings
makes this issue less of a concern. Despite these
advantages and growing popularity, embeddings
trained on general language data usually do not
perform well in (i) specialised domains (Liu et al.,
2018; Kameswara Sarma, 2018) and in (ii) lan-
guages with richer morphological variation than
English (Zervanou et al., 2014). In this work, we
attempt to address these issues while exploiting
the advantages of pre-trained word embeddings in
a text classification task for very short, domain spe-
cific texts in a morphologically rich language, i.e.,
invoices in Dutch.

Our aim is to classify short invoice descriptions,
in such a way that each class reflects a differ-
ent group of products or services, as illustrated
in the examples in Table 1. When considering
such texts, the augmented information offered by
embeddings is crucial, because such texts abound
in ellipsis, grammatical errors, misspellings, and
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Text Class
Vervoer Almere-Lille Travel expenses
Transport Almere-Lille
600GB SAS interne harde schijf
600GB SAS internal hard drive

Automation hardware

Table 1: Example documents and classes

semantic variation. The inherent advantage of em-
beddings in dealing with out-of-vocabulary words
presents, at the same time, the disadvantage of
providing a text representation that does not fo-
cus on the importance of individual terms for the
classification. Conversely, measures of term oc-
currence focus heavily on individual term impor-
tance but are very sensitive to variation. In very
short text and domain-specific applications, where
occurring terms are both strong indicators of the
respective text class, as well as abound in vari-
ation, the preferred solution would combine em-
beddings to extracted terms. For example, for in-
voices, each occurring term in an invoice descrip-
tion is highly informative of the respective invoice
text class. Hence a method is required that not
only focuses on such terms, but also leverages the
flexibility of embeddings. Our proposed method
Term Based Semantic Clusters (TBSeC) attempts
to provide such a solution. The contribution of
this paper lies in (i) combining the advantages of
word embeddings with conventional term extrac-
tion techniques (ii) apply our method in an appli-
cation domain not previously investigated, namely
invoice text, which is characterised by specialised
terminology and very short, elliptical and/or un-
grammatical text, in a language that is morpholog-
ically richer than English and therefore posing an
additional challenge in statistical approaches.

TBSeC proposes a two-stage methodology. In
the first stage we use class-specific textual informa-
tion to build semantic concept clusters. Concept
clusters are vector representations of strongly re-
lated terms that are distinctive for a certain class.
In the second stage, we compute cluster similarity
scores on generated concept clusters for a given
description. This serves as a ranking function that
can be used in both unsupervised and supervised
learning tasks.

The remainder of this paper is organized as fol-
lows: section 2 discusses related work; section
3 elaborates on the TBSeC method; section 4 out-
lines the experimental setup and section 5 discusses
the results. We conclude with our main observa-

tions and suggestions for further work.

2 Related work

Text or document classification is defined as the as-
signment of text sections or entire documents to a
predefined set of categories (Feldman and Sanger,
2007). For this purpose, algorithms process vari-
ous types of text representations which are used as
features for describing content. To our knowledge,
invoice text classification has not been investigated
previously!. Work related to text classification of
short texts has been applied for microblogs (Singh
et al., 2016; Ren et al., 2016; Missier et al., 2016),
email subject classification (Alsmadi and Alhami,
2015) and spam detection (Bahgat et al., 2016).
Initial approaches to document content repre-
sentation used counts of term frequency and in-
verse document frequency, {f - idf (Salton and
Buckley, 1988), whereby frequently occurring
terms are assumed to represent document content
and inverse document term frequency scores se-
lect the most distinctive terms for a given doc-
ument within a collection. Various subsequent
approaches use variants of term occurrence mea-
sures with probabilities, such as x2-test, log
likelihood (Dunning, 1993) and mutual informa-
tion (Church and Hanks, 1990), or attempt to com-
bine statistical measures with various types of lin-
guistic and stop-word filters, so as to refine the
keyword results. Considerations regarding term
ambiguity and variation also led to rule-based ap-
proaches (Jacquemin, 2001) and resource-based
approaches exploiting existing thesauri and lexica,
such as UMLS (Hliaoutakis et al., 2009), or Word-
Net (Aggarwal et al., 2018). Knowledge poor sta-
tistical approaches, such as Latent Semantic Anal-
ysis (Deerwester et al., 1990) and Latent Dirichlet
Allocation (Blei et al., 2003) attempt to detect doc-
ument content in an unsupervised manner while
reducing the dimensionality of the feature space of
other bag-of-word approaches, but are also sensi-
tive to sparse data and variation in short texts.
The advent of large semantic resources in the
form of pre-trained word embeddings (Penning-
ton et al., 2014; Grave et al., 2018) gave rise to
a new line of approaches employing word embed-
dings for document content representation, such as
Word2Vec (Mikolov et al., 2013), FastText (Bo-
janowski et al., 2017), GloVe (Pennington et al.,

