
Proceedings of Recent Advances in Natural Language Processing, pages 151–160,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_018

151

Learning Sentence Embeddings for Coherence Modelling and Beyond

Tanner Bohn Yining Hu Jinhang Zhang Charles X. Ling
Department of Computer Science, Western University, London, ON, Canada

{tbohn,yhu534,jzha337,charles.ling}@uwo.ca

Abstract

We present a novel and effective tech-
nique for performing text coherence tasks
while facilitating deeper insights into the
data. Despite obtaining ever-increasing
task performance, modern deep-learning
approaches to NLP tasks often only pro-
vide users with the final network deci-
sion and no additional understanding of
the data. In this work, we show that a
new type of sentence embedding learned
through self-supervision can be applied
effectively to text coherence tasks while
serving as a window through which deeper
understanding of the data can be ob-
tained. To produce these sentence em-
beddings, we train a recurrent neural net-
work to take individual sentences and pre-
dict their location in a document in the
form of a distribution over locations. We
demonstrate that these embeddings, com-
bined with simple visual heuristics, can be
used to achieve performance competitive
with state-of-the-art on multiple text co-
herence tasks, outperforming more com-
plex and specialized approaches. Addi-
tionally, we demonstrate that these embed-
dings can provide insights useful to writ-
ers for improving writing quality and in-
forming document structuring, and assist-
ing readers in summarizing and locating
information.

1 Introduction

A goal of much of NLP research is to create tools
that not only assist in completing tasks, but help
gain insights into the text being analyzed. This is
especially true of text coherence tasks, as users are
likely to wonder where efforts should be focused

How coherent is it? Suggest a coherent sentence order

Algorithm:
If dashed line is close to diagonal, high
coherence. If far, low coherence.

Algorithm:
Take sentences in the order that the black dots

appear along the x-axis.

Result:
Sentences 1 and 2 may be out of order, otherwise
it is quite close, with a coherence of 0.73.

Result:
Suggested order: 2, 1, 4, 3, 5, 6.

Figure 1: This paper abstract is analyzed by our
sentence position model trained on academic ab-
stracts. The sentence encodings (predicted posi-
tion distributions) are shown below each sentence,
where white is low probability and red is high. Po-
sition quantiles are ordered from left to right. The
first sentence, for example, is typical of the first
sentence of abstracts as reflected in the high first-
quantile value. For two text coherence tasks, we
show the how the sentence encodings can easily
be used to solve them. The black dots indicate the
weighted average predicted position for each sen-
tence.

to improve writing or understand how text should
be reorganized for improved coherence. By im-
proving coherence, a text becomes easier to read
and understand (Lapata and Barzilay, 2005), and
in this work we particularly focus on measuring
coherence in terms of sentence ordering.

Many recent approaches to NLP tasks make
use of end-to-end neural approaches which ex-
hibit ever-increasing performance, but provide lit-
tle value to end-users beyond a classification or
regression value (Gong et al., 2016; Logeswaran
et al., 2018; Cui et al., 2018). This leaves open the

152

question of whether we can achieve good perfor-
mance on NLP tasks while simultaneously provid-
ing users with easily obtainable insights into the
data. This is precisely what the work in this paper
aims to do in the context of coherence analysis,
by providing a tool with which users can quickly
and visually gain insight into structural informa-
tion about a text. To accomplish this, we rely on
the surprising importance of sentence location in
many areas of natural language processing. If a
sentence does not appear to belong where it is lo-
cated, it decreases the coherence and readability
of the text (Lapata and Barzilay, 2005). If a sen-
tence is located at the beginning of a document
or news article, it is very likely to be a part of a
high quality extractive summary (See et al., 2017).
The location of a sentence in a scientific abstract is
also an informative indicator of its rhetorical pur-
pose (Teufel et al., 1999). It thus follows that the
knowledge of where a sentence should be located
in a text is valuable.

