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Abstract

End-to-end neural approaches are becom-
ing increasingly common in conversa-
tional scenarios due to their promising
performances when provided with suffi-
cient amount of data. In this paper, we
present a novel methodology to address
the interpretability of neural approaches
in such scenarios by creating challenge
datasets using dialogue self-play over mul-
tiple tasks/intents. Dialogue self-play al-
lows generating large amount of synthetic
data; by taking advantage of the com-
plete control over the generation process,
we show how neural approaches can be
evaluated in terms of unseen dialogue pat-
terns. We propose several out-of-pattern
test cases each of which introduces a nat-
ural and unexpected user utterance phe-
nomenon. As a proof of concept, we
built a single and a multiple memory net-
work, and show that these two architec-
tures have diverse performances depend-
ing on the peculiar dialogue patterns.

1 Introduction

In recent years, there has been an increasing re-
search on neural approaches for conversational
systems. Such approaches include the realiza-
tion of full end-to-end systems (Serban et al.,
2016; Bordes et al., 2017), the capacity to incor-
porate or query structured knowledge sources into
neural architectures (Eric and Manning, 2017),
the use of zero-shot learning or of synthetic di-
alogues generation techniques to mitigate effort
of domain portability (Zhao and Eskenazi, 2018;
Guerini et al., 2018). Although state-of-the-art
neural models achieve high performances in many
domains, the sheer size of data they require repre-

sents a bottleneck, especially for under-resourced
dialogue domains. In addition, it is hard to inter-
pret their behaviour since neural models are in-
trinsically opaque. In this paper we propose a
novel methodology to address the aforementioned
problems by synthetically creating conversation
datasets with peculiar characteristics. In partic-
ular, we focus on (i) scalable and portable ap-
proaches for generating dialogues from scratch in-
volving complex and structured knowledge, and
(ii) strategies for isolating and evaluating specific
reasoning capabilities of neural architectures using
synthetic challenge sets. To this end, we utilize
dialogue self-play strategies (Shah et al., 2018)
simulating task oriented dialogues between a con-
versational agent and a user. Dialogue simulation
grants complete control over the generated data al-
lowing building special test cases, each of which
introduces a natural and unexpected user utterance
phenomenon, that has never been seen at training
time. It should be noted that the use of natural data
would require manual annotation/selection of ex-
amples for each phenomenon of interest, making
this goal intractable.

Another problem with current datasets is the
lack of exhaustiveness: they usually focus on one
specific domain intent. There are few datasets cov-
ering multiple intents in the same scenario, but
usually these intents are very different from one
another – e.g. weather forecast and play music in
a car scenario (Eric and Manning, 2017). For this
reason, we choose a compelling low resource dia-
logue domain, i.e. Banking, that allows us to bring
together multiple tasks (e.g. transfer money, check
balance, block card).

2 Related Work

Our focus is on synthetic data generation tech-
niques for low-resource domains and for inves-
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tigating the learning capabilities of neural con-
versational agents. For this reason, we will dis-
cuss some artificial conversational datasets, test-
ing strategies for dialogue models, and the main
dialogue systems approaches.

Artificial Datasets. Many conversational datasets
rely on crowd sourcing (Jurčı́ček et al., 2011; Kel-
ley, 1984), cooperating corporations (Raux et al.,
2005), already available records (Lowe et al.,
2015; Danescu-Niculescu-Mizil and Lee, 2011),
or participation with the real world (Yu et al.,
2015; Zue et al., 1994). Moreover, available task
oriented dialogue datasets are mainly focused on
very specific domains, such as restaurant reser-
vation (Jurčı́ček et al., 2011; Henderson et al.,
2014), flight booking (Zue et al., 1994), bus infor-
mation systems (Raux et al., 2005) and giving di-
rections to rooms in a hotel (Yu et al., 2015). Since
the collection of whole dialogues is usually very
expensive and time consuming, there have been
efforts in building methodologies that allow fast
and cheap data collection (Shah et al., 2018; Kel-
ley, 1984). Artificial data generation is an effec-
tive methodology for obtaining well defined train-
ing datasets. Bordes et al. (2017) uses a simulator
for this purpose. Other approaches artificially out-
line the conversational flow of their examples and
then use crowdsourcing to convert dialogue turns
into natural language (Shah et al., 2018).

