
Proceedings of Recent Advances in Natural Language Processing, pages 785–794,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_091

785

Neural Feature Extraction for Contextual Emotion Detection

Elham Mohammadi, Hessam Amini and Leila Kosseim
Computational Linguistics at Concordia (CLaC) Lab

Department of Computer Science and Software Engineering
Concordia University, Montréal, Québec, Canada
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Abstract

This paper describes a new approach for
the task of contextual emotion detection.
The approach is based on a neural feature
extractor, composed of a recurrent neural
network with an attention mechanism, fol-
lowed by a classifier, that can be neural
or SVM-based. We evaluated the model
with the dataset of the task 3 of SemEval
2019 (EmoContext), which includes short
3-turn conversations, tagged with 4 emo-
tion classes. The best performing setup
was achieved using ELMo word embed-
dings and POS tags as input, bidirec-
tional GRU as hidden units, and an SVM
as the final classifier. This configuration
reached 69.93% in terms of micro-average
F1 score on the main 3 emotion classes, a
score that outperformed the baseline sys-
tem by 11.25%.

1 Introduction

Emotions are an intricate part of human commu-
nication. Being able to interpret and react to the
emotions of others allows one to better communi-
cate. Emotion information can be extracted from
a variety of physiological sources, such as elec-
troencephalography (EEG) signals (Zhang et al.,
2016), skin temperature (Li and Chen, 2006),
speech signals (Trigeorgis et al., 2016) and fa-
cial expressions (Mao et al., 2015), as well as text
(Yassine and Hajj, 2010).

The rise of social media and the availability
of human-written online diaries, blog posts, and
comments has lead to an increase in research on
the automatic detection of sentiment and emotion
from textual data.

Sentiment analysis and opinion mining can
range from coarse-grained binary classification of

texts into positive or negative classes to finer-
grained classification into a variety of emotion cat-
egories, such as happy, sad, angry, and scared.
Such a classification is useful in business and
marketing (Medhat et al., 2014), and a variety
of downstream NLP applications, such as text-to-
speech, to maintain the emotion present in text,
and human-computer interaction in order to take
into account the emotional state of users and
make responses more human-like (Hirat and Mit-
tal, 2015).

Fine-grained emotion detection based solely on
text is a challenging task. As only linguistic cues
are available, facial expressions and voice fea-
tures, which are known to be discriminating (Poria
et al., 2016), cannot be used. In addition, several
emotions can be expressed textually by the same
linguistic cues, such as emotion keywords, inter-
jections, and emojis (Liew and Turtle, 2016). Fi-
nally, many pieces of text, especially online com-
ments, posts, and tweets are too short to allow for
correct classification. These challenges highlight
the importance of using contextual information in
order to detect the emotion conveyed in a piece of
text.

The goal of this work is to investigate the effec-
tiveness of different models using neural networks
and Support Vector Machines (SVM) for contex-
tual emotion detection in textual conversations.

2 Related Work

Textual emotion detection has typically been ad-
dressed as a multi-class classification task, where
a text is classified into different emotional cat-
egories, ranging from basic emotions to finer-
grained emotional classes. Studies focusing on
emotion detection have made use of different cor-
pora and different evaluation metrics.
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Dini and Bittar (2016) broke down the task
of emotion detection from tweets into a cascade
of decisions: classifying tweets into emotional
and non-emotional categories, and then tagging
the emotional tweets with the appropriate emo-
tion label. For the latter, they compared a sym-
bolic system using gazetteers, regular expressions,
and graph transformation, with a machine learning
system using a linear classifier with words, lem-
mas, noun phrases, and dependencies as features.
Using their collected corpus of emotional tweets,
the rule-based approach achieved an F1 score of
0.41, while the machine learning approach yielded
an F1 score of 0.58 on 6 emotion classes.