Tasks requiring knowledge of sentence position
– both relative to neighboring sentences and glob-
ally – appear in text coherence modelling, with
two important tasks being order discrimination (is
a sequence of sentences in the correct order?) and
sentence ordering (re-order a set of unordered sen-
tences). Traditional methods in this area make use
of manual feature engineering and established the-
ory behind coherence (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008; Grosz et al., 1995).
Modern deep-learning based approaches to these
tasks tend to revolve around taking raw words and
directly predicting local (Li and Hovy, 2014; Chen
et al., 2016) or global (Cui et al., 2017; Li and Ju-
rafsky, 2017) coherence scores or directly output
a coherent sentence ordering (Gong et al., 2016;
Logeswaran et al., 2018; Cui et al., 2018). While
new deep-learning based approaches in text coher-
ence continue to achieve ever-increasing perfor-
mance, their value in real-world applications is un-
dermined by the lack of actionable insights made
available to users.

In this paper, we introduce a self-supervised ap-
proach for learning sentence embeddings which
can be used effectively for text coherence tasks
(Section 3) while also facilitating deeper under-
standing of the data (Section 4). Figure 1 provides
a taste of this, displaying the sentence embeddings
for the abstract of this paper. The self-supervision
task we employ is that of predicting the location

of a sentence in a document given only the raw
text. By training a neural network on this task,
it is forced to learn how the location of a sen-
tence in a structured text is related to its syntax
and semantics. As a neural model, we use a bi-
directional recurrent neural network, and train it
to take sentences and predict a discrete distribu-
tion over possible locations in the source text. We
demonstrate the effectiveness of predicted position
distributions as an accurate way to assess docu-
ment coherence by performing order discrimina-
tion and sentence reordering of scientific abstracts.
We also demonstrate a few types of insights that
these embeddings make available to users that the
predicted location of a sentence in a news article
can be used to formulate an effective heuristic for
extractive document summarization – outperform-
ing existing heuristic methods.

The primary contributions of this work are thus:

1. We propose a novel self-supervised approach
to learn sentence embeddings which works
by learning to map sentences to a distribution
over positions in a document (Section 2.2).

2. We describe how these sentence embeddings
can be applied to established coherence tasks
using simple algorithms amenable to visual
approximation (Section 2.3).

3. We demonstrate that these embeddings are
competitive at solving text coherence tasks
(Section 3) while quickly providing access to
further insights into texts (Section 4).

2 Predicted Position Distributions

2.1 Overview
By training a machine learning model to predict
the location of a sentence in a body of text (condi-
tioned upon features not trivially indicative of po-
sition), we obtain a sentence position model such
that sentences predicted to be at a particular loca-
tion possess properties typical of sentences found
at that position. For example, if a sentence is pre-
dicted to be at the beginning of a news article, it
should resemble an introductory sentence.

In the remainder of this section we describe our
neural sentence position model and then discuss
how it can be applied to text coherence tasks.

2.2 Neural Position Model
The purpose of the position model is to produce
sentence embeddings by predicting the position in

153

Softmax (sentence PPD)

PPD sequence

Sentence position model

fText(w0)

fText(article)

fText(w0)-fText(article)

fText(w1)

fText(article)

fText(w1)-fText(article)

fText(w2)

fText(article)

fText(w2)-fText(article)

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

PPD(S1)
PPD(S2)
PPD(S3)
PPD(S4)

=

concat

concat

Figure 2: Illustration of the sentence position
model, consisting of stacked BiLSTMs. Sentences
from a text are individually fed into the model
to produce a PPD sequence. In this diagram we
see a word sequence of length three fed into the
model, which will output a single row in the PPD
sequence.

a text of a given sentence. Training this model re-
quires no manual labeling, needing only samples
of text from the target domain. By discovering
patterns in this data, the model produces sentence
embeddings suitable for a variety of coherence-
related NLP tasks.