Testing Neural Dialog Models. With the rise of
Neural NLP, interpretability has become a major
issue. Belinkov and Glass (To appear) survey var-
ious methods addressing interpretability. In par-
ticular, one line of research deals with challenge
sets (Lehmann et al., 1996). While the majority of
NLP datasets reflects a natural distribution of lan-
guage phenomena, challenge sets are meant to re-
strict their focus on a specific phenomenon (quan-
tifiers, plurals, anaphora, etc.) at a time (Cooper
et al., 1996). Analyzing the ability to deal with
a specific phenomenon allows evaluating the sys-
tems in a more principled way. Challenge datasets
have been applied to diverse tasks, such as Nat-
ural Language Inference (Wang et al., 2018) and
Machine Translation (King and Falkedal, 1990).
These datasets offer insight if a model is capable
of handling a specific line of reasoning from train-
ing data to specific structures at test time.

Methods for conversational scenarios. Many
methods have been proposed to deal with conver-
sational scenarios. Rule Based Systems are the

simplest to implement for the task oriented setting
when the flow of the dialogue is already known.
They tend to be highly brittle to patterns not seen
during their construction or to porting to new do-
mains (Marietto et al., 2013). Information Re-
trieval Methods usually imply the two main ap-
proaches, namely TF-IDF and Nearest Neighbor
models (Isbell et al., 2000; Jafarpour et al., 2010;
Ritter et al., 2011; Sordoni et al., 2015). More re-
cently, Neural Network Models have been heavily
employed for conversational agents. Sequence-
to-sequence models (Vinyals and Le, 2015) per-
form well for short conversations but fail in longer
ones (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014). Hierarchical Encoder Decoder Mod-
els (Serban et al., 2016) are an extension of the
sequence-to-sequence models. They handle the
context in a separate RNN and use this context for
response generation. Finally, Latent Variable Hi-
erarchical Encoder Decoder models (Serban et al.,
2017) represent a further improvement of the Hi-
erarchical Encoder Decoder Model. Other recent
approaches have focused on Memory Networks,
that use an external memory component build into
the system to store long term contexts (Weston
et al., 2014). In particular, end-to-end Memory
Networks (Sukhbaatar et al., 2015), an extension
where every component is trained in an end-to-end
fashion, showed promising results in task oriented
dialogues (Bordes et al., 2017).

3 Data Generation through Self-Play

Unlike the natural challenge sets discussed in Sec-
tion 2, our focus is on testing structured reason-
ing in conversational context, by using synthetic
dialogue generation to grant that phenomena un-
der investigation are present only at test time and
not at training time. To our knowledge, this is the
first attempt to build challenge datasets in an ar-
tificial way and to use them for the dialogue do-
main. Natural data would not be suitable for our
purpose since the challenging test phenomena can
also be found in the training set. In particular,
our dataset is constructed using a dialogue self-
play approach (Shah et al., 2018). This approach
suggests that we can always simulate a conversa-
tion if we treat it like a game. During the simula-
tions, we instantiate two bots; the system and the
user. For each conversation, we pick up a user pro-
file, then user and system bots carry on the conver-
sation through pseudo-language actions regarding
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Logical Form Example Annotation
BOT: How can I help you today ? BOT: How can I help you today ?
inform intent = transfer I need to send some money.
inform intent = transfer {amount} I want to transfer {amount}
inform intent = transfer {partner} Can I send money to {partner}?
inform intent = transfer {partner} {amount} I would like to send {amount} to {partner}.
BOT: Who is the recipient? BOT: Who is the recipient?
inform {partner} It is {partner}.
BOT: What is the transfer amount? BOT: What is the transfer amount?
inform {amount} Roughly {amount}.

Table 1: Automatically generated logical forms provided to annotators and annotated template samples
for a Money Transfer intent with 2 slots. Bot request is provided to annotators to give better context.

the user profile.

Therefore, every conversation is represented as
an exchange of actions between the two agents.
Each action contains the information on who per-
formed it and what values the agent provided. For
each dialog for a chosen intent, the respective sys-
tem bot asks the relevant slots and the user bot
provides the appropriate slot values. The system
bot then checks the values provided and issues the
next requests accordingly. Both API calls and slot
requests are performed through actions. To con-
vert these actions into actual dialogues, we con-
ducted an annotation task with 5 annotators. First,
we converted each possible action for all the in-
tents into logical forms (uninstantiated pseudo-
code) and asked the annotators to provide natural
language templates for each logical form without
changing the entity placeholders. We then used
the language templates to create natural language
utterances by replacing the placeholders with the
actual values. In Table 1, we give a few examples
of the logical representations provided to annota-
tors and the template they wrote. The conversion
to the final plain text has been done by filling an-
notated templates with a small KB (the user pro-
file). This approach is different from the one pro-
posed by Shah et al. (2018) that uses instantiated
pseudo-code since the beginning: it requires much
more data annotation and makes it more difficult
to detach surface realization from dialogue struc-
ture for building challenge sets.