Mohammad and Bravo-Marquez (2017) made
use of an SVM regression model to determine the
intensity of 4 emotions: anger, fear, joy, and sad-
ness in a dataset of tweets that they have previ-
ously collected and annotated. As features, they
used word and character n-grams, word embed-
dings trained using the word2vec skip-gram model
(Mikolov et al., 2013), and affect-related lexical
features. Using the Pearson correlation coefficient
as evaluation metric, they demonstrated that word
embeddings yield better results than n-gram fea-
tures. They achieved their best average result of
0.66, using a combination of word embeddings
and lexical features.

Abdul-Mageed and Ungar (2017) also collected
their own dataset of emotional tweets using emo-
tion hashtags. They trained word embeddings on
the training data, employed a gated recurrent neu-
ral network (Cho et al., 2014) as a classifier and
achieved an average F1 score of 0.87 over 3 emo-
tion datasets, labelled with 8 emotions.

Abdullah and Shaikh (2018) proposed an ap-
proach to detect the intensity of affect in tweets.
Their features include feature vectors extracted us-
ing the AffectiveTweets package of Weka (Holmes
et al., 1994), as well as word2vec and doc2vec (Le
and Mikolov, 2014) embeddings. They developed
three models using different subsets of the feature
set as input to either a dense feed-forward network
or a Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) network. Using the
dataset of SemEval 2018 task 1 (Affect in Tweets)
(Mohammad et al., 2018), they achieved their best
Spearman correlation score of 0.69 over 4 emo-
tions by averaging over the outputs of the three
models.

More recently, Khanpour and Caragea (2018)

focused on domain-specific emotion detection.
They created a dataset of 2107 sentences taken
from online forums on the Cancer Survivors
Network website1. In order to combine the
strengths of lexicon-based and machine learn-
ing approaches, they proposed a model that uses
word2vec embeddings as input to a Convolutional
Neural Network (CNN) (LeCun et al., 1999). The
CNN generates feature vectors which are then
augmented with domain-specific lexical features.
The combined features are then used as input to
an LSTM network which classifies the texts into 6
different emotion categories.

While most of the literature has focused on
the detection and assessment of emotions in on-
line textual data, few researchers have investigated
emotion detection in textual conversations. We ar-
gue that the detection of emotions from dialogues
poses new challenges compared to emotion detec-
tion from monologues, as the utterances made by
different interlocutors can influence differently the
emotional state of a speaker.

In this work, we investigate the effectiveness of
neural feature extraction for the task of emotion
detection in short dialogues.

3 Dataset and Task

The dataset used in this work is taken from Chat-
terjee et al. (2019b). It consists of short 3-turn
dialogues between two speakers (turn 1 uttered by
speaker 1, turn 2 uttered by speaker 2, and turn 3
uttered by speaker 1 again). Table 1 shows two
samples of the dataset2.

The goal is to detect the emotion of speaker 1 in
turn 3, taking into account the previous turns. The
data is annotated with 4 emotions: happy, angry,
sad, and others. In order to simulate a real-life
task, the distribution of the labels in the dataset is
highly imbalanced: 50% of the training data be-
longs to the others class, while 14%, 18%, and
18% of the training data is dedicated to classes
happy, angry, and sad, respectively. The test and
development sets are even more imbalanced, with
85% of the samples labelled as others. Table 2
summarizes some statistics of the dataset.

1https://csn.cancer.org/
2Samples are taken from https://competitions.

codalab.org/competitions/19790.

https://csn.cancer.org/
https://competitions.codalab.org/competitions/19790
https://competitions.codalab.org/competitions/19790
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ID Turn1 (Speaker1) Turn2 (Speaker2) Turn3 (Speaker1) Label (of Turn3)
156 You are funny LOL I know that. :p , happy
187 Yeah exactly Like you said, like brother like sister ;) Not in the least others

Table 1: Two sample dialogues from the EmoContext 2019 dataset.