2.2.1 Model Architecture
To implement the position model, we use stacked
bi-directional LSTMs (Schuster and Paliwal,
1997) followed by a softmax output layer. In-
stead of predicting a single continuous value for
the position of a sentence as the fraction of the
way through a document, we frame sentence po-
sition prediction as a classification problem.

Framing the position prediction task as classi-
fication was initially motivated by the poor per-
formance of regression models; since the task of
position prediction is quite difficult, we observed
that regression models would consistently make
predictions very close to 0.5 (middle of the doc-
ument), thus not providing much useful informa-
tion. To convert the task to a classification prob-

lem, we aim to determine what quantile of the doc-
ument a sentence resides in. Notationally, we will
refer to the number of quantiles as Q. We can in-
terpret the class probabilities behind a prediction
as a discrete distribution over positions for a sen-
tence, providing us with a predicted position dis-
tribution (PPD). When Q = 2 for example, we are
predicting whether a sentence is in the first or last
half of a document. When Q = 4, we are pre-
dicting which quarter of the document it is in. In
Figure 2 is a visualization of the neural architec-
ture which produces PPDs of Q = 10.

2.2.2 Features Used
The sentence position model receives an input sen-
tence as a sequence of word encodings and out-
puts a single vector of dimension Q. Sentences
are fed into the BiLSTM one at a time as a se-
quence of word encodings, where the encoding for
each word consists of the concatenation of: (1)
a pretrained word embedding, (2) the average of
the pretrained word embedding for the entire doc-
ument (which is constant for all words in a docu-
ment), and (3) the difference of the first two com-
ponents (although this information is learnable
given the first two components, we found during
early experimentation that it confers a small per-
formance improvement). In addition to our own
observations, the document-wide average compo-
nent was also shown in (Logeswaran et al., 2018)
to improve performance at sentence ordering, a
task similar to sentence location prediction. For
the pretrained word embeddings, we use 300 di-
mensional fastText embeddings1, shown to have
excellent cross-task performance (Joulin et al.,
2016). In Figure 2, the notation ftxt(token) rep-
resents converting a textual token (word or docu-
ment) to its fastText embedding. The embedding
for a document is the average of the embeddings
for all words in it.

The features composing the sentence embed-
dings fed into the position model must be chosen
carefully so that the order of the sentences does
not directly affect the embeddings (i.e. the sen-
tence embeddings should be the same whether the
sentence ordering is permuted or not). This is be-
cause we want the predicted sentence positions to
be independent of the true sentence position, and
not every sentence embedding technique provides

1Available online at https://fasttext.cc/
docs/en/english-vectors.html. We used the
wiki-news-300d-1M vectors.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html

154

this. As a simple example, if we include the true
location of a sentence in a text as a feature when
training the position model, then instead of learn-
ing the connection between sentence meaning and
position, the mapping would trivially exploit the
known sentence position to perfectly predict the
sentence quantile position. This would not allow
us to observe where the sentence seems it should
be located.

2.3 Application to Coherence Tasks

For the tasks of both sentence ordering and calcu-
lating coherence, PPDs can be combined with sim-
ple visually intuitive heuristics, as demonstrated in
Figure 3.

Calculate weighted
average predicted
sentence quantiles

Calculate PPDs

Summary

Sentences 1, 2, and 7

Extract sentences with
highest Q1 probability

Reordered Sentences

[1, 2, 7, 6, 5, 3, 4, 8, 7, 9]

Kendall’s tau Coherence Score

0.5

Original Text (news article)

Islamabad , pakistani -- a 9 - month - old pakistani boy bawled as he was
fingerprinted and booked in lahore on an attempted murder charge after his
family members allegedly threw bricks at police trying to collect an unpaid
bill. The ordeal started february 1 when several police officers and a bailiff
went to a home hoping to get payment for a gas bill , said butt , a senior police
official in lahore. A scuffle ensued , during which the infant 's father , one of
his teenage sons and others in t...