! An approach reported by Bartoli et al. (2010) focuses on
image features of scanned invoices rather than the invoice text.
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2014), and ELMo (Peters et al., 2018). Within this
line of approaches, methods have also been devel-
oped using word embeddings specifically for docu-
ment classification, such as task-oriented word em-
beddings (Liu et al., 2018) and word-sense based
embeddings (Jin et al., 2016). Embedding models
encoding words in documents or document sec-
tions have also been developed, such as Doc2vec
(Le and Mikolov, 2014), Infersent (Conneau et al.,
2017), Skip-thought (Kiros et al., 2015) and Fast-
Sent (Hill et al., 2016). Such type of embeddings
can be employed to calculate the semantic similar-
ity between texts, but the risk is that intricate word-
specific semantic relationships are lost. Meth-
ods originating from text similarity research using
word rather than document embeddings, such as
Kusner et al. (2015); Kenter and De Rijke (2015);
De Boom et al. (2016) attempt to address this issue.
Embeddings have been also used for keyphrase ex-
traction via supervised (Mahata et al., 2018) and
unsupervised (Bennani-Smires et al., 2018) ap-
proaches.

Finally, the problem of variation and data spar-
sity with very short texts has been addressed in
the past with query expansion approaches (Vech-
tomova, 2009). For text similarity purposes query
expansion techniques have been used for document
term augmentation, exploiting relevant search re-
sults and a matrix representation (Sahami and Heil-
man, 2006; Abhishek and Hosanagar, 2007) or a
combination of search results page count differ-
ence and lexico-syntactic patterns derived from
text snippets (Bollegala et al., 2007).

3 The TBSeC methodology

Our proposed method, TBSeC, consists of two
stages: In the first stage we use class-specific tex-
tual information to build semantic concept clus-
ters. Concept clusters are vector representations of
strongly related terms that are distinctive for a cer-
tain class. In the second stage, we compute cluster
similarity scores on generated concept clusters for
a given description, thereby forming a semantic
feature space. This serves as a ranking function
that can be used in both unsupervised and super-
vised learning tasks.
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3.1 Concept clustering

Concept clustering starts by extracting distinctive
terms, particular to a class?. Distinctive terms
are extracted based on normalized term frequency.
For a given class, word embeddings belonging to
found terms are used to form numerous clusters.
Hence, for each class multiple clusters are created
and each cluster can be seen as a group of terms
that are closely related. Each cluster is transformed
into a concept cluster vector by taking the respec-
tive word embeddings of terms and computing the
mean over each dimension. This process is illus-
trated in Figure 1, with actual examples included
and word embeddings indicated as vectors with
dots.

Specifically, the method works as shown in Al-
gorithm 1 for n distinct classes, £ most frequent
terms to be incorporated as cluster and normalized
term frequency (i.e., Bag-of-words, B;;) threshold
t. A more detailed description is given underneath
the algorithm. Algorithm line numbers refer to
steps as denoted in Figure 1.

Terms that provide a clear distinctive value to
a class are retrieved using term frequency and
L1 normalization over rows and columns. Terms
not appearing in the vocabulary of the embedding
model, or having a score below the normalized
threshold ¢ are filtered out. Word embeddings for
these selected terms are employed to create concept
clusters for each class using the DBSCAN cluster-
ing model (Ester et al., 1996). Terms can either
be included in a multi-term cluster through DB-
SCAN clustering or can be added as a single-term
cluster when occurring frequently enough based
on k. Ultimately, for each class ¢, concept clusters
are created as a single vector equal to the averaged
embedding of included terms.

3.2 Semantic cluster similarity

We adapt the similarity measure by Kenter and
De Rijke (2015), which is based on the BM25
framework (Robertson et al., 2009), to propose our
semantic cluster similarity measure. We combine
idf scoring with word by word cosine similarity to
calculate a weighted similarity score.

