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Abstract

While contextualized embeddings have
produced performance breakthroughs in
many Natural Language Processing (NLP)
tasks, Word Sense Disambiguation (WSD)
has not benefited from them yet. In this pa-
per, we introduce QBERT, a Transformer-
based architecture for contextualized em-
beddings which makes use of a co-
attentive layer to produce more deeply
bidirectional representations, better-fitting
for the WSD task. As a result, we are
able to train a WSD system that beats the
state of the art on the concatenation of all
evaluation datasets by over 3 points, also
outperforming a comparable model using
ELMo.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
associating a word in context with the right mean-
ing among a finite set of possible senses (Navigli,
2009). Consider the following sentence, in which
SERVED is the target word:

(1) The waiter standing near the counter SERVED

the revolutionary cause well.

In WordNet (Fellbaum, 1998), the most used En-
glish computational lexicon in NLP, the following
two senses are associated (among many others) to
the verb to serve:

1. devotion: devote (part of) one’s life or efforts
to, as of countries, institutions, or ideas;

2. food: help to some food; help with some food
or drink;

The WSD system, in this case, would be tasked to
associate the target word with the correct meaning
– i.e. the devotion sense.

Currently the best WSD systems are supervised,
i.e. they leverage annotated corpora as training
data (Yuan et al., 2016; Vial et al., 2018; Melacci
et al., 2018). However, data labeling is a bot-
tleneck for WSD, even more so than in other
fields of NLP. Semantic annotation is a costly pro-
cess, requiring expert annotators (Taghipour and
Ng, 2015; Pasini and Navigli, 2017). If we con-
sider that neural networks, the best performing ap-
proach in virtually every task in NLP, are partic-
ularly data-hungry, it appears unlikely that there
will be much progress in WSD unless either more
data is available, or less data is needed.

Between the two directions, we believe efforts
towards the latter will prove more fruitful, firstly,
because of scalability considerations, and sec-
ondly, and more importantly, because of the re-
cent growth in the use of transfer learning, as ex-
emplified by contextualized embeddings. Con-
textualized embeddings have been shown to pro-
duce much better results on downstream tasks
compared to end-to-end training, even when less
data is provided (Peters et al., 2018; Howard
and Ruder, 2018; Devlin et al., 2019; He et al.,
2018; Akbik et al., 2018). Contextualized embed-
dings that use words as tokenization units, such
as ELMo (Peters et al., 2018), are most suited
to WSD. They are usually trained through self-
supervised Causal Language Modeling (CLM)
(Lample and Conneau, 2019): given a word se-
quence w1, w2, . . . , wn the system has to use w1

to predict w2, the sequence w1:2 to predict w3 and
so on. CLM is inherently unidirectional, as the
model must not be able to “peek” at the word it
has to predict. Thus to encode the left and the right
contexts two separate networks have to be used,
even if they often share part of the weights and are
jointly trained.

As regards the use of contextualized embed-
dings in WSD, this is bound to pose a problem.
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Consider the sentence (1) above. It features attrac-
tors, i.e. words or phrases pushing the sense inter-
pretation in one direction or the other, with the left
context providing a strong cue for the food sense
and the right for the devotion sense. In this pa-
per, we propose a modification of the usual CLM
architecture for transfer learning that enables us
to train a high-performance WSD system. In this
context, we make the following contributions:

• we introduce the BiTransformer, a novel
Transformer-based (Vaswani et al., 2017) co-
attentive layer allowing deeper bidirectional-
ity;

• we introduce QBERT (Quasi Bidirectional
Encoder Representations from Transform-
ers), a novel Transformer-based architecture
for CLM making use of the BiTransformer;

• we train a WSD model using QBERT contex-
tualized embeddings, outperforming on the
standard evaluation datasets both the pre-
viously established state of the art (by a
large margin) and a comparable model using
ELMo;

• we use QBERT to beat ELMo on the re-
cently established Word-in-Context (WiC)
task (Pilehvar and Camacho-Collados, 2019).

2 Related Work

Despite the limited availability of training data, the
WSD systems offering the best performances are
supervised ones. Many of the approaches are still
end-to-end, i.e. they only make use of the infor-
mation learned during the WSD training.

End-to-end WSD Systems In WSD traditional
machine learning techniques are still very compet-
itive because they are not as data-hungry as neural
networks. The very popular It Makes Sense (IMS)
system (Zhong and Ng, 2010), based on Support
Vector Machines and hand-crafted features, per-
forms very well when word embeddings are used
as additional features (Iacobacci et al., 2016); the
classifier by Papandrea et al. (2017) also gets com-
petitive results. The system of Weissenborn et al.
(2015) attains very high performances, but only
disambiguates nouns. More recently, neural mod-
els have been developed (Kagebäck and Salomon-
sson, 2016; Uslu et al., 2018; Luo et al., 2018).
Some of the most successful offer an intuitive

framing of WSD as a tagging task (Raganato et al.,
2017a; Vial et al., 2018).