Dataset Label # of Samples Percentage Average # of Tokens
Turn 1 Turn 2 Turn 3

Train

happy 4243 14% 4.873 7.195 3.825
angry 5506 18% 5.107 6.859 5.457
sad 5463 18% 4.608 6.450 4.829

others 14948 50% 4.232 6.493 4.153
All 30160 100% 4.550 6.650 4.467

Development

happy 142 5% 4.761 7.444 3.690
angry 150 5% 4.647 7.347 4.867
sad 125 5% 4.624 6.200 5.192

others 2338 85% 4.245 6.546 4.143
All 2755 100% 4.311 6.620 4.207

Test

happy 284 5% 5.063 6.845 3.493
angry 298 5% 4.470 6.456 4.856
sad 250 5% 5.000 6.632 4.936

others 4677 85% 4.279 6.601 4.143
All 5509 100% 4.362 6.607 4.184

All

happy 4669 12% 4.881 7.181 3.801
angry 5954 16% 5.063 6.851 5.412
sad 5838 15% 4.626 6.452 4.842

others 21963 57% 4.243 6.521 4.150
All 38424 100% 4.506 6.642 4.408

Table 2: Statistics of the EmoContext 2019
dataset.

4 The Model

Figure 1 shows the overall architecture of our
model for the task of contextual emotion detection.
The model is composed of two main components:
1) the neural feature extractor and 2) the classifier.

4.1 The Neural Feature Extractor

As shown in Figure 1, the neural feature extrac-
tor is a recurrent neural network with an attention
mechanism. The feature extractor is responsible
for creating dense vector representations for each
dialogue turn. As a result, the model uses 3 feature
extractors, one for each dialogue turn.

Each neural feature extractor is composed of
an input layer, a recurrent layer, and an attention
layer, explained below.

The Input Layer takes as input the vector rep-
resentations of each word in the correspond-
ing dialogue turn. Each dialogue turn is a
sequence of tokens, represented as a vector
[xi,1, xi,2, . . . , xi,t, . . . , xi,n], where xi,t is the cor-
responding vector for the t-th word in the i-th dia-
logue turn, and n is the length of the i-th turn. The
vector representation for each token (xi,t) is com-
posed of the word embedding corresponding to the
token, concatenated with a one-hot representation
of the token’s part-of-speech (POS) tag.

The Recurrent Layer takes as input the token
vectors ([xi,1, xi,2, . . . , xi,t, . . . , xi,n]), and pro-
cesses them in a forward and a backward passes.
In the forward pass, the content value of the hidden
layer at a specific time-step is calculated using the
value of the input at the current time-step, and the
content value of the hidden layer in the previous
time-step.

Equation 1 shows how the content value of the
hidden layer is calculated at a specific time-step t,
where xt represents the input value in the current
time-step, and ht and ht±1 represent the content
value of the hidden node in the current and pre-
vious/next time-steps (in the forward or backward
pass), respectively, and fh is the function that cal-
culates the value of ht using xt and ht±1. Subse-
quently, the output of the hidden layer is calculated
using Equation 2, where yt is the output of the hid-
den layer at time-step t, and fy is the function that
calculates the output value based on ht.

ht = fh(xt, ht±1) (1)

yt = fy(ht) (2)

The Attention Layer is a function that auto-
matically assigns weights to the output of the re-
current layer at each time-step, and calculates the
weighted sum of the outputs using their corre-
sponding weights (Vaswani et al., 2017). Follow-
ing several works that have shown significant im-
provement in text classification with the use of
attention (e.g. Yang et al., 2016; Zhou et al.,
2016; Wang et al., 2016; Cianflone et al., 2018),
we incorporated an attention mechanism in our
contextual emotion detection framework. Equa-
tion 3 shows the overall mechanism of our atten-
tion layer, where ωt′ represents the corresponding
weight for the output of the recurrent layer at time-
step t′ in, and n is the number of time-steps (i.e.
the length of the dialogue turn).

Attention =
n

∑

t′=1

yt′ωt′ (3)

In our model, the weights are calculated by
applying a single N -to-1 feed-forward layer on
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Figure 1: Architecture of the model.

the output of the recurrent layer at each time-step
(where N is the size of the output of the recurrent
layer), concatenating the results, and applying a
softmax over them. Equations 4 and 5 show the
mechanisms used to calculate the weights, where
w corresponds to the weights in the single-layer
neural network, and νt is the single value, which
is the result of feeding yt to the fully-connected
layer.