The Kenter and De Rijke (2015) function for
calculating semantic text similarity between two
sentences s; and s, is as defined as follows:

2]n the case of invoice classification, each class refers to a
specific expense type.
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Figure 1: Concept clustering process diagram. Upper panel: Preparing normalized bag of words using
descriptions by class. Lower panel: Employing found values to create concept clusters for a given class

fsts(shs-s) = (1)
Z IDF(w) - sem(w,ss) - (k1 +1) —
et sem(w, ss) + k1 (L—=b+b- 727)

Parameters k1 and b are inherited from the BM25
framework and serve as smoothing parameters. Pa-
rameter k; influences what semantic text similarity
value is approached asymptotically, thereby limit-
ing the influence that semantic term similarity can
have. Parameter b provides a degree of importance
to sentence length ratio a'j;s‘l, comparing sentence
length to the average sentence length avgsl of sen-
tences being ranked. The function sem returns the
semantic term similarity of term w with respect to
text s, as follows:

@

SE’I'T'L(’M)7 S) = In/aX fsem(w7 w/)
w’Es

where fgenm is a vector similarity function that is
typically computed as cosine similarity.

In TBSeC, the Kenter and De Rijke (2015) func-
tion is adapted to compare each sentence to all
composed concept clusters. In our implementa-
tion, parameter b is redundant, because each con-
cept cluster is represented as a single embedding
and the measure is computed by a single cosine
similarity score. Moreover, we normalize our sim-
ilarity score with the number of terms appearing
in the sentence to allow for use in a supervised
learning task. Finally, we remove term-specific
weighting, for four reasons: First, idf scoring im-
poses a hefty constraint on the terms that can be
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used because of the predefined vocabulary. Sec-
ond, we argue that the limited amount of terms
appearing in a description justifies the exclusion of
term-specific weighting. Each term in the descrip-
tion holds an important piece of information and
differentiating is not essential. Third, terms that
don’t hold considerable semantic importance are
not likely to steer the score towards an incorrect
class. Each concept cluster is created to serve as a
distinctive concept, thus making it unrealistic that
unimportant terms will relate to it well. Fourth,
terms in descriptions are subject to frequent mis-
spellings and personal abbreviations, making idf
scores inherently unreliable in this setting.

Based on the changes to Equation 1 discussed
above, our function for calculating semantic cluster
similarity fs.s between text s and concept cluster
c is defined as follows:

>

wEeEs

1
Is|

(sem(w,c) - t(w)) - (k1 + 1)

Jses(s,¢) = (sem(w,c) - t(w)) + k1

3

where ¢(w) is the term frequency of term w in the
text. The score is normalized by the number of
terms |s| in text s. In addition to smoothing pa-
rameter k1, two other hyper parameters semy, and
semysq are added to influence scoring. These hyper
parameters affect the result of sem as follows.
fsem(w,c)  if feem(w,c) > semyp
and sem,q = false
if fsem(w,c) > semyp
and sem,q = true
if fsem(w,c) < semun

C)

sem(w,c) = < fsem(w, c)?

0



Algorithm 1 Concept Clustering

Parameters:

k - No. of most frequent terms to be incorporated as cluster
t - Normalized bag of words threshold

Input:

D;,i€e{l,...,n} - Merged descriptions for each class
Output:

Ci,i€{l,...,n} - Concept clusters for each class

(O Bi; < Calculate bag of words using D;,
with found vocabulary set V,
ie{l,...,nkje{l,... |V|}

e (; « Instantiate empty concept cluster array,
with 2 € {1,... ,n}

e foric{l1,...,n}do
@) Bi. < L1 normalize B;. > Normalize by class
e end for

e for j € {1,...|V|} do

B.; < L1 normalize B, > Normalize by term

e end for
e foric {1,...,n}do > For each class
® Retrieve terms in vocabulary with a score > ¢
and occur more than once
° terms <— Array of found terms that appear in
word embedding vocabulary
G emb < Respective word embeddings of terms
° C'; < CreATE CLUSTERS(emb, k, terms)
e end for
e return C

e function CReaTE CLUSTERS(emb, k, terms)
° Instantiate DBSC AN clustering model with
eps, min_samples and
metric = cosine similarity
Fit emb on DBSC AN model
clusters < formed clusters as collections of
word embeddings
for term in k most frequent terms do
if term not used in clusters then
e < word embedding of term
cluster.append([e])
end if
end for
concepts. < empty concept cluster array
with ¢ € {1,..., |clusters|}
forc € {1,...,|clusters|} do
concepts. < coordinate mean over each
dimension
° end for
° return concepts
e end function

...@... @.