Transfer Learning WSD Systems One of the
best performing WSD systems (Yuan et al., 2016)
employs a semi-supervised neural architecture,
whereby a unidirectional LSTM was trained to
predict a masked token on huge amounts of un-
labeled data (over 100B tokens). The trained
LSTM was used to produce contextualized embed-
dings for tagged tokens in SemCor; then kNN or
a more sophisticated label propagation algorithm
was used to predict a sense. The size of the train-
ing data makes replication difficult – a reimple-
mentation attempt with a smaller corpus led to
worse results (Le et al., 2018). A similar approach
using ELMo contextualized embeddings has been
presented by Peters et al. (2018), but the results
were underwhelming. Another attempt at using
transfer learning in WSD has been carried out by
Melacci et al. (2018). The authors enhanced IMS
with context2vec (Melamud et al., 2016), obtain-
ing performance roughly on a par with Yuan et al.
(2016).

Contextualized Embeddings Most of the ap-
proaches to contextualized embeddings involve
CLM pretraining of directional (either attentive or
recurrent) networks. Very successful CLM-based
models include ELMo, in which two separate di-
rectional LSTMs are fed the output of a shared
character-based Convolutional Neural Network
(CNN) encoder (Peters et al., 2018), and Ope-
nAI GPT, using Transformers instead of LSTMs
and a BPE vocabulary (Sennrich et al., 2016) with
regular embeddings instead of the CNN encoder
(Radford et al., 2018). Another popular approach,
Flair, features character-level LSTMs, outputting
hidden states at word boundaries (Akbik et al.,
2018). As CLM architectures are normally uni-
directional, one alternative in order to guarantee a
joint encoding of the context is the Masked Lan-
guage Modeling (MLM) of BERT (Devlin et al.,
2019), which, however, requires a variety of tricks
at training time.

3 The QBERT Architecture

Similarly to other LM-based approaches to con-
textualized embeddings (Peters et al., 2018; Rad-
ford et al., 2018; Howard and Ruder, 2018; Devlin
et al., 2019), the architecture we hereby propose
has two main components, which we will refer to
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Figure 1: A high-level view of the QBERT architecture.

as Encoder and task-specific Prediction Head. In
Figure 1 we show a high-level view of our sys-
tem. Raw tokens are fed to the encoder, which em-
beds them into context-independent fixed-length
vector representations (the word embeddings, W
in Figure 1), then uses them to produce context-
dependent hidden representations (the contextual-
ized embeddings, C), where the context is some
subset of the sequence itself. The Prediction Head
exploits the vectors produced by the Encoder to
perform a task.

3.1 Encoder

As will become clear in what follows, the En-
coder of the QBERT architecture is able to com-
pute the hidden representation of a word wt in a
sequence w1:n as a function of the weights and
of the whole sequence except wt itself, i.e. of
w1:t−1 and wt+1:n. To embed tokens, the En-
coder uses the Adaptive Input layer (Baevski and
Auli, 2018). Sinusoidal positional embeddings
are added to the output and passed to two sep-
arate stacks of masked Transformers, computing
two directional encodings of the sequence, with
one (P ) having past and present (w1:t) informa-
tion encoded in the present-token hidden vector
and the other (F ) having present and future (wt:n)
information instead. Since in the CLM training
information about the present token must be hid-
den from the output layer, we shift and pad the
sequences in order to have only the past tokens
encoded in the output of the first stack (P�) and
only future tokens encoded in the output of the

second (F�). To combine the shifted sequences
we use a novel Transformer layer variant taking
them both as input, the BiTransformer, featuring a
co-attentive mechanism in which P� attends over
F� and F� attends over P�. The Encoder is
trained on CLM using an Adaptive Softmax layer
(Grave et al., 2017) as Prediction Head.

3.2 Transformer Variants in QBERT

In the QBERT Encoder we employ three dis-
tinct variants of the plain Transformer: the future-
masked Transformer, the past-masked Trans-
former and the BiTransformer. To introduce them
we first need to elaborate further into the inner
workings of the layer. A vanilla Transformer layer
(Vaswani et al., 2017) can be defined as a multi-
head self attention submodule followed by a time-
wise 2-layer feedforward network, with additional
residual connection (He et al., 2016) and layer nor-
malization stabilizing training (Ba et al., 2016).

Core (Self) Attention The intuition behind the
attention mechanism is very simple (Bahdanau
et al., 2015; Luong et al., 2015). We have a se-
quence of vectors (the nq queries Q of dimen-
sion dq) and we want to compute relevance scores
against some other sequence of vectors (the nk

keys K of dimension dk) specific to each couple
of vectors q and k. The nq × nk relevance score
matrix is then used to compute nq weighted means
of another sequence of vectors (the nk values V
of dimension dv). So, if we pack Q, K, V into
matrices, the mechanism can be distilled into the
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formula:

attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where
√
dk is a normalization factor meant to

prevent the dot products from getting too large.
In the case of the self attention mechanism Q,
K, V stand for the same matrix. In the Trans-
former (Vaswani et al., 2017), multi-head attention
is used, in which n attentions (the heads) are com-
puted in parallel, concatenated and then combined
through dot product with a dqn × do matrix W o.
For each attention head hi, there are three weight
matrices WQ

i , WK
i , W V

i , multiplying respectively
Q, K and V . Formally, we define multi-head at-
tention (attnMH ) as:

attnMH(Q,K, V ) =
n⊕

i=0

[softmax(
(QWQ

i )(KWK
i )T√

dk
)(VWQ

i )]W o

(2)

where ⊕ denotes concatenation along the second
dimension.