νt = yt ×w (4)

ω = Softmax([ν1, ν2, ν3, . . . , νn]) (5)

4.2 The Classifier

As shown in Figure 1, we experimented with two
types of classifiers at the output layer: A fully-
connected neural network, followed by a softmax
activation function, and an SVM, which takes as
input the neural representations generated by the 3
latent feature extractors for each dialogue turn.

The neural classifier is trained jointly with the
neural feature extractors, while the SVM classifier
is completely trained after each training epoch of
the neural network, using the features extracted by
the 3 neural feature extractors.

5 Experimental Setup

The neural network components of our model
were developed using PyTorch (Paszke et al.,
2017) and the SVM was developed using the
Scikit-learn library (Pedregosa et al., 2011). In this
section, we will explain the different setups that
we experimented for the task of contextual emo-
tion detection.

5.1 Word Embeddings

In order to test our model, we experimented with
two different pretrained word embeddings. As the
first word embedder, we chose GloVe (Pennington

et al., 2014), which is pretrained on 840B tokens
of web data from Common Crawl, and provides
300d vectors as word embeddings. As our sec-
ond word embedder, we experimented with ELMo
(Peters et al., 2018), which produces word embed-
dings of size 1024, and is pretrained on the 1 Bil-
lion Word Language Model Benchmark3 (Chelba
et al., 2014).

The main reason for choosing these two word
embedders was to evaluate the effect of their em-
bedding mechanisms for our task. As opposed to
GloVe which assigns a word embedding to each
token, the ELMo word embedder calculates the
embedding for each token from its constituent
characters by also taking into account its textual
context. We suspected that this approach would
lead to better results in our task (see Section 6).

5.2 POS Tags

The spaCy library4 was used for tokenization and
POS tagging, and the Penn Treebank tagset stan-
dard (Marcus et al., 1993) was followed for assign-
ing POS tags to tokens. This lead to one-hot vec-
tors for POS information of size 51.

5.3 Recurrent Units

Long Short-term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent
Units (GRU) (Cho et al., 2014) were both exper-
imented with as the building blocks of the recur-
rent layer. For both LSTM and GRU, 2 layers of
25 bidirectional recurrent units were stacked.

5.4 Neural Network Optimization

The Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 10−4 was used to train the neu-

3The selected versions of GloVe and ELMo lead to the
best results in our task. We also experimented with other ver-
sions of the two, but their performances were inferior.

4https://spacy.io/

https://spacy.io/
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ral network. Cross-entropy with class weights was
used as the loss function. In order to handle the
imbalanced class distribution in the dataset (see
Table 2), the corresponding weight for each class
was calculated proportional to the inverse of the
number of samples for that class in the training
data. This way, more penalty was applied to the
network when an error was made on a sample from
a minority class rather than a more frequent one.

Minibatches of size 32 were used during train-
ing and testing, and zero-padding was applied in
order to handle different input sequence lengths.
In order to minimize padding, samples with sim-
ilar average lengths of tokens over the three turns
were put in the same batch.

Finally, in order to avoid the exploding gradient
problem (Pascanu et al., 2012), gradient clipping
with a norm of 0.5 was applied.

5.5 SVM Hyperparameters

The SVM utilizes a polynomial kernel with de-
gree of 4. To set the parameter γ, the svm.SVC
model in Scikit-learn was initiated with its param-
eter gamma set to auto, which automatically sets
γ to the inverse of the number of features extracted
by the neural feature extractor. In our model, this
value was set to 1/150, since each of the three neu-
ral feature extractors extracts 50 features from the
dialogue turn that it handles.

5.6 Overall Training Process

As indicated in Section 4.2, the neural classifier
was trained jointly with the neural feature extrac-
tors, while the SVM was trained separately after
each epoch, using the extracted features on the
training data.

The models with either neural or SVM classi-
fier were trained for 50 epochs, and the model’s
parameters were saved after each training epoch.
The optimal parameters were then picked as the
ones that led to the highest micro-average F1 score
on the three main emotion classes (all except class
other) on the development dataset. This final
model with the optimal trained parameters was
then evaluated on the test set.