Induce ranking with
weighted average
predicted positions

Figure 3: A visualization of our NLP algorithms
utilizing PPDs applied to a news article. To re-
order sentences, we calculate average weighted
positions (identified with black circles) to induce
an ordering. Coherence is calculated with the
Kendall’s rank correlation coefficient between the
true and induced ranking. We also show how
PPDs can be used to perform summarization, as
we will explore further in Section 4.

2.3.1 Sentence Ordering
To induce a new ordering on a sequence of sen-
tences, S, we simply sort the sentence by their
weighted average predicted quantile, Q̂(s ∈ S),
defined by:

Q̂(s) =
Q∑
i=1

i× PPD(s)i, (1)

where PPD(s) is the Q-dimensional predicted
position distribution/sentence embedding for the
sentence s.

2.3.2 Calculating coherence
To calculate the coherence of a text, we employ
the following simple algorithm on top of the PPDs:
use the Kendall’s tau coefficient between the sen-
tence ordering induced by the weighted average
predicted sentence positions and the true sentence
positions:

coh = τ((Q̂(s), for s = S1, ..., S|S|), (1, ..., |S|)).
(2)

3 Experiments

In this section, we evaluate our PPD-based ap-
proaches on two coherence tasks and demonstrate
that only minimal performance is given up by our
approach to providing more insightful sentence
embeddings.

Task Dataset Q Epochs Layer dropouts Layer widths

Order Disrcim. Accident 5 10 (0.4, 0.2) (256, 256)
Earthquake 10 5 (0.4, 0.2) (256, 64)

Reordering NeurIPS 15 20 (0.5, 0.25) (256, 256)

Table 1: The neural sentence position model hy-
perparameters used in our coherence experiments.
The following settings are used across all tasks:
batch size of 32, sentence trimming/padding to a
length of 25 words, the vocabulary is set to the
1000 most frequent words in the associated train-
ing set. The Adamax optimizer is used (Kingma
and Ba, 2014) with default parameters supplied by
Keras (Chollet et al., 2015).

Order discrimination setup. For order dis-
crimination, we use the Accidents and Earth-
quakes datasets from (Barzilay and Lapata, 2008)
which consists of aviation accident reports and
news articles related to earthquakes respectively.
The task is to determine which of a permuted

155

Order discrimination Reordering

Model Accident Earthquake Acc τ

Random 50 50 15.6 0
Entiry Grid 90.4 87.2 20.1 0.09
Window network - - 41.7 0.59
LSTM PtrNet 93.7 99.5 50.9 0.67
RNN Decoder - - 48.2 0.67
Varient-LSTM+PtrNet 94.4 99.7 51.6 0.72
ATTOrderNet 96.2 99.8 56.1 0.72

PPDs 94.4 99.3 54.9 0.72

Table 2: Results on the order discrimination and sentence reordering coherence tasks. Our approach
trades only a small decrease in performance for improved utility of the sentence embeddings over other
approaches, achieving close to or the same as the state-of-the-art.

ordering of the sentences and the original or-
dering is the most coherent (in the original or-
der), for twenty such permutations. Since these
datasets only contain training and testing parti-
tions, we follow (Li and Hovy, 2014) and perform
10-fold cross-validation for hyperparameter tun-
ing. Performance is measured with the accuracy
with which the permuted sentences are identified.
For example, the Entity Grid baseline in Table 2
gets 90.4% accuracy because given a shuffled re-
port and original report, it correctly classifies them
90.4% of the time.

Sentence ordering setup. For sentence order-
ing, we use past NeurIPS abstracts to compare
with previous works. While our validation and test
partitions are nearly identical to those from (Lo-
geswaran et al., 2018), we use a publicly available
dataset2 which is missing the years 2005, 2006,
and 2007 from the training set ((Logeswaran et al.,
2018) collected data from 2005 - 2013). Abstracts
from 2014 are used for validation, and 2015 is
used for testing. To measure performance, we re-
port both reordered sentence position accuracy as
well as Kendall’s rank correlation coefficient. For
example, the Random baseline correctly predicts
the index of sentences 15.6% of the time, but there
is no correlation between the predicted ordering
and true ordering, so τ = 0.