The advantages of our synthetic data generation
is twofold. First, it helps us to achieve a better
coverage since reducing dialogues to an exchange
of actions allows having a formal and simple vi-
sualization of all the generated dialogue flows -
this is not the case with WoZ data collections (Kel-

ley, 1984). Second, by instantiating each dialogue
with different natural language templates, we can
create dialogues that have the same structure but
different wording.

3.1 The System and User Bot Design

We designed the user and the system bots using
a finite state machine approach (Hopcroft et al.,
2001), assuming that each dialogue is a flow be-
tween states and each utterance is a move from
one state to the next. For our experiments, each
of these states handles one particular slot. When-
ever a user bot provides some information through
its action, the system bot changes the state accord-
ingly and performs its own action in response. The
user bot then deals with the system action, per-
forms its own and the cycle continues. The dia-
logue concludes when the system bot reaches an
end state and issues an end call action.

3.2 Banking Domain Intents

The user intents/tasks that the dialogues are built
upon are in the Banking Domain. We selected sev-
eral intents to create a dataset that contains: i) con-
versations that are varied and diverse, and ii) con-
versations that use similar sentences and slots but
to complete different tasks.

Each dialogue is initiated by the system bot
asking the first question. To add variability we
randomized the number of slots provided by the
user in its response, similar to verbosity user trait
in (Shah et al., 2018). After these initial turns the
system bot ask the respective missing slots. Apart
from asking the missing slot, the system bot also
validates the value of the slots by calling respec-
tive APIs, since by design the User Bot may pro-
vide incorrect values and the System Bot is de-
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signed to handle all these possible cases. In Ta-
ble 2, we give an example dialogue to demonstrate
how API intensive these dialogues might become.
Note that, for each interaction we have a specific
user profile, i.e. the possible entities for slots are
predetermined. For example, “partner list” for
money transfer is fixed, and a user cannot pro-
vide a random name. Additionally, dialogues are
formed with respect to policy restrictions such that
i) the slots for each intent are asked in a strict or-
der, ii) each slot value should be validated through
an api call, iii) there are maximum 3 consecutive
invalid user utterances after which the dialogue is
terminated, iv) the final API call for intent exe-
cution randomly returns a success or failure. The
valid/invalid user utterances are chosen randomly
in each turn. We now list the domain intents and
their descriptions as follows:

Making a Transfer. In this intent, USER wants
to transfer some money. The system is tasked to
fill three slots i.e user account, partner name and
amount.

Canceling a Transfer. This intent handles cases
where USER wants to cancel a transfer made ear-
lier. The first required slot is the transaction id and
USER may or may not recall it. If the transaction
id cannot be filled, SYSTEM asks for partner name
and checks for previous transactions.

Blocking a Card. The main slot required for
this intent is the card id. Similar to the canceling a
transfer intent, there are two possible paths for the
conversation flow. If USER cannot recall the card
id, SYSTEM asks another set of slots, which are the
user account and the card type.

Transaction History Query. This intent is for
finding a transaction in USER’s transaction history
by searching the note field. Notes are specific texts
giving information about the transaction reason,
such as “Salary” or “Electricity bill”.

Account Balance Query. To search for the ac-
count balance, USER is asked to provide the user
account name.

Account Limit Query. USER searches for the
maximum transferable amount from his/her ac-
count. This intent, together with account balance,
serves to evaluate the disambiguation performance
of the conversational models when facing seman-
tically similar intents - in fact their dialogue flow
and required slots are identical.