6 Results

The official evaluation metric used at the Emo-
Context shared task is the micro-average F1 score
over the three main emotion classes, i.e. happy,
angry, and sad (ignoring the 4th class, others).

Figure 2 shows the performance of each model
on the development dataset, throughout the train-
ing process. As Figure 2 shows, using both the
neural classifier and the SVM classifier, the mod-
els with GRU as the recurrent units and ELMo em-
beddings as input features were generally superior
to the others.

The notation <type-of-recurrent-unit>+<type-
of-classifier> with <type-of-input-features> is
used in the rest of the paper, to refer to each
model; for example, LSTM+NN with GloVe refers
to the model that uses LSTM units in the recur-
rent layer, fully-connected neural layer as clas-
sifier, and GloVe embeddings as input; whereas
GRU+SVM with ELMo+POS denotes the version
of our model with GRU units in the recurrent layer,
SVM as the classifier, and ELMo embeddings and
one-hot encoded POS tags as input.

As indicated in Section 5.6, the final versions
of the models were chosen based on their perfor-
mance on the development dataset, i.e. for each
model, the final set of trained parameters were the
one that yielded the maximum micro-average F1
score on the three emotion classes on the develop-
ment dataset.

The results achieved from our models are also
compared with the baseline system, provided by
the EmoContext 2019 shared task (Chatterjee
et al., 2019a). The baseline system is composed
of a neural network with 128 LSTM units in the
hidden layer, and as input features, uses the GloVe
word embeddings, pretrained on 6 billion tokens
from Wikipedia 2014 and the Gigaword 5 corpus5.

Table 3 shows the performance of each model6,
where the best micro-average F1 scores are high-
lighted in bold. The results show that the model
GRU+SVM with ELMo yields the best perfor-
mance of 73.03% on the development data, while
the model GRU+SVM with ELMo+POS outper-
forms all the other models on the test dataset with
a micro-average F1 score of 69.93%, by being
marginally better than GRU+SVM with ELMo7.

The results also show that, with the exception
of the two models LSTM+NN with GloVe and
GRU+NN with GloVe which have inferior perfor-

5https://catalog.ldc.upenn.edu/
LDC2011T07

6At the time of writing this paper, the F1 score of the base-
line model had not been released for each emotion class.

7The result that we submitted to the EmoContext shared
task was slightly higher than the current result (70.72%),
which was achieved by also using the features from the de-
velopment dataset to train the SVM classifier.

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07


790

(a) With the neural classifier. (b) With the SVM classifier.

Figure 2: Performance of the model (in micro-average F1 score over the three main emotion classes) on
the development dataset, as a function of the number of training epochs

mance than the baseline system on the test dataset,
all the other models significantly outperform the
baseline model on both development and test data.

7 Discussion

To better understand the results, we analyzed the
effect of different components of the model.

7.1 Effect of Input Features

The results in Table 3 demonstrate that the models
that use ELMo as word embeddings have a sig-
nificantly higher performance than the ones with
GloVe. We believe that this is due to two main rea-
sons: 1) The ELMo word embedder is character-
based, which allows it to better handle out-of-
vocabulary words, and 2) ELMo takes into ac-
count the textual context of the token when ex-
tracting the word embedding.

Table 3 also shows that the use of POS tags
leads to a significant improvement with the models
that utilize GloVe word embeddings. On the other
hand, for the models that use ELMo embeddings
as input, this is not the case. As Table 3 shows,
in several occasions, the use of POS tags has even
reduced the performance of ELMo-based models.
We believe that, in the case of GloVe, where the
word embeddings are context-independent, POS
tags can improve token representations to also take
into account the textual context in which the to-
kens have occurred. However, since ELMo al-
ready takes into account the textual context when
extracting the token representations, POS tags do
not help much and can even be redundant in some
cases.

7.2 Effect of the Recurrent Units

The results in Table 3 show that for the models that
incorporate ELMo embeddings, the ones that use
GRU in their recurrent layer significantly outper-
form the ones with LSTM; however, this behav-
ior cannot be observed in GloVe-based models, as
we can see several cases, where the LSTM-based
models are slightly better.

