
Proceedings of Recent Advances in Natural Language Processing, pages 423–430,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_050

423

Self-Knowledge Distillation in Natural Language Processing

Sangchul Hahn
Handong Global University

Pohang, South Korea
schahn21@gmail.com

Heeyoul Choi
Handong Global University

Pohang, South Korea
heeyoul@gmail.com

Abstract

Since deep learning became a key player in
natural language processing (NLP), many
deep learning models have been showing
remarkable performances in a variety of
NLP tasks, and in some cases, they are
even outperforming humans. Such high
performance can be explained by efficient
knowledge representation of deep learn-
ing models. While many methods have
been proposed to learn more efficient repre-
sentation, knowledge distillation from pre-
trained deep networks suggest that we can
use more information from the soft target
probability to train other neural networks.
In this paper, we propose a new knowledge
distillation method self-knowledge distilla-
tion, based on the soft target probabilities
of the training model itself, where mul-
timode information is distilled from the
word embedding space right below the soft-
max layer. Due to the time complexity,
our method approximates the soft target
probabilities. In experiments, we applied
the proposed method to two different and
fundamental NLP tasks: language model
and neural machine translation. The ex-
periment results show that our proposed
method improves performance on the tasks.

1 Introduction

Deep learning has achieved the state-of-the-art per-
formance on many machine learning tasks, such as
image classification, object recognition, and neural
machine translation (He et al., 2016; Redmon and
Farhadi, 2017; Vaswani et al., 2017) and outper-
formed humans on some tasks. In deep learning,
one of the critical points for success is to learn bet-
ter representation of data with many layers (Ben-

gio et al., 2013) than other machine learning algo-
rithms. In other words, if we make a model to learn
better representation of data, the model can show
better performance.

In natural language processing (NLP) tasks like
language modeling (LM) (Bengio et al., 2003;
Mikolov et al., 2013) and neural machine trans-
lation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2015), when the models are trained, they are
to generate many words in sentence, which is a
sequence of classification steps, for each of which
they choose a target word among the whole words
in the dictionary. That is why LM and NMT are
usually trained with the sum of cross-entropies over
the target sentence. Thus, although language re-
lated tasks are more of generation rather than clas-
sification, the models estimate target probabilities
with the softmax operation on the previous neu-
ral network layers and the target distributions are
provided as one-hot representations. As data rep-
resentation in NLP models, word symbols should
also be represented as vectors.

In this paper, we focus on the word embedding
and the estimation of the target distribution. In NLP,
word embedding is a step to translate word symbols
(indices in the vocabulary) to vectors in a contin-
uous vector space and is considered as a standard
approach to handle symbols in neural networks.
When two words have semantically or syntactically
similar meanings, the words are represented closely
to each other in a word embedding space. Thus,
even when the prediction is not exactly correct,
the predicted word might not be so bad, if the es-
timated word is very close to the target word in
the embedding space like ‘programming’ and ‘cod-
ing’. That is, to check how wrong the prediction
is, the word embedding can be used. There are sev-
eral methods to obtain word embedding matrices
(Mikolov et al., 2013; Pennington et al., 2014), in
addition to neural language models (Bengio et al.,



424

2003; Mikolov et al., 2010). Recently, several ap-
proaches have been proposed to make more effi-
cient word embedding matrices, usually based on
contextual information (Søgaard et al., 2017; Choi
et al., 2017).

On the other hand, knowledge distillation was
proposed by (Hinton et al., 2015) to train new and
usually shallow networks using hidden knowledge
in the probabilities produced by the pretrained net-
works. It shows that there is knowledge not only
in the target probability corresponding to the target
class but also in the other class probabilities in the
estimation of the trained model. In other words,
the other class probabilities can contain additional
information describing the input data samples dif-
ferently even when the samples are in the same
class. Also, samples from different classes could
produce similar distributions to each other.