S : How can i help you today?
U : I am really concerned that i lost the bank card,
is its deactivation possible?
S : Please enter the card id.
U : I am not sure about the card id
S : Which account does the card belong to?
U : It is associated with my checking account.
A: CALL:CHECK ACCOUNT, USER ACCOUNT:CHECKING

A: RESPONSE:ACCOUNT CHECK, RESULT:FAILED, MES-

SAGE:‘list of available accounts joint , savings’
S : I couldn’t find the account you are looking for.
Your available accounts are joint , savings. Would
you like to change your answer?
U : Yes
S : Which account does the card belong to?
U : It must be savings
A : CALL:CHECK ACCOUNT, USER ACCOUNT:SAVING

A : RESPONSE:ACCOUNT CHECK, RESULT:SUCCESS

S : You have the following cards that belong to
your account: prepaid card, credit card. which
card would you like to block?
U : Can you block the prepaid card?
A : CALL:CHECK CARD NAME, CARD NAME:PREPAID

A : RESPONSE:CARD NAME CHECK, RESULT:SUCCESS

S : Do yo confirm blocking your card?
U : yes
A : CALL:BLOCK CARD, CARD ID:SAVINGS-PREPAID

A : RESPONSE:BLOCK CARD, RESULT:SUCCESS

S : Your card has been successfully blocked.

Table 2: A complete Block card example. U cor-
responds to User, S to System, and A to API calls.

3.3 Challenge Test Set

We generate a wide variety of test cases using the
same dialogue self-play methodology employed
for the training data, by modifying the structure
of the original dialogues in a principled manner.
Each of these test cases represents a particular
conversational situation that has never been seen
during training but that might happen in real inter-
actions. While we cannot precisely quantify the
exhaustiveness of the considered cases in real life
scenarios due to the domain restrictions, the syn-
thetic dialogue generation allows us to easily in-
tegrate new challenge cases when necessary. Be-
low, we discuss in detail each test case and what
function it serves to test. We also present a more
conventional test set, i.e. out of templates set,
to disclose how much we elevate the difficulty of
the task by the challenge test cases. In our ex-
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periments, we will disregard Out Of Vocabulary
(OOV) cases, i.e. cases where entities of interest
at test time are not seen at training time, e.g. the
partner name “Michael”, (Bordes et al., 2017).

Out of Templates (OOT) Out of templates test
case is constructed by sampling annotation tem-
plates into training, development and test sets. By
doing so, we can test whether the agent can handle
user utterances in an unseen linguistic form.

Out of Pattern (OOP) Out of pattern test cases
challenge the agents through the conversations
with a structure (dialogue flow) that has not been
seen during training. We have constructed five
out of pattern cases for the challenge test set. To-
gether with each OOP description, we provide an
example, where the arrow indicates the answer of
the system bot to be predicted, and the part in
italic highlights the differences between training
and test sets for readability purposes.

1. Turn Compression The training dialogue
structure contains a confirmation step after each
attempt to fill the current slot with an invalid value.
Following a confirming answer from USER for
changing the slot value, SYSTEM repeats the slot
filling question to USER. In the turn compression
challenge test case, we concatenate the confirma-
tion and the new slot answers as the user utterance
for the change confirmation question of SYSTEM.
The correct system utterance is the validation API
call of the new value instead of the slot filling
question again. Table 3 shows an example where
SYSTEM asks if USER wants to change the partner
name, and during testing the user gives a confirm-
ing answer together with the correct partner name.

Sys : Partner name is incorrect, would you like
to change it?
User : Yes
→Sys : What is the name of the recipient?
Sys : Partner name is incorrect, would you like
to change it?
User : Yes, change it to Megan
→Sys : API PARTNER CHECK Megan

Table 3: Train/test excerpt of Turn Compression

2. New API The new API challenge is designed
to evaluate the performance of an agent in terms of
its ability of issuing the required API calls with ap-
propriate slot values. To this end, we create intent

utterances in training data either without any extra
slot value or odd number of slot values while in
the new API challenge set, intent utterances con-
tain only even number of slot values. See Table 4
for an example.

Sys : How can i help you today ?
User : I want to see if my salary was credited
→ Sys : API CHECK SALARY
Sys : How can i help you today?
User : I want to see if my salary was credited
from Facebook
→ Sys : API CHECK SALARY FACEBOOK.

Table 4: Train and test excerpt of New API

3. Reordering The training dialogues have a
particular slot filling order for each intent. In the
reordering challenge set, on the other hand, the
order of slots in dialogues is shuffled. The pur-
pose of reordering is to evaluate whether an agent
is able to generate the system utterance to fill the
correct missing slot after all other slots for the cur-
rent intent have been filled. In the example given
in Table 5, we show the correct system utterance
of a new API challenge test case for the missing
slot: user account.