O

The semantic threshold semy;, serves as a way
to add a semantic similarity bound above which
it will be presumed to hold importance. Param-
eter semyy, achieves that when fse,(w, ¢) is un-
der the set threshold value, that sem(w, ¢) equals
0. Squaring fsem (w, c) through semg, increases
term importance of terms that are a near match and
lowers importance of terms that match to a lesser
extend. Squaring fsem(w,c) therefore promotes
the divergence of semantic similarity scores.

Semantic cluster similarity fs.s produces fea-
tures for use in supervised learning applications,
but the initial performance of TBSeC is measured
without a predictive model. For this reason, a sim-
ilarity score for each class is required in order to
rank the classes. This is calculated as scs for each
class i, by extracting the maximum score over all
concept clusters ¢ € C; (see C; in Algorithm 1):

ses(s, Cs) = gé%},{ fses(s,c) 5)

4 Experimental setup

This section covers data description, data process-
ing and the experimental set-up for our method.

4.1 Data

Our invoice data originate from an auditing com-
pany. In the data, as illustrated in the examples
in Table 1, each class refers to a particular type of
expenses. Available data is accessed from a data
directory, where each file is specific to a client.
For our purposes, only the invoice description and
class assignment are relevant. The volume of the
entire data directory amounts to approximately 1.5
million instances. There is a total of 111 unique
classes to which assignments are made. The five
classes that are least represented have 24, 106, 178,
418 and 452 entries respectively. Invoice descrip-
tions on average contain 2.80 terms, with a standard
deviation of 1.55.

4.2 Word embeddings

Pre-trained Dutch FastText word embeddings? are
used for sentence embedding construction and
for use in semantic similarity computations (Bo-
janowski et al., 2017). The FastText embedding
model was trained on Dutch Wikipedia.
3https://github.com/facebookresearch/

fastText/blob/master/docs/pretrained-vectors.
md
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4.3 Data processing

Descriptions are processed using a procedure sim-
ilar to the one used in training the FastText model.
Special characters are replaced with a whitespace,
stopwords in both the English and Dutch language
are dropped, digits are removed and finally terms
are retrieved by splitting on any sequence of uni-
code whitespace characters. When creating valida-
tion sets special care is taken to remove duplicates
and to include data from all individual clients and
all classes in a randomized manner. As a result,
largely balanced validation sets are formed with
data from various sources.

4.4 Learning algorithm

During supervised learning a Support Vector Ma-
chine# is used with regularization parameter C' =
0.1 and a linear kernel. This classifier performed
best when compared to other feasible classifiers
(e.g. random forest), given a local working mem-
ory bounded set-up, and allows for the use of sparse
matrices. Regularization parameter C regulates
the importance of focusing on correctly classifying
training samples in favor of realizing a hyperplane
with a large minimum margin. A high C' can lead
to overfitting, a low C' can lead to the inability to
learn meaningful decision boundaries. We set C' to
0.1 since it appears to offer a good balance on the
basis of the main validation set in terms of limited
running time and general performance.

4.5 Parameter tuning

Prior to including our framework in a supervised
learning task, we optimize the parameters (see sec-
tion 5.1 for results). We construct an initial set of
concept clusters using preset values £k = 5 and
t = 0.8. Parameters are set such that the model
offers a well-performing baseline with low chances
of overfitting. Initial concept clusters are used to
tune semantic cluster similarity parameters. This
order of parameter tuning is chosen, because it is
relatively straightforward to pick sensible values
for k£ and ¢, as opposed to fs.s hyperparameters.
Table 2 lists the attempted combinations of param-
eter settings for fgcs.

After parameter tuning for semantic cluster simi-
larity, employed concept clusters are reconsidered.
Values in the range from 5 to 50 with a step size
of 5 are attempted for the £ most frequent terms

4https://scikit-learn.org/stable/modules/
generated/sklearn.svm.LinearSVC.html
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Parameter Distinct values
k1 [1.2, 1.6, 2.0]
S€Msq [true, false]
semip [0,0.1,0.2,0.3,0.4]

Table 2: f,.s parameter settings

incorporated as cluster.