Training and tuning. Hyperparameter tun-
ing for both tasks is done with a random search,
choosing the hyperparameter set with the best val-
idation score averaged across the 10 folds for or-

2https://www.kaggle.com/benhamner/
nips-papers

der discrimination dataset and for three trials for
the sentence reordering task. The final hyperpa-
rameters chosen are in Table 1.

Baselines. We compare our results against
a random baseline, the traditional Entity
Grid approach from (Barzilay and Lapata,
2008), Window network (Li and Hovy, 2014),
LSTM+PtrNet (Gong et al., 2016), RNN Decoder
and Varient-LSTM+PtrNet from (Logeswaran
et al., 2018), and the most recent state-of-the art
ATTOrderNet (Cui et al., 2018).

Results. Results for both coherence tasks are
collected in Table 2. For the order discrimination
task, we find that on both datasets, our PPD-based
approach only slightly underperforms ATTOrder-
Net (Cui et al., 2018), with performance similar to
the LSTM+PtrNet approaches (Gong et al., 2016;
Logeswaran et al., 2018). On the more difficult
sentence reordering task, our approach exhibits
performance closer to the state-of-the-art, achiev-
ing the same ranking correlation and only slightly
lower positional accuracy. Given that the pub-
licly available training set for the reordering task
is slightly smaller than that used in previous work,
it is possible that more data would allow our ap-
proach to achieve even better performance. In the
next section we will discuss the real-world value
offered by our approach that is largely missing
from existing approaches.

4 Actionable Insights

A primary benefit of applying PPDs to coherence-
related tasks is the ability to gain deeper insights
into the data. In this section, we will demon-

https://www.kaggle.com/benhamner/nips-papers
https://www.kaggle.com/benhamner/nips-papers

156

Figure 4: The PPDs for a CNN article. (full text available at http://web.
archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/
tulane-bacteria-exposure/). The dashed line shows the weighted average predicted sentence
positions.

strate the following in particular: (1) how PPDs
can quickly be used to understand how the coher-
ence of a text may be improved, (2) how the ex-
istence of multiple coherence subsections may be
identified, and (3) how PPDs can allow users to lo-
cate specific types of information without reading
a single word, a specific case of which is extrac-
tive summarization. For demonstrations, we will
use the news article presented in Figure 4.

4.1 Improving Coherence

For a writer to improve their work, understand-
ing the incoherence present is important. Observ-
ing the PPD sequence for the article in Figure 4
makes it easy to spot areas of potential incoher-
ence: they occur where consecutive PPDs are sig-
nificantly different (from sentences 1 to 2, 6 to 7,
and 10 to 11). In this case, the writer may deter-
mine that sentence 2 is perhaps not as introduc-
tory as it should be. The predicted incoherence
between sentences 10 and 11 is more interesting,
and as we will see next, the writer may realize that
this incoherence may be okay to retain.

4.2 Identifying Subsections

In Figure 4, we see rough progressions of
introductory-type sentences to conclusory-type
sentences between sentences 1 and 10 and sen-
tences 11 and 15. This may indicate that the ar-
ticle is actually composed of two coherent subsec-
tions, which means that the incoherence between
sentences 10 and 11 is expected and natural. By

being able to understand where subsections may
occur in a document, a writer can make informed
decisions on where to split a long text into more
coherent chunks or paragraphs. Knowing where
approximate borders between ideas in a document
exist may also help readers skim the document to
find desired information more quickly, as further
discussed in the next subsection.