User : I’d like to transfer some money.
Sys : From which account?
User : from Savings please.
Sys : Who is the recipient ?
User : It is Michael
→ Sys : What is the amount?
User : I’d like to transfer some money.
Sys : What is the amount ?
User : 100 euros.
Sys : Who is the recipient ?
User : It is Michael
→ Sys : From which account?

Table 5: Train and test excerpt of Slots Reordering

4. Another Slot In a natural conversation, USER

can provide an utterance that is irrelevant to the
current turn while including a slot value relevant
to another one. Example dialogue excerpts for
Making a Transfer intent with and without such
another slot test case are given in Table 6.

5. Audit More In the training dialogues, after
SYSTEM requests a new slot value for the value
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Sys : What is the partner name ?
User : It is Michael.
→Sys : API PARTNER CHECK Michael
Sys : What is the partner name ?
User : Make the amount to be 10k euros .
→Sys : API AMOUNT CHECK 10k euros

Table 6: Train/test excerpt for Another Slot case

changing turn, USER is expected to provide an ap-
propriate value for the slot. In the audit more chal-
lenge set, USER provides other slot values along
with the requested slot. We test if the system can
recognize the changed slot value and issue the ap-
propriate API calls for the slots given by USER. In
the example test dialogue given in Table 7, USER

changes the amount along with the partner name
slot. The correct response of SYSTEM would be
the API calls for the given partner name and the
amount values.

Sys : What is the partner name ?
User : Change it to Michael.
→Sys : API PARTNER CHECK Michael
Sys : What is the partner name ?
User : Change it to Michael and make the
amount to be 5k euros.
→Sys : API PARTNER CHECK Michael,
AMOUNT CHECK 10k euros

Table 7: Train and test excerpt of Audit more.

We should note that each OOP test can contain
only one type of OOP, i.e only turn compression
or only new API etc. However, in one dialog there
may be more than one instance of the same OOP.

4 Neural Models

For our experiments, we focused on end-to-end
Memory Networks (Sukhbaatar et al., 2015),
which have been employed in various NLP
tasks including non-goal-oriented (Dodge et al.,
2016) and goal-oriented (Bordes et al., 2017)
dialogue systems. End-to-end memory networks
exploit a memory component to store the dialog
history, multiple memory look-ups (hops) as an
attention mechanism, and short-term context to
predict the next response. They yield promising
performances in dialogue tasks outperforming
some other end-to-end RNN based architectures.
In addition, end-to-end memory networks have
been shown to be able to perform non-trivial

operations such as issuing API calls to KBs
(Bordes et al., 2017), which are a key element
to our scenario. We implemented 2 variations of
memory networks in order to test the feasibility
of challenge set by analyzing the performance
differences of the networks.

Single End-to-End Memory Network (SMN)
replicates the end-to-end memory network pre-
sented by Bordes et al. (2017) trained on all dia-
logues from all intents simultaneously.
Multiple End-to-End Memory Network
(MMN) is an ensemble of 6 different Memory
Networks, each trained on a single intent and a 7th

Memory Network that has the task of selecting
the appropriate one for the given dialogue. The
training data for the 7th memory network is
produced by appending a call-memory-network
action after the user utterance that informs the
intent in a dialog.

We implemented MMN and tested against SMN
to investigate if sharing information from differ-
ent intents plays a positive role or creates interfer-
ence, especially for intents that contain the same
slot types and have a high semantic similarity.

5 Experiments

We used a learning rate of 0.001, a batch size of
32, and maximum 20 epochs during the training
of both networks. We set the embedding size to be
128 as it has been shown to perform good enough
for most NLP problems (Bai et al., 2009). For
memory networks we empirically used a memory
size of 40 and 3 hops.

We have generated 200 dialogues per intent and
per test case through the methodology explained
in Section 3. We first sampled 1/3 of the tem-
plates to linguistically realize the logical form of
training dialogues and 1/3 for development. For
the in-template test cases we then randomly sam-
pled turns from training and development to create
test dialogues. Instead, for the OOT test configu-
rations we used the remaining 1/3 of the templates
to generate new linguistically unseen test cases.
Similar to Bordes et al. (2017), the networks are
evaluated in a ranking, not a generation, task: we
test whether for each dialogue turn, the MNs can
identify the next (correct) system utterance or API
call from a list of candidates. Regarding the eval-
uation metric, we have used Per-Response Accu-
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racy, which is the number of correct system re-
sponses predicted out of all dialogue turns in the
whole test set. Each response under test is com-
pared to the predicted response by the model when
given a dialogue memory, i.e. context, and a new
user utterance.