It could be concluded that, for the current
task, since GloVe word embeddings are context-
independent, a stronger recurrent unit is required
to capture the context, while in the case of ELMo,
where context is already taken into account, a sim-
pler recurrent unit such as GRU is enough while
being less prone to overfitting.

7.3 Effect of the Classifiers

Table 3 shows that, in almost all cases, the models
with the SVM classifier significantly outperform
the ones with the neural classifier. We believe
that, although the neural network may have been
able to reach similar results as the SVM, the lat-
ter reached this performance using less fine-tuning
due to its explicit design to optimize the margin
size between classes.

On another note, Figure 2 shows that the models
with the SVM classifier were significantly more
robust and demonstrated much less performance
fluctuation during training than the ones with the
neural classifier. We believe that this is due to the
more deterministic nature of SVM in comparison
to the neural networks.

However, the most important drawback of the
SVM was the training time: since the SVM classi-
fier was trained separately from feature extractors,
training it entailed additional training time to the
model. All being said, we believe that, if training
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Model Input Feature F1 Score on Development Data F1 Score on Test Data
happy angry sad Micro happy angry sad Micro

BASELINE – – – 58.61 – – – 58.68

LSTM+NN

GloVe 53.45 67.37 59.39 60.40 52.05 67.02 52.89 57.60
Glove+POS 58.33 68.28 62.54 63.15 58.03 68.68 59.77 62.35
ELMo 63.88 67.61 69.14 66.74 62.07 65.14 67.37 64.74
ELMo+POS 59.03 65.92 68.42 64.13 63.95 62.06 68.56 64.54

GRU+NN

GloVe 47.79 65.67 66.19 59.36 51.34 65.80 58.04 58.26
Glove+POS 57.94 68.39 64.74 63.77 61.24 69.27 57.82 62.99
ELMo 64.26 67.58 74.71 68.34 63.32 66.21 69.73 66.33
ELMo+POS 65.48 65.15 73.12 67.46 62.20 66.40 71.64 66.53

LSTM+SVM

GloVe 54.85 67.06 66.91 65.83 53.00 68.05 57.30 62.84
Glove+POS 61.30 68.95 66.20 66.46 60.30 67.32 60.84 63.26
ELMo 65.64 65.91 73.44 68.94 63.78 65.25 70.10 66.45
ELMo+POS 62.31 68.44 68.73 67.25 63.37 64.09 68.86 67.28

GRU+SVM

GloVe 50.21 68.31 71.00 65.08 50.22 70.26 60.13 62.02
Glove+POS 52.77 68.73 66.67 65.42 56.00 69.68 57.96 63.11
ELMo 67.33 67.83 75.40 73.03 65.08 68.83 73.07 69.39
ELMo+POS 68.21 66.26 74.46 70.03 64.71 69.13 71.05 69.93

AVERAGE 59.55 67.34 68.82 65.96 59.42 67.07 64.07 64.22

Table 3: The performance of each model on the development and test datasets, in terms of F1 score
on each emotion class, and micro-average F1 over the three main emotion classes. The AVERAGE is
computed over the proposed models and does not include the baseline.

time is not a concern, the SVM classifier is a better
option than the neural one.

An interesting finding regarding the SVM clas-
sifier is that, in contrast to the neural network
where applying class-weights to the loss function
helped improve the performance of the models,
applying class-weights to the SVM decreased its
performance.

7.4 A Closer Look at Emotion Classes

The row labelled AVERAGE in Table 3 provide
information regarding the difficulty of detecting
each class. Table 3 shows that, among the three
main classes, happy, angry, and sad, the class
happy was the most difficult to detect.

Table 2 shows that the low average F1 score for
class happy is probably due to the significantly
smaller number of samples with this class in the
training data (14%) in comparison to the sam-
ples from the other two emotion classes (18% and
18%). Although the weighted loss functions (see
Section 5.4) somehow managed to handle the im-
balanced class distribution in the data, the optimal
weights are not necessarily proportional to the in-
verse of the frequency of classes.