Transformer Masking In the past and future
stacks, as well as in the BiTransfomer layer, we
employ a masking mechanism on attention to en-
force directionality, i.e. to force the relevance
scores computed between Q and K to be 0 for
tokens following or preceding the current one, as
needed. Masking can be implemented by per-
forming an elementwise sum between QKT and
a nq × nk masking matrix M , whose values are
set to −∞ if Ki and Vj are to be excluded from
the attention computation, else 0. In our architec-
ture we employ two different masking matrices:
a future masking-matrix Mf which is set to −∞
when i < j and a past-masking matrix Mp set to
−∞ when i > j; note that Mf = MT

p . Mul-
tihead and masked attention can be combined by
simply using the same masking matrix in each at-
tention head. We use Mf in the past Transformer
stack and Mp in the future stack, producing, re-
spectively, P and F . To encourage the network
to encode comparable representations we tie the
weights between layers at the same depth on the
past and future stack.

3.2.1 Timestep Shift
Present-token information is still encoded in both
P and F . To remove it, we use a simple shift-
ing approach where we detach the nth timestep

from P and the first from F and add padding to
the opposite sides. This effectively shifts the hid-
den representation by one place to the left and
by one place to the right. We refer to the result-
ing sequences as, respectively, P� and F�. As
a result, the ith position of P� encodes informa-
tion from tokens w1:i−1 while F� encodes wi+1:n.
Formally:

P� =PAD ⊕ P1:n−1

F� =F2:n ⊕ PAD
(3)

where⊕ denotes concatenation along the timestep
dimension. The padding vector PAD is learned
during training. The process is visualized in Fig-
ure 1, where tokens are aligned according to their
shifted positions.

3.2.2 BiTransformer
To combine P� and F� we employ the BiTrans-
former, a novel Transformer layer variant that uses
a masked coattentive multihead attention mecha-
nism over two sequences. Masking allows P�
to attend over F� while keeping present-token
knowledge hidden from the network, and vice
versa. This allows deeper bidirectionality in that
the resulting output is not a naive combination of
two separate directional representations but rather
the result of a whole-sequence attention, albeit
computed in a two-step process, where the first
step can be arbitrarily deep (the masked Trans-
former stacks) and the second is always shallow
(the BiTransformer). Unfortunately, BiTransform-
ers cannot be stacked as each timestep in the out-
put of the layer encodes information about every
token in the sequence but the one it has to pre-
dict in CLM, so any further use of attention would
make pretraining impossible.

The BiTransformer requires modifications to
the first part of the vanilla Transformer intramod-
ule architecture. First, both input sequences
are layer normalized separately. We compute
a masked multihead attention using the future-
masked sequence P� as Q, the past-masked se-
quence F� as K and V , using the past-masking
matrix Mp. To give an insight into what happens,
the position i of the n queries, encoding informa-
tion about words 1 to i − 1, is allowed to look
at positions i to n of the keys, encoding words
wi+1:n, wi+2:n and so on. Then we compute the
reverse, using F�, P� and future-masking ma-
trix Mf . This process results in two sequences to
which input residuals are added, and then added
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together via a simple elementwise sum. The rest
of the layer works just like a regular Transformer
layer. We formally describe this coattentive mech-
anism as follows:

P ′� =LayerNorm(P�)

F ′� =LayerNorm(F�)

O =attnMMH(P ′�, F ′�, F ′�,Mp)+

attnMMH(F ′�, P ′�, P ′�,Mf ) + P� + F�
(4)

O goes through the 2-layer feedforward to produce
contextualized embeddings, which are used as in-
put for the task-specific Prediction Heads. We de-
scribe them in the relevant paragraphs of Sections
4.1 and 5.

4 Experimental Setup

In what follows we first describe the Encoder ar-
chitecture hyperparameters and CLM pretraining
details (Section 4.1). In Section 4.2 we describe
the contextualized embeddings systems we use as
comparison in the WSD and Word-in-Context ex-
periments. Finally, we report the setup and results
of the experiments in Section 5.

4.1 QBERT Encoder Pretraining
CLM Prediction Head and Hyperparameters
To train the QBERT Encoder on CLM we use
an Adaptive Softmax (Grave et al., 2017) layer
as Prediction Head. Following Baevski and Auli
(2018), we tie the weights (Press and Wolf, 2017)
of the embedding matrices but not the projective
weights. Both Adaptive Input and Adaptive Soft-
max use a vocabulary of 400k words, with cutoffs
set to 35k, 100k, 200k and a shrinking factor of
4. The past and future stacks as well as the Bi-
Transformer feature an input and output size of
512, while the first layer of the internal feedfor-
ward projects the input to 2048 dimensions, the
same as the base configuration in Vaswani et al.
(2017). The masked Transformer stacks are both
5-layer deep.