Considering the banking domain and task sce-
narios, for which it is almost impossible to record
and collect real human interactions, we cannot
perform an experiment on real life conversations.
Although using WoZ technique and challenge pat-
tern annotation could be applicable, it could not be
guaranteed that we can collect reasonable amount
of data for the same challenge pattern and we
would be obliged to know every pattern in ad-
vance. Therefore, we also employ dialogue syn-
thesis for test/challenge set dialogues, which al-
lows for a continuous challenge design by modi-
fying the template combinations and dialogue pat-
terns.

5.1 Test Cases and Results
We compare the memory networks against the per-
response accuracy for In Template (IT henceforth)
and Out Of Template setting. In Table 8, we show
the test results of SMN and MMN models for IT
and OOT configurations (including non-OOP and
OOP test settings).

IT OOT
Test Case SMN MMN SMN MMN
Non OOP 88.62 90.17 87.39 88.27
Turn Comp. 27.80 55.00 27.90 54.70
New API 7.42 7.83 8.17 6.67
Reordering 54.50 45.50 54.00 41.50
Another Slot 38.00 25.00 41.50 27.50
Audit More 15.50 34.00 16.00 35.00
OOP Avg. 28.64 33.47 29.51 33.07

Table 8: In template non-challenge/OOP test
results, OOT non-challenge/OOP test results in
terms of per-response accuracy.

OOP impact. As expected, OOP cases represent
a compelling challenge for our MNs, see Table 8.
When we compare the results of the non-OOP and
the OOP cases, we observe drastic performance
differences, both in IT (88.62 vs. 28.64, 90.17 vs
33.47) and OOT (87.39 vs. 29.51, 88.27 vs. 33.07)
settings. Still, in some settings both MNs are able
to show reasonable performances and different be-
haviors on different challenge sets (reordering and

another slot for SMN, turn compression and audit
more for MMN).

Single vs Multiple Memory Network. Con-
cerning the IT cases, MMN slightly outperforms
SMN in the non-challenge test setting. In addi-
tion, it shows a substantial accuracy increase in
turn compression and audit more OOP cases. On
the other hand, SMN surpasses MMN in reorder-
ing and another slot OOP challenges. A similar
outlook of performances is observed for the OOT
non-challenge and OOP cases aside from new api
challenge, which turns out to be the most difficult
OOP challenge and will be discussed later.

We observe that on average MMN outperforms
SMN both in IT and OOT cases. One possi-
ble explanation is based on how the memory net-
work finds the correct response. The Single Mem-
ory Network does so by incorporating all the in-
tents in its selection of the responses. Therefore,
it searches for more general responses while the
Multiple Memory Network assigns the same task
to a specialized Memory network, which is trained
on that very specific intent. The specialized mem-
ory network is better at finding the correct re-
sponse since it is trained only on one particular in-
tent data and its search space is implicitly reduced.

As a particular OOP performance comparison,
we noticed that SMN is better at selecting the right
response during the reordering challenge, which
evaluates the ability of the model in learning the
necessary slots to accomplish an intent.

In template vs Out of Template. We found out
that there is not a major difference between IT and
OOT test case performances (slightly better for
SMN and slightly worse for MMN). One possi-
ble explanation is that the tests have not been con-
ducted in an OOV setting. Therefore, the SMN
and MMN may not learn the linguistic patterns to
find entities (templates) but they directly learn to
recognize the entities and to predict the API calls
accordingly.

Multiple Out of pattern. As a final experiment,
we wanted to inspect the effect of having the chal-
lenge phenomenon of interest appearing more than
once in a dialogue, such as the example proposed
in Table 10. For this last case we could use only
turn compression and audit more, that have a suffi-
cient number of slots to replicate the phenomenon
of interest over different slots in the same dia-
logue. What we observe is that indeed it is difficult
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Per-Response Accuracy
Test Case SMN MMN
Turn Compression 29.61 55.16
Turn Compr. OOT 29.07 55.13
Audit More 10.50 15.02
Audit More OOT 10.90 15.43

Table 9: Multiple Out of Pattern per Dialog

Sys : The partner name you provided is incor-
rect, would you like to change ?
User : Yes, change it to Michael (first Occur-
rence of Turn Compression)
Sys : Okay, your amount also exceeds the limit,
would you like to change ?
User : Yes, It is 100 euros (The second occur-
rence of turn compression)

Table 10: Example of Multiple OOP dialogue

for both the SMN and the MMN to handle the case
of more than one OOP.