7.5 Quality of the Extracted Neural Features

To better understand the contribution of the ex-
tracted neural features from the feature extractors,
we calculated the mutual information between the
values of each neural feature and the classes.

Figure 3 shows the average and the standard de-
viation of the mutual information between the fea-
tures extracted from each neural feature extractor
in each model and the classes in the training data.
Since both the neural and the SVM classifiers use
the same set of neural features, we did not differ-
entiate between models with similar neural feature
extractors and different classifiers.

Figure 3: The average mutual information be-
tween the features of each dialogue turn, extracted
by each neural feature extractor, and the classes.
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As Figure 3 shows, in all cases, the features ex-
tracted from the third turn of the conversation have
the highest mutual information with the classes,
and the ones from the second turn have the lowest.
This agrees with the nature of the dataset, where
the label is assigned to the emotion of speaker 1
(who uttered dialogue turns 1 and 3) after the third
turn is uttered. This also indicates that the nature
of emotion detection in the context of dialogues
is different from that in monologues in two ways:
not only do the utterances by different speakers
contribute differently to the emotional state of a
speaker, but also the timing of the utterances by
the same speaker has an impact on the contribu-
tion of that utterance to the emotion classification.

Figure 3 shows that the difference in average
mutual information between the extracted features
and the emotional classes are higher for features
from the third (i.e. the most recent) dialogue
turn. As expected, the features from the ELMo-
based models have significantly higher mutual in-
formation with the classes than the ones from the
GloVe-based models. The features from the third
dialogue turn in models with GRU have slightly
higher mutual information than the ones from the
models with LSTM. However, the standard devia-
tion between the features extracted by the GRU-
based models are significantly smaller than the
ones with LSTM, showing that between the mod-
els with LSTM and the ones with GRU, the fea-
tures extracted from the models with GRU had
more similar amount of contribution to the clas-
sification task than the ones from the LSTM. This
has led to the GRU-and-ELMo-based models out-
performing the others.

A surprising finding is that the neural features
extracted by the GRU-based models from the sec-
ond dialogue turn have the least mutual informa-
tion with the classes in comparison to the ones
from the other models. Observing this, we ex-
perimented with our classifiers by disregarding the
neural features from the second turn; however, this
lead to a slight performance drop. We hypoth-
esize that, although the neural features from the
second dialogue turns bring only a small contribu-
tion to the classification, the GRU-based models
tend to focus more on the features from the other
two turns. This leads to the second feature extrac-
tor being less focused upon, and as a result, being
less trained than the ones from other models.

8 Conclusion and Future Work

In this paper, we proposed a model for the task
of contextual emotion detection. We evaluated
our model with the EmoContext 2019 shared task
dataset (Chatterjee et al., 2019b), which consists
of 3 turn conversations tagged with one of the la-
bels: happy, sad, angry, and others, based on the
emotion present in the last dialogue turn.

The proposed model utilizes an attention-based
recurrent neural network. We experimented with
GloVe and ELMo embeddings, alongside POS
tags as input, LSTM and GRU as recurrent units,
and a neural or an SVM classifier. The best re-
sult on the test dataset was achieved with ELMo
and POS tags as input, GRU as recurrent units,
and SVM as the final classifier. Using this setup,
we reached a performance of 69.93% in terms of
micro-average F1 score which is a significant im-
provement over the baseline of 58.68%.

Three future directions can be proposed. The
first is to investigate a more effective way of han-
dling the imbalanced distribution of labels in the
dataset. As a example, methods for finding the op-
timal class-weights for training the models can be
investigated.

Secondly, the use of different number of fea-
tures for each dialogue turn can be studied. As
shown in Figure 3, features extracted from differ-
ent dialogue turns had different levels of contribu-
tion to the final classification. In that case, more
features could be extracted from turns 3 and 1 (ut-
tered by the same speaker) in comparison to turn 2,
which has the least contribution to the classifica-
tion.

Lastly, knowing that the SVM classifier is capa-
ble of outperforming the neural one, studies can be
performed in order to make the extracted features
more suitable for the SVM classifier.
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