In this paper, we propose a new knowledge dis-
tillation method, self-knowledge distillation (SKD)
based on the word embedding of the training model
itself. That is, self-knowledge is distilled from the
predicted probabilities produced by the training
model, expecting the model has more information
as it is more trained. In the conventional knowledge
distillation, the knowledge is distilled from the esti-
mated probabilities of pretrained (or teacher) mod-
els. Contrary, in the proposed SKD, knowledge
is distilled from the current model in the training
process, and the knowledge is hidden in the word
embedding. During the training process, the word
embedding reflects the relationship between words
in the vector space. A word close to the target
word in the vector space is expected to have similar
distribution after softmax, and such information
can be used to approximate the soft target proba-
bility as in knowledge distillation. We apply our
proposed method to two popular NLP tasks: LM
and NMT. The experiment results show that our
proposed method improves the performance of the
tasks. Moreover, SKD reduces overfitting prob-
lems which we believe is because SKD uses more
information.

The paper is organized as follows. Background
is reviewed in Section 2. In Section 3, we describe
our proposed method, SKD. Experiment results are
presented and analyzed in Section 4, followed by
Section 5 with conclusion.

2 Background

In this section, we briefly review the cross-entropy
and knowledge distillation. Also, since our pro-
posed method is based on word embedding, the
layer right before the softmax operation, word em-
bedding process is summarized.

2.1 Cross Entropy
For classification with C classes, neural networks
produce class probabilities pi, i ∈ {0, 1, ...C} by
using a softmax output layer which calculates class
probabilities from the logit, zi considering the other
logits as follows.

pi =
exp (zi)∑
k exp (zk)

. (1)

In most classification problems, the objective
function for a single sample is defined by the cross-
entropy as follows.

J(θ) = −
∑
k

yk log pk, (2)

where yk and pk are the target and predicted proba-
bilities. The cross-entropy can be simply calculated
by

J(θ) = − log pt, (3)

when the target probability y is a one-hot vector
defined as

yk =

{
1, if k = t(target class)
0, otherwise

. (4)

Note that the cross-entropy objective function
says only how likely input samples belong to the
corresponding target class, and it does not provide
any other information about the input samples.

2.2 Knowledge Distillation
A well trained deep network model contains mean-
ingful information (or knowledge) extracted from
training datasets for a specific task. Once a deep
model is trained for a task, the trained model can
be used to train new smaller (shallower or thinner)
networks as shown in (Hinton et al., 2015; Romero
et al., 2014). This approach is referred to as knowl-
edge distillation.

Basically, knowledge distillation provides more
information to new models for training and im-
proves the new model’s performance. Thus, when
a new model which is usually smaller is trained



425

with the distilled knowledge from the trained deep
model, it can achieve a similar (or sometimes even
better) performance compared to the pretrained
deep model.

In the pretrained model, knowledge lies in the
class probabilities produced by softmax of the
model as in Eq. (1). All probability values includ-
ing the target class probability describe relevant
information about the input data. Thus, instead
of one-hot representation of the target label where
only the target class is considered in cross-entropy,
all probabilities over the whole classes from the
pretrained model can provide more information
about the input data in cross-entropy, and can teach
new models more efficiently. All probabilities from
the pretrained model are considered as soft target
probabilities.

In a photo tagging task, depending on the other
class probabilities, we understand the input image
better than just target class. When a class ‘mouse’
has the highest probability, if ‘mascot’ has a rel-
atively high probability, then the image would be
probably ‘mickey mouse’. If ‘button’ or ‘pad’ has
a high probability, the image would be a mouse as a
computer device. The other class probabilities have
some extra information and such knowledge in the
pretrained model can be transferred to a new model
by using a soft target distribution of the training
set.

When the target labels are available, the objec-
tive function is a weighted sum of the conventional
cross-entropy with the correct labels and the cross-
entropy with the soft target distribution, given by

J(θ) = −(1− λ) log pt − λ
∑
k

qk log pk, (5)

where pk is probability for class k produced by
current model with parameter θ, and qk is the soft
target probability from the pretrained model. λ
controls the amount of knowledge from the trained
model. Note that the conventional knowledge distil-
lation extracts knowledge from a pretrained model,
and in this paper, we propose to extract knowledge
from the current model itself without any pretrained
model.

Furthermore, in a recently proposed paper by
(Furlanello et al., 2018), they proved that knowl-
edge distillation can be useful to train a new model
which has the same size and the same architecture
as the pretrained model. They trained a teacher
model first, then they trained a student model with

distilled knowledge from the teacher model. Their
experiment results show that the student models
outperform the teacher model. Also, even though
when the teacher model has a less powerful archi-
tecture, the knowledge from the trained teacher
model can boost student models which have more
powerful (or bigger) architectures. It means that
even the knowledge is distilled from a relatively
weak model, it can be useful to train a bigger
model.