Training Hyperparameters We train QBERT
on the English UMBC corpus (Han et al., 2013),
which contains around 3B tokens. In our training
loop we feed the input in batches of 5000 tokens,
splitting the corpus in sequences of max 100 to-
kens. We found it beneficial to accumulate the gra-
dient for many training steps, performing an up-
date every 16 batches, resulting in a virtual batch

size of 80000 tokens. As an optimizer we employ
regular Nesterov-accelerated SGD, with a learn-
ing rate that first increases linearly from 10−5 to 1
during a warmup phase lasting 2000 updates, and
then varies from a maximum of 1 to a minimum
of 10−5 according to a Cyclical Learning Rate
(Smith, 2017) policy with cosine scheme, with a
period of 2000 updates. With each cycle, the pe-
riod is multiplied by 1.5 while both the maximum
and minimum values are halved. We train until
convergence.

We implement the system and training logic in
pytorch with the help of the fairseq library.

4.2 Comparison Systems

In our experiments we compare QBERT with three
different contextualized embeddings systems:

1. Off-the-shelf pretrained ELMo (Peters et al.,
2018). We employ a model featuring 4096-
sized bidirectional LSTMs and 512-sized
contextualized embeddings1, pretrained on
the concatenation of a Wikipedia dump and a
few English monolingual news corpora2, for
a total of 5.5B tokens.

2. Off-the-shelf pretrained Flair (Akbik et al.,
2018). We employ the models the
project’s page3 refers to as mix-forward
and mix-backward, pretrained on “Web,
Wikipedia, Subtitles”4. We concatenate their
contextualized embeddings.

3. SBERT (Shallowly Bidirectional Encoder
Representations from Transformers), a base-
line featuring the same architecture as
QBERT but missing the BiTransformer layer:
the outputs of the past and future stacks are
simply combined through elementwise sum
after the position shift.

We do not include in our comparison the BPE-
based systems BERT and GPT (Devlin et al.,
2019; Radford et al., 2018) as they use a different
tokenization unit, which is not suitable for WSD.

1The model implementation and weights are available in
the allennlp library.

2The corpora used are the 2008 to 2012 news
crawls, available at http://data.statmt.org/
news-crawl/en/

3https://github.com/zalandoresearch/
flair

4There are no further specifications about the composition
of the training corpus.

http://data.statmt.org/news-crawl/en/
http://data.statmt.org/news-crawl/en/
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
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5 Evaluation tasks

As the first and main experiment we train and eval-
uate a WSD Transformer classifier (Section 5.1.1)
using QBERT and comparison contextualized em-
beddings. To corroborate the results, as further ex-
periments we evaluate the performance of the con-
textualized embeddings on the Word-in-Context
task (Pilehvar and Camacho-Collados, 2019) (Sec-
tion 5.2).

5.1 Word Sense Disambiguation

5.1.1 Setup

To perform our WSD experiment we train a sim-
ple Transformer-based classifier, which we eval-
uate on all-words WSD benchmark datasets. We
use F1 on the test set as a measure of performance.

Architecture Our Transformer classifier takes
as input the w-weighted mean between the word
embeddings produced by the Encoder (the Adap-
tive Input layer in the case of QBERT, the
character-level CNN in the case of ELMo) and
the contextualized embeddings. We freeze the En-
coder and only train w and the weights of the
Transformer classifier. As Flair has no word em-
beddings, we concatenate the outputs of the for-
ward and backward models with GloVe embed-
dings (Pennington et al., 2014), and substitute the
weighted mean with a dense layer projecting the
concatenated matrix to the Transformer hidden
dimension. The classifier produces a probabil-
ity distribution over an output vocabulary which
includes all the possible synsets plus a special
<untagged> symbol for words with no associ-
ated tag. During training only, we treat monose-
mous words as tagged. At test time, we predict the
synset with the highest probability among those
associated with the lemma of the target word. Im-
portantly, we do not employ any Most Frequent
Sense backoff strategy.

Hyperparameters All models are trained with
Adam for a maximum of 60 epochs. We use a sim-
ilar learning rate scheduling scheme as in the CLM
training, first linearly increasing the value from
10−5 to 10−3, then using a cosine CLR scheduler
with period 200, maximum learning rate 10−3 and
minimum learning rate 10−4; with each cycle the
maximum and minimum are halved, while the pe-
riod is doubled.

Training and Test Data For each comparison
system we train two WSD classifiers, one using
only SemCor as training corpus and the other us-
ing the concatenation of SemCor and the corpus
of WordNet’s Tagged Glosses5 (WTG). WTG in-
cludes 117659 manually disambiguated WordNet
synset glosses, with 496776 annotated tokens. We
test the performance of the models on the En-
glish all-words evaluation datasets from the Sen-
sEval and SemEval WSD evaluation campaigns,
namely Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-
07 (Pradhan et al., 2007), SemEval-13 (Navigli
et al., 2013), SemEval-15 (Moro and Navigli,
2015) and their concatenation (ALL). We use
SemEval-2015 as our development set, to select
the best epoch of the run. We use the version of
SemCor and the evaluation datasets included in the
WSD framework6 of Raganato et al. (2017b).