4.3 Locating Information and
Summarization

When reading a new article, readers well-versed
in the subject of the article may want to skip high-
level introductory comments and jump straight to
the details. For those unfamiliar with the content
or triaging many articles, this introductory infor-
mation is important to determine the subject mat-
ter. Using PPDs, locating these types of infor-
mation quickly should be easy for readers, even
when the document has multiple potential subsec-
tions. In Figure 4, sentences 1 and 11 likely con-
tain introductory information (since the probabil-
ity of occurring in the first quantiles is highest), the
most conclusory-type information is in sentence
10, and lower-level details are likely spread among
the remaining sentences.

Locating sentences with the high-level details
of a document is reminiscent of the task of extrac-
tive summarization, where significant research has
been performed (Nenkova et al., 2011; Nenkova
and McKeown, 2012). It is thus natural to ask
how well a simple PPD-based approach performs

http://web.archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/tulane-bacteria-exposure/
http://web.archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/tulane-bacteria-exposure/
http://web.archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/tulane-bacteria-exposure/

157

Model (lead baseline source) ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Lead-3 (See et al., 2017) 40.3 17.7 36.6
Lead-3 (Ours) 35.8 15.9 33.5
SummaRuNNer (Nallapati et al., 2017) ((Nallapati et al., 2017)) 39.6 16.2 35.3
Pointer-generator (See et al., 2017) ((See et al., 2017)) 39.5 17.3 36.4
RL (Paulus et al., 2017) ((Nallapati et al., 2017)) 41.2 15.8 39.1
TextRank (Mihalcea and Tarau, 2004) (ours) 26.2 11.1 24.3
Luhn (Luhn, 1958) (ours) 26.4 11.2 24.5
SumBasic (Nenkova and Vanderwende, 2005) (ours) 27.8 10.4 26.0
LexRank (Erkan and Radev, 2004) (ours) 28.4 11.6 26.3
PPDs (ours) 30.1 12.6 28.2

Table 3: ROUGE scores on the CNN/DailyMail summarization task. Our PPD-based heuristic outper-
forms the suite of established heuristic summarizers. However, the higher performance of the deep-
learning models demonstrates that training explicitly for summarization is beneficial.

at summarization. To answer this question, the
summarization algorithm we will use is: select the
n sentences with the highest PPD(s ∈ S)0 value,
where S is the article being extractively summa-
rized down to n sentences. For the article in Fig-
ure 4, sentences 1, 11, and 3 would be chosen since
they have the highest first-quantile probabilities.
This heuristic is conceptually similar to the Lead
heuristic, where sentences that actually occur at
the start of the document are chosen to be in the
summary. Despite its simplicity, the Lead heuris-
tic often achieves near state-of-the-art results (See
et al., 2017).

We experiment on the non-anonymized
CNN/DailyMail dataset (Hermann et al., 2015)
and evaluate with full-length ROUGE-1, -2, and
-L F1 scores (Lin and Hovy, 2003). For the
neural position model, we choose four promising
sets of hyperparameters identified during the
hyperparameter search for the sentence ordering
task in Section 3 and train each sentence position
model on 10K of the 277K training articles (which
provides our sentence position model with over
270K sentences to train on). Test results are
reported for the model with the highest validation
score. The final hyperparameters chosen for this
sentence location model are: Q = 10, epochs = 10,
layer dropouts = (0.4, 0.2), layer widths = (512,
64).

We compare our PPD-based approach to other
heuristic approaches3. For completeness, we
also include results of deep-learning based ap-
proaches and their associated Lead baselines eval-

3Implementations provided by Sumy library, available at
https://pypi.python.org/pypi/sumy.

uated using full-length ROUGE scores on the non-
anonymized CNN/DailyMail dataset.

Table 3 contains the the comparison between
our PPD-based summarizer and several estab-
lished heuristic summarizers. We observe that
our model has ROUGE scores superior to the
other heuristic approaches by a margin of ap-
proximately 2 points for ROUGE-1 and -L and 1
point for ROUGE-2. In contrast, the deep-learning
approaches trained explicitly for summarization
achieve even higher scores, suggesting that there is
more to a good summary than the sentences sim-
ply being introductory-like.