2.3 Word Embedding
Word embedding is to convert symbolic represen-
tation of words to vector representation with se-
mantic and syntactic meanings, which reflects the
relations between words. Including CBOW, Skip-
gram (Mikolov et al., 2013), and GloVe (Penning-
ton et al., 2014), various word embedding methods
have been proposed to learn a word embedding
matrix. The trained embedding matrix can be trans-
ferred to other models like LM or NMT (Ahn et al.,
2016).

CBOW predicts a word given its neighbor words,
and Skip-gram predicts the neighbor words given
a word. They use feedforward layers, and the last
layer of CBOW includes the word embedding ma-
trix, W , as follows.

z = Wh+ b, (6)

where b is a bias, h is hidden layer, and z is logits
for the softmax operation.

Words in the embedding space have semantic
and syntactic similarities, such that two similar
words are close in the space. Thus, when the classi-
fication is not correct, the error can be interpreted
differently depending on the similarity between the
predicted word and the target word. For example,
when the target word is ‘learning’, if the predicted
word is ‘training’, then it is less wrong than other
words like ‘flower’ or ‘internet’. In this paper, we
utilize such hidden information (or knowledge) in
the word embedding space, while training. Fig. 1
shows where the word embedding is located in LM
and NMT, respectively.

3 Self-Knowledge Distillation

We propose a new learning method self-knowledge
distillation (SKD) which distills knowledge from
a currently training model, following the conven-
tional knowledge distillation. In this section, we
describe an algorithm for SKD and its application
to language model and neural machine translation.



426

(a) Language Model (b) NMT Model

Figure 1: Network architectures of LM and NMT.
Word embedding is presented as gray boxes in the
models.

3.1 SKD Equations

In order to apply knowledge distillation on a cur-
rent training model, we need to obtain soft target
probabilities as qk in Eq. (5) for all classes, but
they are not available explicitly. However, when
the model is trained enough, then the word embed-
ding has such information implicitly. If a word wi

is close to wj in the embedding space, the prob-
ability pi would be close to pj for a given input
sample.

When t is the target class, we calculate the soft
target probabilities qk based on the word embed-
ding. First, we assume that qt should be high, and
if wk is close to wt in the embedding space, qk
should be also high. That is, the Euclidean distance
between words is used to estimate the soft target
probability. The other class probabilities (or soft
target probabilities) qk can be obtained by

qk =
1

Z
exp{−σ‖wt −wk‖2}, (7)

where ‖ · ‖2 is l2-norm, and Z is a normalization
term. σ is a scale parameter and its value depends
on the average distance to the corresponding near-
est neighbors in the word embedding space. How-
ever, due to the expensive computational cost, we
do not calculate qk for all classes, and we choose
just one of the other classes, which is the predicted
class of the current model.

Assuming that the model predicts a class n for
a given input sample, only qt and qn are used as
distilled knowledge. We clip the qn value with 0.5,

meaning that the class n cannot be more correct
than the real target t, so Eq. (7) becomes

qn = min{exp{−σ‖wt −wn‖2}, 0.5},
qt = 1− qn, (8)

where qn + qt = 1. That is, we consider only two
soft target probabilities as shown in Fig. 2. Note
that we use Euclidean distance between wt and
wn to calculate qn, but other approaches like inner
product would be possible.

Now, the objective function of SKD becomes
similar to Eq. (5), and is defined by

J(θ) = −(1− λ) log pt
−λ(qt log pt + qn log pn), (9)

where the second term of Eq. (5) is approximated
by λ(qt log pt+qn log pn), ignoring the other class
probabilities. Eq. (9) can be rewritten simply as
follows.

J(θ) = −(1− λqn) log pt − λqn log pn. (10)

Eqs. (9) or (10) can be understood in three cases.
First, if the prediction is correct (n = t), then Eq.
(9) is the same as the conventional cross-entropy
objective. Second, if wn is far from wt in the word
embedding space, then qn is close to zero and Eq.
(9) becomes close to the conventional cross-entropy
objective. Finally, if wn is close to wt (e.g. qn =
0.4), it approximates the soft target probability with
only two classes t and n, and the model is trained
to produce probabilities for class t and n as close
as qt and qn. This approach trains the model with
different targets for different input samples.