Validation is performed on a dataset with ap-
proximately 5,000 entries. Performance differ-
ences for fg.s are evaluated using three perfor-
mance measures: (1) accuracy, (2) ranking loss
and (3) standardized score. Accuracy is calcu-
lated by picking the class with the highest semantic
similarity score as predicted class and finding the
percentage of correctly classified instances. Rank-
ing loss is calculated by obtaining the rank of the
true class. The standardized score is calculated by
standardizing all scores for a given instance and
retrieving the score of the true class. By standard-
izing it can be observed how the score for the true
class is positioned against all other scores. Ulti-
mately, the objective is to maximize the accuracy
and standardized score and to minimize ranking
loss. Afterwards, we investigate the influence of
parameter k for concept cluster construction on the
basis of accuracy and dimension size. Accuracy is
calculated as an unsupervised score as well as a 5-
fold cross validated supervised score. Both scoring
methods use best values for k1, senyy, and semg,
which are found in the previous step. Results are
compared to determine an appropriate value for pa-
rameter k for use of features in a predictive model.

4.6 Invoice classification

We use the proposed semantic cluster similarity
matching method, to measure performance in a
classification task. We compare the performance
to existing methods and we test whether combining
methods leads to an increase in performance.

The parameters for generation of semantic clus-
ter similarity scores are set in accordance with val-
ues obtained during parameter tuning.

For validation, a dataset containing approxi-
mately 20,000 entries is used. The data is used to
perform 5-fold cross validation to determine over-
all performance. For all tests, we chose to use ac-
curacy as performance quality measurement. Only
one out of 111 classes shows significant imbalance,
which for testing overall method performance is
deemed negligible. Consequently, no balancing is
performed and no alternative quality measure, such
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Method Parameters Dimension size
tf - idf - 117,766
tf - 117,766
LSA # components: 100 100
LDA # topics: 200 200
FastText - 300
P-mean | P-values: {—o0,1,2,3,00} 1500

Table 3: Benchmark methods

[ ki [ semsq | semqn | acc [ loss [ std score

2.0 | true 0.0 | 21.46 | 28.08 1.5773
2.0 | true 0.1 | 21.46 | 28.09 1.5759
1.6 | true 0.0 | 21.26 | 28.12 1.5412
1.6 | true 0.1 | 21.24 | 28.13 1.5397
2.0 | true 02 | 21.24 | 2835 1.5127
1.6 | true 0.2 | 21.26 | 28.40 1.4739

Table 4: Best f.s configurations

as macro-averaged recall or F1-score is used.

Our benchmarks consist of other state-of-the-
art content feature generation methods: term fre-
quency (tf), tf - idf, Latent Semantic Analysis
(LSA, Deerwester et al. (1990)), Latent Dirichtlet
Allocation (LDA, Blei et al. (2003)), concatenated
power mean word embeddings (P-mean, Riicklé
et al. (2018)), and FastText sentence embeddings
(Bojanowski et al., 2017). All benchmark meth-
ods, parameter settings and dimension sizes are
shown in Table 3.

Feature transformation models (#f, tf-idf, LSA,
LDA) are trained on the entire training direc-
tory. Additionally, when using such transformation
models, words are stemmed to reduce inflectional
word forms to their word stem.

5 Results

This section discusses our results from parameter
tuning and the subsequent supervised classification
task.

5.1 Parameter tuning

5.1.1 Semantic cluster similarity

Parameter combinations have been attempted and
results have been retrieved for the used dataset. For
each quality measure, the 3 best scores have been
retrieved, returning all instances that conform to
that score. The results are shown in Table 4.
Table 4 tells us that squaring the semantic simi-
larity score works well. High accuracy scores are
retrieved, accounting for the fact that evaluations
are made based on maximum similarity scoring
instead of a predictive model. As we are able
to retrieve six configurations, we note that quality
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Figure 2: Concept clustering parameter tuning

measures tend to score parameter settings similarly.
The configuration with k1 = 2.0, semg, = true
and semy, = 0.0 across quality measures is the
best performing.

5.1.2 Concept clustering

Next, we study the influence of parameter k£ on
concept cluster construction. For each setting, we
present the accuracy scores and dimension sizes in
Figure 2.