5 Related Work

Extensive research has been done on text coher-
ence, motivated by downstream utility of coher-
ence models. In addition to the applications we
demonstrate in Section 4, established applications
include determining the readability of a text (co-
herent texts are easier to read) (Barzilay and La-
pata, 2008), refinement of multi-document sum-
maries (Barzilay and Elhadad, 2002), and essay
scoring (Farag et al., 2018).

Traditional methods to coherence modelling
utilize established theory and handcrafted linguis-
tic features (Grosz et al., 1995; Lapata, 2003). The
Entity Grid model (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008) is an influential tradi-
tional approach which works by first constructing
a sentence × discourse entities (noun phrases) oc-
currence matrix, keeping track of the syntactic role
of each entity in each sentence. Sentence tran-
sition probabilities are then calculated using this
representation and used as a feature vector as in-

https://pypi.python.org/pypi/sumy

158

put to a SVM classifier trained to rank sentences
on coherence.

Newer methods utilizing neural networks and
deep learning can be grouped together by whether
they indirectly or directly produce an ordering
given an unordered set of sentences.

Indirect ordering. Approaches in the indi-
rect case include Window network (Li and Hovy,
2014), Pairwise Ranking Model (Chen et al.,
2016), the deep coherence model from (Cui et al.,
2017), and the discriminative model from (Li and
Jurafsky, 2017). These approaches are trained to
take a set of sentences (anywhere from two (Chen
et al., 2016) or three (Li and Hovy, 2014) to the
whole text (Cui et al., 2017; Li and Jurafsky,
2017)) and predict whether the component sen-
tences are already in a coherent order. A final or-
dering of sentences is constructed by maximizing
coherence of sentence subsequences.

Direct ordering. Approaches in the direct case
include (Gong et al., 2016; Logeswaran et al.,
2018; Cui et al., 2018). These model are trained
to take a set of sentences, encode them using some
technique, and with a recurrent neural network
decoder, output the order in which the sentences
would coherently occur.

Models in these two groups all use similar high-
level architectures: a recurrent or convolutional
sentence encoder, an optional paragraph encoder,
and then either predicting coherence from that en-
coding or iteratively reconstructing the ordering
of the sentences. The PPD-based approaches de-
scribed in Section 2 take a novel route of directly
predicting location information of each sentence.
Our approaches are thus similar to the direct ap-
proaches in that position information is directly
obtained (here, in the PPDs), however the posi-
tion information produced by our model is much
more rich than simply the index of the sentence in
the new ordering. With the set of indirect order-
ing approaches, our model approach to coherence
modelling shares the property that induction of an
ordering upon the sentences is only done after ex-
amining all of the sentence embeddings and ex-
plicitly arranging them in the most coherent fash-
ion.

6 Conclusions

The ability to facilitate deeper understanding of
texts is an important, but recently ignored, prop-
erty for coherence modelling approaches. In an

effort to improve this situation, we present a self-
supervised approach to learning sentence embed-
dings, which we call PPDs, that rely on the con-
nection between the meaning of a sentence and its
location in a text. We implement the new sentence
embedding technique with a recurrent neural net-
work trained to map a sentence to a discrete distri-
bution indicating where in the text the sentence is
likely located. These PPDs have the useful prop-
erty that a high probability in a given quantile indi-
cates that the sentence is typical of sentences that
would occur at the corresponding location in the
text.

We demonstrate how these PPDs can be applied
to coherence tasks with algorithms simple enough
such that they can be visually performed by users
while achieving near state-of-the-art, outperform-
ing more complex and specialized systems. We
also demonstrate how PPDs can be used to ob-
tain various insights into data, including how to
go about improving the writing, how to identify
potential subsections, and how to locate specific
types of information, such as introductory or sum-
mary information. As a proof-of-concept, we ad-
ditionally show that despite PPDs not being de-
signed for the task, they can be used to create a
heuristic summarizer which outperforms compa-
rable heuristic summarizers.