Fig. 2 presents how SKD obtains simplified
soft target distribution based on the distance of
target and estimated vectors in the word embedding
space.

3.2 SKD Algorithm
Since SKD distills knowledge from the current
training model, at the beginning of the training
process, the model does not contain relevant infor-
mation. That is, we cannot extract any knowledge
from the training model at the beginning. Thus,
we start training process without knowledge dis-
tillation at first and gradually increase the amount
of knowledge distillation as the training iteration
goes. So, our algorithm starts with the conven-
tional cross-entropy objective function in Eq. (3),
and after training the model for a while, it gradually



427

Figure 2: Given a target class t, a soft target prob-
abilities are obtained based on the distance in the
word embedding space. However, only the target
class and the predicted class have soft target proba-
bilities in SKD.

transits to Eq. (10). To implement the transition,
another parameter α is introduced to Eq. (10), lead-
ing to the final objective function as follows.

J(θ) = −(1− αλqn) log pt − αλqn log pn, (11)

α starts from 0 with which Eq. (11) becomes the
conventional cross-entropy. After K iterations, α
increases by η per iteration and eventually goes up
to 1 with which Eq. (11) becomes the same as Eq.
(9). In our experiments, we used a simplified equa-
tion as in Eq. (12) without λ so that the objective
function relies gradually more on the soft target
probabilities as training goes.

J(θ) = −(1− αqn) log pt − αqn log pn. (12)

Table 1 summarizes the proposed SKD algorithm.

Table 1: Self-Knowledge Distillation Algorithm

Algorithm 1: SKD Algorithm

Initialize the model parameters θ
Initialize α = 0 and σ
(See the experiments for σ values.)
Repeat K times:

Train the network based on the
cross-entropy in Eq. (3)

Repeat until convergence:
Train the network based on
the SKD objective function in Eq. (12)
Update α with α+ η
(See the experiments for η values.)

3.3 NLP Tasks
SKD is applied to two different NLP tasks: lan-
guage modeling (LM), and neural machine transla-

tion (NMT). Although LM and NMT are actually
sentence generation rather than classification, they
have classification steps to generate words for the
target sentence. Also, the sum of cross-entropies
over the words in the sentence is adapted as an
objective function for them.

In addition, to check if SKD is robust against
errors in the word embedding space, we also evalu-
ate SKD when we add Gaussian noise in the word
embedding space for target words in the decoder.

4 Experiments

To evaluate self-knowledge distillation, we com-
pare it to the baseline models for language model-
ing and neural machine translation.

4.1 Dataset

For language modeling, we use two different
datasets: Penn TreeBank (PTB) and WiKi-2. PTB
was made by (Marcus et al., 1993), and we use the
pre-processed version by (Mikolov et al., 2010).
In the PTB dataset, the train, valid and test sets
have about 887K, 70K, and 78K tokens, respec-
tively, where the vocabulary size is 10K. The WiKi-
2 dataset introduced by (Merity et al., 2016) con-
sists of sentences that are extracted from Wikipedia.
It has about 2M, 217K, and 245K tokens for train,
valid, and test sets. Its vocabulary size is about 33K.
We did not apply additional pre-processing for the
PTB dataset. The WiKi-2 dataset is pre-tokenized
data, therefore we only added an end-of-sentence
token (<EOS>) to every sentence.

For machine translation, we evaluated models on
three different translation tasks (En-Fi, Fi-En, and
En-De) with the available corpora from WMT’15
1. The dictionary size is 10K for En-fi and Fi-En
translation task, and 30K for the En-De translation
task.

4.2 Language Modeling

Language modeling (LM) has been used in many
different NLP tasks like automatic speech recogni-
tion (ASR), and machine translation (MT) to cap-
ture syntactic and semantic structure of a natural
language. The neural network-based language mod-
els (NNLM) and recurrent neural network language
model (RNNLM) catch the syntactic and seman-
tic regularities of an input language (Bengio et al.,
2003; Mikolov et al., 2013). RNNLM is our base-
line, which consists of a single LSTM layer and

1http://www.statmt.org/wmt15/translation-task.html



428

single feed forward layer with ReLU (Le et al.,
2015).