5.1.2 Results
We show in Table 1 and Table 2 the results of
the evaluation on all-words WSD of the Predic-
tion Head trained on top of QBERT and the com-
parison systems. Our best model beats all the
previously established results on all evaluation
datasets. While the performance of the systems
using SBERT and ELMo are also very competi-
tive, in many cases exceeding the state of the art,
QBERT consistently outperforms them, achieving
one of the largest performance gains in years.

SemCor If we restrict the comparison to mod-
els trained on SemCor (Table 1), QBERT beats
the state of the art with a margin of 0.7 points on
Semeval-07 and 1.5 points on SemEval-13. On
our development set, SemEval-15, we get a score
2 points over the state of the art. On Semeval-2
and Senseval-3 our F1 score is in the same ballpark
as, respectively, Yuan et al. (2016) and Uslu et al.
(2018). QBERT also performs well measured
against our comparison systems. SBERT achieves
lower performance across the board, but attains
overall competitive results on all the datasets.
ELMo performs on a par with SBERT on the con-
catenation of all datasets, but gets better results
than QBERT on the development set. Flair, per-
haps as a result of its purely character-based na-
ture, is severely outperformed on most datasets.

5http://wordnetcode.princeton.edu/
glosstag.shtml

6http://lcl.uniroma1.it/wsdeval/

http://wordnetcode.princeton.edu/glosstag.shtml
http://wordnetcode.princeton.edu/glosstag.shtml
http://lcl.uniroma1.it/wsdeval/
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Systems Dev. set S2 S3 S07 S13 S15 ALL
IMS (Melacci et al., 2018) – 0.702 0.688 0.622 0.653 0.693 0.681
IMSWE (Melacci et al., 2018) – 0.722 0.699 0.629 0.662 0.719 0.696
IMSC2V+PR (Melacci et al., 2018) – 0.738 0.719 0.633 0.682 0.728 0.713
supWSDEmb (Papandrea et al., 2017) – 0.727 0.706 0.631 0.668 0.718 –
BiLSTMatt+lex (Raganato et al., 2017a) S07 0.720 0.694 0.637 0.664 0.724 0.699
GASext(concat) (Luo et al., 2018) S07 0.722 0.705 – 0.672 0.726 0.706
BiLSTM (Vial et al., 2018) WTG 0.735† 0.709† 0.625† 0.676† 0.716† 0.705†
BiLSTM+VR (ensemble) (Vial et al., 2018) WTG 0.731 0.706 0.613 0.712 0.716 0.718
LSTM+LP (Yuan et al., 2016) – 0.738 0.718 0.635 0.695 0.726 –
fastSense (Uslu et al., 2018) S2 0.735 0.735 0.624 0.662 0.732 –
SotA (single model) – 0.735 0.735 0.637 0.695 0.728 0.713
SotA (ensemble) – 0.735 0.735 0.637 0.712 0.728 0.718
ELMo + WSD Pred. Head S15 0.719 0.718 0.607 0.703 0.762 0.714
Flair + WSD Pred. Head S15 0.702 0.702 0.615 0.694 0.732 0.699
SBERT + WSD Pred. Head S15 0.731 0.719 0.640 0.694 0.741 0.715
QBERT + WSD Pred. Head? S15 0.734 0.732 0.644 0.710 0.743 0.724

Table 1: Results of the evaluation on the English datasets of models trained on SemCor. We include as
competitors supervised systems capable of performing all-words WSD on the whole WordNet inventory.
We report in the ‘Dev set.’ column the development corpus used (if any). The † symbol indicates that
the result is an average of 20 training runs. Bold means that the result is the highest one among non
ensemble models. We use ? to mark significant improvement against best single model performance
on ALL according to a z-test (p < 0.05). We report in the four row blocks 1) competitor SVM-based
systems; 2) competitor neural networks; 3) state of the art as the maximum value in the previous rows;
4) QBERT and our comparison systems.

Systems Dev. set S2 S3 S07 S13 S15 ALL
BiLSTM (Vial et al., 2018) SMP 0.744† 0.708† 0.625† 0.708† 0.745† 0.719†
BiLSTM+VR (ensemble) (Vial et al., 2018) SMP 0.752 0.701 0.668 0.726 0.745 0.727
SotA (single model) – 0.744 0.735 0.637 0.708 0.745 0.719
SotA (ensemble) – 0.752 0.735 0.668 0.726 0.745 0.727
ELMo + WSD Pred. Head? S15 0.743 0.726 0.648 0.754 0.786 0.741
Flair + WSD Pred. Head S15 0.728 0.715 0.646 0.725 0.775 0.725
SBERT + WSD Pred. Head? S15 0.746 0.722 0.675 0.717 0.783 0.734
QBERT + WSD Pred. Head? S15 0.757 0.739 0.659 0.746 0.791 0.749

Table 2: Results of the evaluation on the English datasets of models trained on the concatenation of
SemCor and WTG. We use the same notation as in Table 1, employing ? to mark significance against
the single model state of the art. Models from Vial et al. (2018), marked by SMP, use a random sample
of sentences from SemCor and WTG as development. In the row blocks we report 1) competitor neural
networks; 2) the state of the art as the maximum value in the previous rows and in Table 1; 3) QBERT
and our comparison systems.