With increasing k, more concept clusters of un-
used single terms are added. As a result, the di-
mension size steadily increases. We can see that
accuracy also shows an increasing trend with the
value of k. When more unused single terms are
added, we run the risk of overfitting. The ratio of
single terms to broader concept clusters increases
with k, thereby relatively shifting the focus from
broader concepts to frequently occurring distinc-
tive individual terms. This behaviour is also re-
flected in the graph, in the relative performance
difference between unsupervised and supervised
scoring.  Although supervised accuracy is un-
doubtedly higher with lower number of concept
clusters, both accuracy scores converge with in-
creasing k. By adding unused single terms, the
unsupervised ranking method is able to capture
an increasing number of edge cases, leading to a
convergence in performance. This behaviour is an
indication of overfitting.

After carefully considering the points above, we
proceed with value £k = 20. This choice appears
to offer a good compromise between generalizing
ability and direct performance gains. The primary



Methods testacc | testsd | train acc | train sd
Benchmark

tf - idf 43.93 0.89 82.79 0.07
tf 44.85 0.67 84.84 0.12
LSA 7.89 0.35 9.16 0.20
LDA 11.78 0.37 14.15 0.15
TBSeC 36.03 0.60 46.96 0.26
FastText 32.62 0.79 41.26 0.24
P-mean 39.78 0.63 90.33 0.1
Feature com-

binations

tf & TBSeC 47.83 0.54 86.17 0.13
tf & FastText 47.07 0.48 85.81 0.14
tf & TBSeC 47.86 0.42 86.38 0.10
& FastText

Table 5: Invoice classification results

goal of TBSeC is relating input to broader con-
cepts, which is why a relatively moderate value for
k is preferred.

5.2 Invoice classification

In this section, we discuss the results of our method
against state-of-the art benchmark methods in a su-
pervised invoice classification task. The results,
consisting of cross validated accuracy scores with
standard deviation (sd), are shown in Table 5 under
header ‘Benchmark’. The fact that term frequency
has comparable performance to tf - idf reinforces
the notion that all terms within an invoice descrip-
tion are important to take into account and that
term-specific weighting has limited value. More-
over, techniques that are concerned with dimen-
sionality reduction (LSA, LDA) perform worse,
arguably because they truncate a large amount of
information, most of which should have been re-
tained. Sentence embeddings and our method TB-
SeC perform relatively well, with accuracy scores
nearing performance levels of ¢f - idf and term
frequency. Furthermore, a large feature space
(1500D) that is achieved with P-mean embeddings
appears to have a positive influence on the amount
of information that is contained. It is also found
that methods ¢f - idf, term frequency and P-mean
have a tendency to overfit on the data, having cross-
validation training accuracy scores of over 80%. In
comparison, TBSeC and FastText have training ac-
curacy scores closer to test accuracy scores.
Combinations of techniques are attempted next
to improve performance. The feature combinations
are formed by concatenating the feature spaces
of each method. The most successful combina-
tions are highlighted in Table 5 under header ‘Fea-
ture combinations’. Combining feature generation
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techniques leads to surprising results. P-mean per-
forms well as sole feature, but doesn’t yield better
results when combined with other techniques. In
contrast, FastText does pair well with other tech-
niques and improves performance levels. More-
over, when TBSeC is used performance is even bet-
ter. Term frequency in combination with both TB-
SeC and FastText does also improve performance,
although slightly. TBSeC and FastText are more
likely to be complementary as soon as TBSeC en-
compasses lower number of concept clusters, but
this doesn’t guarantee better overall performance.
In the current configuration it manages to perform
better, but the difference is not major. The tendency
to overfit for tf - idf, term frequency and P-mean
is a likely cause for some of the other unsuccessful
feature combinations.

6 Conclusion

A new feature generation framework TBSeC was
presented that is suited to the prediction of well
defined classes on the basis of very short texts
(2.8 words on average). Generated features were
proven to be able to function well independently
and jointly with traditional feature generation tech-
niques. Performance and reliability was improved
by pairing multiple disjoint feature generation tech-
niques, including TBSeC. A combination of highly
specific features with more flexible ones was found
to lead to the best results. Combinations of fea-
tures were found to reach a bound in effectiveness,
highlighting that methods ultimately start imped-
ing each other. Businesses can use our method to
derive actionable insights from online user gener-
ated content such as firm-specific tweets, online re-
views and customer chats logs. Future work could
test TBSeC on larger texts, since it offers more
room to differentiate from sentence embeddings.
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