We evaluate four models: Baseline, Noise (with
Gaussian noise on the word embedding), SKD,
and Noise+SKD. To show that the information by
SKD is more knowledgeable than random noise,
we tested a noise injected model which injects only
Gaussian noise to the word embedding space. The
word dimension is set to 500 and the number of hid-
den nodes is 400 for all models. We set the σ and
η in the SKD algorithm in Table 1 0.1 (both PTB
and WiKi-2 dataset) and 0.0002 (PTB), 0.00011
(WiKi-2), respectively. We applied the SKD object
function after 500 batches for PTB and 900 batches
for WiKi-2. Note that Wiki-2 data is larger than
PTB.

The evaluation metric is the negative log-
likelihood (NLL) for each sentence (the lower is
the better). Table 2 presents NLLs for the test data
of two datasets with different models. It shows that
our proposed methods (both noise injection and
self-distillation knowledge) improve the results in
the LM task. Note that SKD provides more knowl-
edgeable information than Gaussian noise.

Table 2: NLLs for LM with different models on
PTB and Wiki-2.

Model PTB Wiki-2
Baseline 101.40 119.49
+Noise 101.28 118.70
+SKD 99.38 116.85
+Noise+SKD 97.41 116.60

4.3 Neural Machine Translation
NMT has been widely used in machine translation
research, because of its powerful performance and
end-to-end training (Sutskever et al., 2014; Bah-
danau et al., 2015; Johnson et al., 2017). Attention-
based NMT models consist of an encoder, a de-
coder, and the attention mechanism (Bahdanau
et al., 2015), which is our baseline in this paper
except for replacing GRU with LSTM and using
BPE (Sennrich et al., 2016). The encoder takes the
sequence of source words in the word embedding
form. The decoder works in a similar way to LM,
except the attention mechanism. See (Bahdanau
et al., 2015) for NMT and the attention mechanism
in detail.

In the experiments, we check how much SKD
can improve model’s performance using the simple
baseline architecture. Since SKD modifies only

the objective function, we believe that the improve-
ment by SKD is regardless of model architectures.

Table 3 shows that our proposed method im-
proves NMT performance by around 1 BLEU score.
For qualitative comparison, some translation results
are presented below. The overall quality of transla-
tion of the SKD model looks better than baseline
model’s. In other words, when the BLEU scores
are similar, the sentences translated by the SKD
model look better.

• (src) Hallituslähteen mukaan tämä on yksi monista
ehdotuksista, joita harkitaan.
(trg) A governmental source says this is one of the
many proposals to be considered.
(baseline) According to government revenue, this is one
of the many proposals that are being considered to be
considered.
(SKD) According to the government, this is one of the
many proposals that are being considered.

• (src) Meillä on hyvä tunne tuotantoketjunvahvuudesta.
(trg) We feel very good about supply chain capability.
(baseline) We have good knowledge of the strength of
the production chain.
(SKD) We have a good sense of the strength of the
production chain.

• (src) En ole oikein tajunnut, että olen näin vanha.
(trg) I haven’t really realized that I’m this old.
(baseline) I have not been right to realise that I am so
old.
(SKD) I am not quite aware that I am so old.

• (src) Ne vaikuttavat vasta tulevaisuudessa.
(trg) They’ll have an impact in the future only.
(baseline) They will only be affected in the future.
(SKD) They will only affect in the future.

Fig. 3 shows a trajectory of the qn values and
scheduling of the α value during training the En-Fi
NMT model described in Eq. (12), respectively.
As expected, the qn value becomes larger than 0.5
which means that wn (the predicted word vector)
is close enough to the wt (the target word vector).
Fig. 3(b) shows the scheduled value of α in Eq.
(12). The α value starts from 0 and increases up to
1 while training. The model is trained with only the
cross-entropy for K iterations, and then when the
model captures enough knowledge to be distilled,
α increases to utilize knowledge from the model.