SemCor and WTG When we report in the com-
parison systems trained on the concatenation of
SemCor and WTG (Table 2), QBERT beats the
state of the art more consistently and by a larger
margin. We reach 1.3 points above the previ-
ous state of the art on Senseval-2, 0.4 points on
Senseval-3, 2.4 on Semeval-07, 3.8 on Semeval-
13 and 4.6 on Semeval-15 (which is however our
development set). On the concatenation of all
datasets, our margin is of 3 points. Even if we con-
sider the ensemble of 20 models trained on Sem-
Cor and WTG by Vial et al. (2018), we get bet-
ter results on every dataset with the exception of
SemEval-07, with a difference of 2.2 points on

ALL. With respect to our own comparison sys-
tems, QBERT performs better than ELMo, Flair
and SBERT in this setting as well. ELMo gets very
competitive results compared to the previous state
of the art, which it beats on many datasets. Com-
pared to QBERT, however, it gets worse results
on almost every dataset, with the single excep-
tion of SemEval-13. Flair underperforms also in
this setting. SBERT achieves good performances,
but still consistently lower than QBERT, except
for SemEval-07, which is however a small dataset
whose F1 scores show high variance across differ-
ent training runs.
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5.2 Word-in-Context

The Word-in-Context task (WiC) was recently
established by Pilehvar and Camacho-Collados
(2019). Like WSD, WiC requires identification
of a contextually appropriate meaning, but it is
framed as a simpler binary classification task:
given two contextual occurrences of the same
lemma, predict whether the pair shares the same
sense. The dataset includes 8320 context pairs, di-
vided between training and development (the test
set has not yet been released). By including the
same target word in each element of the pair, the
dataset is constructed in such a way that context-
insensitive word embeddings would not perform
better than the random baseline. Thus, the dataset
is an ideal evaluation set for assessing the quality
of the semantic information encoded in contextu-
alized embeddings.

5.2.1 Setup

Among the baselines offered by Pilehvar and
Camacho-Collados (2019), one uses ELMo con-
textualized embeddings as input to a simple two-
layer feed-forward classifier. We replicate the
same setting, but using the concatenation of
QBERT Encoder word and contextualized embed-
dings as input instead. Also, as the authors have
not yet released the gold keys for the development
set and evaluation can only be performed by up-
loading a prediction file to the Codalab competi-
tion page7, we take 1

10 of the training instances as
our development set, and use the provided devel-
opment set for testing. We train the system for a
max of 40 epochs, submitting the epoch with best
accuracy on the development split. WiC’s scorer
reports the accuracy calculated on the predictions.
We implement the same system employing ELMo,
Flair (using the concatenation of GloVe and con-
textualized embeddings) and SBERT as well. Per-
formance is measured by mean accuracy over 5
runs.

5.2.2 Results

In Table 3 we show the results of the evaluation on
the WiC development set.

7https://competitions.codalab.org/
competitions/20010

System Acc. µ Acc. σ
Elmo (ours) 59.97 1.41
Flair 60.23 0.91
SBERT 60.03 1.13
QBERT 60.74 1.22

Table 3: Results of our ELMo, SBERT and
QBERT models on the WiC dataset evaluation
dataset. We report the mean and standard devia-
tion of the accuracy for 5 runs.

In this setting ELMo performs on a par with
SBERT and Flair, while QBERT achieves the best
result. Note that the quasi-deeply bidirectional en-
coding that QBERT can exploit through the Bi-
Transformer might see its effectiveness reduced in
this setting since many pairs feature limited con-
text, even as short as 2 or 3 words. Still, the re-
sults of the WiC task corroborate those of the all-
words WSD, providing evidence that joint encod-
ing is crucial to better performance in word-level
semantics.

6 Conclusion

In this paper we showed that the use of contextu-
alized embeddings enables a WSD system to beat
the previous state of the art. Moreover, we demon-
strated that the use of the BiTransformer coat-
tentive mechanism in the QBERT contextualized
embeddings model itself results in even stronger
performance. As a result, we attain one of the
largest gains in WSD performance in years, with
a margin of 3 points over the best reported sin-
gle model on the concatenation of all datasets, and
of 2.2 points over the best ensemble model in the
literature. We leave for future work the assess-
ment of whether the gains brought about by the
use of the BiTransformer in QBERT carry over
to other tasks, helping to bridge the gap between
CLM-based and fully bidirectional MLM-based
contextualized embeddings. We release the code
to train the QBERT Encoder and the WSD clas-
sifier, along with pretrained models at https:
//github.com/mbevila/qbert.
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Mikael Kagebäck and Hans Salomonsson. 2016.
Word Sense Disambiguation using a Bidirectional
LSTM. In Proc. of COLING. pages 51–56.
https://aclanthology.info/papers/W16-5307/w16-
5307.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR
abs/1901.07291. http://arxiv.org/abs/1901.07291.

Minh Le, Marten Postma, Jacopo Urbani, and Piek
Vossen. 2018. A Deep Dive into Word Sense Dis-
ambiguation with LSTM. In Proc. of COLING.
Association for Computational Linguistics, pages
354–365. https://aclanthology.info/papers/C18-
1030/c18-1030.