In future work, it would be valuable to evaluate
our approach on texts from a wider array of do-
mains and with different sources of incoherence.
In particular, examining raw texts identified by hu-
mans as lacking coherence could be performed,
to determine how well our model correlates with
human judgment. Exploring how the algorithms
utilizing PPDs may be refined for improved per-
formance on the wide variety of coherence-related
tasks may also prove fruitful. We are also in-
terested in examining how PPDs may assist with
other NLP tasks such as text generation or author
identification.

Acknowledgments

We acknowledge the support of the Natural
Sciences and Engineering Research Council of
Canada (NSERC) through the Discovery Grants
Program. NSERC invests annually over $1 billion
in people, discovery and innovation.

159

References
Regina Barzilay and Noemie Elhadad. 2002. Infer-

ring strategies for sentence ordering in multidocu-
ment news summarization. Journal of Artificial In-
telligence Research .

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics 34(1):1–34.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. Neural sentence ordering. arXiv preprint
arXiv:1607.06952 .

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence order-
ing network. In Proceedings of the 2018
Conference on Empirical Methods in Nat-
ural Language Processing. Association for
Computational Linguistics, pages 4340–4349.
http://aclweb.org/anthology/D18-1465.

Baiyun Cui, Yingming Li, Yaqing Zhang, and Zhongfei
Zhang. 2017. Text coherence analysis based on deep
neural network. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Man-
agement. ACM, pages 2027–2030.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research 22:457–479.

Youmna Farag, Helen Yannakoudakis, and Ted
Briscoe. 2018. Neural automated essay scoring and
coherence modeling for adversarially crafted input.
arXiv preprint arXiv:1804.06898 .

Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xu-
anjing Huang. 2016. End-to-end neural sentence
ordering using pointer network. arXiv preprint
arXiv:1611.04953 .

Barbara J Grosz, Scott Weinstein, and Aravind K Joshi.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse. Computational linguis-
tics 21(2):203–225.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 .

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceed-
ings of the 41st Annual Meeting on Association
for Computational Linguistics-Volume 1. Associa-
tion for Computational Linguistics, pages 545–552.

Mirella Lapata and Regina Barzilay. 2005. Automatic
evaluation of text coherence: Models and represen-
tations. In IJCAI. volume 5, pages 1085–1090.

Jiwei Li and Eduard Hovy. 2014. A model of co-
herence based on distributed sentence representa-
tion. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). pages 2039–2048.

Jiwei Li and Dan Jurafsky. 2017. Neural net models
of open-domain discourse coherence. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing. pages 198–209.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1. Association
for Computational Linguistics, pages 71–78.

Lajanugen Logeswaran, Honglak Lee, and Dragomir
Radev. 2018. Sentence ordering and coherence
modeling using recurrent neural networks. In
Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Hans Peter Luhn. 1958. The automatic creation of lit-
erature abstracts. IBM Journal of research and de-
velopment 2(2):159–165.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In AAAI. pages 3075–3081.

Ani Nenkova and Kathleen McKeown. 2012. A sur-
vey of text summarization techniques. In Mining
text data, Springer, pages 43–76.

Ani Nenkova, Kathleen McKeown, et al. 2011. Auto-
matic summarization. Foundations and Trends R© in
Information Retrieval 5(2–3):103–233.

Ani Nenkova and Lucy Vanderwende. 2005. The im-
pact of frequency on summarization. Microsoft Re-
search, Redmond, Washington, Tech. Rep. MSR-TR-
2005 101.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304 .

https://github.com/keras-team/keras
https://github.com/keras-team/keras
http://aclweb.org/anthology/D18-1465
http://aclweb.org/anthology/D18-1465
http://aclweb.org/anthology/D18-1465

160

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). volume 1,
pages 1073–1083.

Simone Teufel et al. 1999. Argumentative zoning: In-
formation extraction from scientific text. Ph.D. the-
sis, Citeseer.