Also, as in Fig. 4, the SKD models are not (or
more slowly) overfitted to the training data. We be-
lieve that SKD provides more information distilled
by the training model itself to prevent overfitting.
Note that there is no significant difference in the
improvements by SKD and Noise, but Noise+SKD



429

(a) qn value during NMT model training

(b) Scheduling of α value of NMT training

Figure 3: (a) Change of qn value during NMT
model training for En-Fi translation task, and (b)
scheduling of α value in Eq. (12) of NMT training
for En-Fi translation task. (a) shows that when the
model is trained more, the qn value become more
close to the target.

improves further. It implies that SKD provides dif-
ferent kinds of information from noise, while the
synergy effect between SKD and noise needs more
research.

Table 3: BLEU scores on the test sets for En-Fi,
Fi-En and En-De with two different beam widths.
The scores on the development sets are in the paren-
theses.

Model
Beam width

1 12

En-Fi

Baseline 7.29(8.28) 9.01(9.85)

+Noise 7.68(8.50) 9.35(9.53)

+SKD 8.36(9.43) 9.87(10.30)

+Noise+SKD 8.81(8.95) 10.13(10.47)

Fi-En

Baseline 10.42(11.39) 11.89(12.78)

+Noise 10.74(11.80) 12.39(13.35)

+SKD 10.70(12.52) 12.43(13.82)

+Noise+SKD 11.87(12.92) 13.16(14.13)

En-De

Baseline 19.72(19.28) 22.25(20.91)

+Noise 20.69(19.68) 22.40(20.92)

+SKD 20.29(20.41) 22.59(21.75)

+Noise+SKD 21.16(20.34) 23.07(21.64)

Figure 4: BLEU scores of validation data while
training on En-Fi corpus with four different mod-
els: Baseline, +Noise, +SKD, and +Noise+SKD.
The vertical axis indicates BLEU score and the
horizontal axis the number of training iteration.

5 Conclusion

We proposed a new knowledge distillation method,
self-knowledge distillation, from the probabilities
of the currently training model itself. The method
uses only two soft target probabilities that are ob-
tained based on the word embedding space. The
experiment results with language modeling and
neural machine translation show that our method
improves the performance. This method can be
straightforwardly applied to other tasks where the
cross-entropy is used.

As future works, we want to apply SKD to other
applications with different model architectures, to
show that SKD does not depend on tasks nor the
model architectures. For image classification tasks,
if we abuse the term ‘word embedding’ to refer to
the layer right before the softmax operation, it may
be possible to apply SKD in a similar way, although
it is not guaranteed that comparable image classes
are closely located in the word embedding space
for image related tasks. Also, we can develop an
automatic way for the parameters like α in Eq. (12),
and generalize the equation for qn in Eq. (8).

Acknowledgement

This research was supported by Basic Science Re-
search Program through the National Research
Foundation of Korea(NRF) funded by the Ministry
of Education (2017R1D1A1B03033341), and by
Institute for Information & communications Tech-
nology Promotion(IITP) grant funded by the Korea
government(MSIT) (No. 2018-0-00749, Develop-
ment of virtual network management technology
based on artificial intelligence).



430

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge language
model. CoRR abs/1608.00318:1–10.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proc. Int’l Conf.
on Learning Representations (ICLR).

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 35(8):1798–1828.

Yoshua Bengio, Réjean Ducharme, and Pascal Vin-
cent. 2003. A Neural Probabilistic Language Model.
The Journal of Machine Learning Research 3:1137–
1155.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio.
2017. Context-dependent word representation for
neural machine translation. Computer Speech and
Language 45:149–160.

Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born-again neural networks. In Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018. pages 1602–1611.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pages 770–778.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR abs/1503.02531.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. TACL
5:339–351.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. CoRR abs/1609.07843.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proc. Int’l Conf. on
Learning Representations (ICLR).

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the Inter-
national Speech Communication Association. pages
1045–1048.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 1532–1543.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000:
better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017. pages
6517–6525.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2014. Fitnets: Hints for thin deep nets.
CoRR abs/1412.6550.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 1715–
1725.

Anders Søgaard, Yoav Goldberg, and Omer Levy. 2017.
A strong baseline for learning cross-lingual word
embeddings from sentence alignments. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 1: Long Papers. pages 765–774.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems (NIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA. pages 6000–6010.