Fuli Luo, Tianyu Liu, Qiaolin Xia, Baobao Chang, and
Zhifang Sui. 2018. Incorporating Glosses into Neu-
ral Word Sense Disambiguation. In Proc. of ACL.
Association for Computational Linguistics, pages
2473–2482. https://aclanthology.info/papers/P18-
1230/p18-1230.

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective Approaches to
Attention-based Neural Machine Transla-
tion. In Proc. of EMNLP. Association for
Computational Linguistics, pages 1412–1421.
http://aclweb.org/anthology/D/D15/D15-1166.pdf.

Stefano Melacci, Achille Globo, and Leonardo
Rigutini. 2018. Enhancing Modern Su-
pervised Word Sense Disambiguation
Models by Semantic Lexical Resources.
In Proc. of LREC. pages 1012–1017.
https://www.aclweb.org/anthology/papers/L/L18/L18-
1163/.

Oren Melamud, Jacob Goldberger, and Ido Da-
gan. 2016. context2vec: Learning Generic
Context Embedding with Bidirectional
LSTM. In Proc. of COLING. pages 51–61.
http://aclweb.org/anthology/K/K16/K16-1006.pdf.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 Task 13: Multilingual All-Words Sense Dis-
ambiguation and Entity Linking. In Proceedings
of the 9th International Workshop on Semantic
Evaluation, SemEval@NAACL-HLT 2015, Denver,
Colorado, USA, June 4-5, 2015. pages 288–297.
http://aclweb.org/anthology/S/S15/S15-2049.pdf.

https://aclanthology.info/papers/C18-1139/c18-1139
https://aclanthology.info/papers/C18-1139/c18-1139
https://aclanthology.info/papers/C18-1139/c18-1139
https://aclanthology.info/papers/C18-1139/c18-1139
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1809.10853
http://arxiv.org/abs/1809.10853
http://arxiv.org/abs/1809.10853
http://arxiv.org/abs/1809.10853
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://www.aclweb.org/anthology/papers/S/S01/S01-1001/
https://www.aclweb.org/anthology/papers/S/S01/S01-1001/
https://www.aclweb.org/anthology/papers/S/S01/S01-1001/
https://www.aclweb.org/anthology/papers/S/S01/S01-1001/
http://proceedings.mlr.press/v70/grave17a.html
http://proceedings.mlr.press/v70/grave17a.html
http://proceedings.mlr.press/v70/grave17a.html
http://aclweb.org/anthology/S/S13/S13-1005.pdf
http://aclweb.org/anthology/S/S13/S13-1005.pdf
http://aclweb.org/anthology/S/S13/S13-1005.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://aclanthology.info/papers/P18-2058/p18-2058
https://aclanthology.info/papers/P18-2058/p18-2058
https://aclanthology.info/papers/P18-2058/p18-2058
https://aclanthology.info/papers/P18-2058/p18-2058
https://aclanthology.info/papers/P18-2058/p18-2058
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
http://aclweb.org/anthology/P/P16/P16-1085.pdf
http://aclweb.org/anthology/P/P16/P16-1085.pdf
http://aclweb.org/anthology/P/P16/P16-1085.pdf
http://aclweb.org/anthology/P/P16/P16-1085.pdf
https://aclanthology.info/papers/W16-5307/w16-5307
https://aclanthology.info/papers/W16-5307/w16-5307
https://aclanthology.info/papers/W16-5307/w16-5307
https://aclanthology.info/papers/W16-5307/w16-5307
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://aclanthology.info/papers/C18-1030/c18-1030
https://aclanthology.info/papers/C18-1030/c18-1030
https://aclanthology.info/papers/C18-1030/c18-1030
https://aclanthology.info/papers/C18-1030/c18-1030
https://aclanthology.info/papers/P18-1230/p18-1230
https://aclanthology.info/papers/P18-1230/p18-1230
https://aclanthology.info/papers/P18-1230/p18-1230
https://aclanthology.info/papers/P18-1230/p18-1230
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf
https://www.aclweb.org/anthology/papers/L/L18/L18-1163/
https://www.aclweb.org/anthology/papers/L/L18/L18-1163/
https://www.aclweb.org/anthology/papers/L/L18/L18-1163/
https://www.aclweb.org/anthology/papers/L/L18/L18-1163/
https://www.aclweb.org/anthology/papers/L/L18/L18-1163/
http://aclweb.org/anthology/K/K16/K16-1006.pdf
http://aclweb.org/anthology/K/K16/K16-1006.pdf
http://aclweb.org/anthology/K/K16/K16-1006.pdf
http://aclweb.org/anthology/K/K16/K16-1006.pdf
http://aclweb.org/anthology/S/S15/S15-2049.pdf
http://aclweb.org/anthology/S/S15/S15-2049.pdf
http://aclweb.org/anthology/S/S15/S15-2049.pdf
http://aclweb.org/anthology/S/S15/S15-2049.pdf


131

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Comput. Surv. 41(2):10:1–10:69.
https://doi.org/10.1145/1459352.1459355.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 Task 12: Multilingual Word
Sense Disambiguation. In Proc. of SemEval. pages
222–231. http://aclweb.org/anthology/S/S13/S13-
2040.pdf.