It can be seen that there is a drop in the per-
formances of both MNs in Table 9 as compared
to previous challenge tests, only for audit more.
This drop can be attributed to the differences of
the contexts of the conversations that are present
in the memory while selecting the response. Since
the context is the previous conversation until the
chosen turn, for the first case, i.e. the first example
in 10, the context is a usual sub-dialogue pattern
that is seen during the training. So the responsi-
bility of the agent is to understand the new unseen
compressed user utterance and choose the correct
response. However, when we test the second turn
compression in the same dialogue, i.e. the second
turn in 10 where USER changes the amount, the re-
sponsibility of the agent is compounded by the fact
that in addition to understanding the compressed
turn, it has to reason about an unseen context pat-
tern. In other words, the context also contains a
form of turn that the agent has never seen during
training, which is the first turn compression of the
second example in Table 10.

The Easiest and the Hardest Challenge Cases
Finally, to investigate the difficulty of challenges
that we have introduced with each OOP case, we
should focus our attention to the easiest and the
hardest cases. We observe that out of all the OOP
test cases (both in-template and OOT settings)
both memory networks performed quite poorly on

handling new APIs. The results suggest that it
is harder for the memory networks to interpret a
new combination of slots and issue the related API
calls. This could be partially explained by the po-
sition of the new API cases in the dialogue. By
design, new API cases happen at the beginning
of the conversation (i.e. giving an intent together
with unexpected slots, see example in Table 4).
Therefore, the system has no context (no interac-
tion memory) to reason on while selecting the re-
sponse. On the contrary, for the easier turn com-
pression case, the memory network is already ex-
pecting a possible change in the slot value (e.g.
“do you want to change the amount?”) in the fol-
lowing turns, regardless of receiving it in the re-
spective turn or in the next few. In fact, the net-
work is already ‘primed’ on selecting an amount
related API call. Consequently, the memory net-
works have a better performance on turn compres-
sion rather than new API challenge.

6 Conclusions and Future Work

In this paper, we explored some challenges
connected to dataset creation for conversational
agents and interpretability of neural models. In
particular, we propose a methodology to create
rich datasets for training end-to-end conversa-
tional agents and challenge them on unseen pat-
terns at test time. We then experimented with
Memory Networks and investigated their perfor-
mance on the custom test cases. The apparently
low accuracy levels on unseen challenge cases
suggest that the synthetic data and challenge gen-
eration for low resource dialogue domains can act
as a reasonable approximate to real life challenges
in such domains. In other words, the more a dia-
logue model is able to handle these diverse chal-
lenges, the more it will be able to handle the
unstructured or less structured dialogues in real
human-machine interaction. As a future work we
would like to test further neural models and cre-
ate additional OOP challenge sets, even combin-
ing additional configurations.
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cois Mairesse, Blaise Thomson, Kai Yu, and Steve
Young. 2011. Real user evaluation of spoken
dialogue systems using amazon mechanical turk.
In Twelfth Annual Conference of the International
Speech Communication Association.

John F Kelley. 1984. An iterative design methodol-
ogy for user-friendly natural language office infor-
mation applications. ACM Transactions on Infor-
mation Systems (TOIS) 2(1):26–41.

Margaret King and Kirsten Falkedal. 1990. Using test
suites in evaluation of machine translation systems.
In COLNG 1990 Volume 2: Papers presented to
the 13th International Conference on Computational
Linguistics. volume 2.

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Es-
tival, Eva Dauphin, et al. 1996. Tsnlp: Test suites
for natural language processing. In Proceedings of
the 16th conference on Computational linguistics-
Volume 2. Association for Computational Linguis-
tics, pages 711–716.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909 .

Maria das Graças Bruno Marietto, Rafael Varago
de Aguiar, Gislene de Oliveira Barbosa, Wag-
ner Tanaka Botelho, Edson Pimentel, Robson
dos Santos França, and Vera Lúcia da Silva. 2013.
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