Simone Papandrea, Alessandro Raganato, and Clau-
dio Delli Bovi. 2017. SupWSD: A Flex-
ible Toolkit for Supervised Word Sense Dis-
ambiguation. In Proc. of EMNLP. pages
103–108. https://aclanthology.info/papers/D17-
2018/d17-2018.

Tommaso Pasini and Roberto Navigli. 2017. Train-
O-Matic: Large-Scale Supervised Word Sense Dis-
ambiguation in Multiple Languages without Man-
ual Training Data. In Proc. of EMNLP. pages 78–
88. https://aclanthology.info/papers/D17-1008/d17-
1008.

Jeffrey Pennington, Richard Socher, and
Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation.
In Proc. of EMNLP. pages 1532–1543.
http://aclweb.org/anthology/D/D14/D14-1162.pdf.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Proc. of NAACL-HLT . pages
2227–2237. https://aclanthology.info/papers/N18-
1202/n18-1202.

Mohammad Taher Pilehvar and José Camacho-
Collados. 2019. Wic: the word-in-context dataset
for evaluating context-sensitive meaning represen-
tations. In Proc. of NAACL-HLT . pages 1267–1273.
https://aclweb.org/anthology/papers/N/N19/N19-
1128/.

Sameer Pradhan, Edward Loper, Dmitriy Dligach,
and Martha Palmer. 2007. SemEval-2007 Task-
17: English Lexical Sample, SRL and All
Words. In Proc. of SemEval 2007. pages 87–92.
http://aclweb.org/anthology/S07-1016.

Ofir Press and Lior Wolf. 2017. Using the Out-
put Embedding to Improve Language Mod-
els. In Proc. of EACL. pages 157–163.
https://aclanthology.info/papers/E17-2025/e17-
2025.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-Training .

Alessandro Raganato, Claudio Delli Bovi, and
Roberto Navigli. 2017a. Neural Sequence
Learning Models for Word Sense Disambigua-
tion. In Proc. of EMNLP. pages 1156–1167.
https://aclanthology.info/papers/D17-1120/d17-
1120.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017b. Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empir-
ical Comparison. In Proc. of ACL. pages 99–110.
https://www.aclweb.org/anthology/papers/E/E17/E17-
1010/.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proc. of ACL. pages 1717–
1725. http://aclweb.org/anthology/P/P16/P16-
1162.pdf.

Leslie N. Smith. 2017. Cyclical Learning Rates for
Training Neural Networks. In Proc. of WACV . pages
464–472. https://doi.org/10.1109/WACV.2017.58.

Benjamin Snyder and Martha Palmer. 2004. The En-
glish all-words task. In Proc. of SENSEVAL-3.
pages 41–43. https://aclanthology.info/papers/W04-
0811/w04-0811.

Kaveh Taghipour and Hwee Tou Ng. 2015. One Mil-
lion Sense-Tagged Instances for Word Sense Disam-
biguation and Induction. In Proc. of CoNLL. pages
338–344. http://aclweb.org/anthology/K/K15/K15-
1037.pdf.

Tolga Uslu, Alexander Mehler, Daniel Baumartz,
Alexander Henlein, and Wahed Hemati. 2018. Fast-
Sense: An Efficient Word Sense Disambiguation
Classifier. In Proc. of LREC. pages 1042–1046.
https://www.aclweb.org/anthology/papers/L/L18/L18-
1168/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Proc. of NIPS. pages 6000–
6010. https://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf.

Loı̈c Vial, Benjamin Lecouteux, and Didier
Schwab. 2018. Improving the coverage and
the generalization ability of neural word sense
disambiguation through hypernymy and hy-
ponymy relationships. CoRR abs/1811.00960.
http://arxiv.org/abs/1811.00960.

Dirk Weissenborn, Leonhard Hennig, Feiyu Xu, and
Hans Uszkoreit. 2015. Multi-Objective Optimiza-
tion for the Joint Disambiguation of Nouns and
Named Entities. In Proc. of ACL. pages 596–605.
http://aclweb.org/anthology/P/P15/P15-1058.pdf.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin
Evans, and Eric Altendorf. 2016. Semi-supervised
Word Sense Disambiguation with Neural Mod-
els. In Proc. of COLING. pages 1374–1385.
http://aclweb.org/anthology/C/C16/C16-1130.pdf.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes
Sense: A Wide-Coverage Word Sense Disam-
biguation System for Free Text. In Proc.
of ACL, System Demonstrations. pages 78–83.
http://www.aclweb.org/anthology/P10-4014.

https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
http://aclweb.org/anthology/S/S13/S13-2040.pdf
http://aclweb.org/anthology/S/S13/S13-2040.pdf
http://aclweb.org/anthology/S/S13/S13-2040.pdf
http://aclweb.org/anthology/S/S13/S13-2040.pdf
https://aclanthology.info/papers/D17-2018/d17-2018
https://aclanthology.info/papers/D17-2018/d17-2018
https://aclanthology.info/papers/D17-2018/d17-2018
https://aclanthology.info/papers/D17-2018/d17-2018
https://aclanthology.info/papers/D17-2018/d17-2018
https://aclanthology.info/papers/D17-1008/d17-1008
https://aclanthology.info/papers/D17-1008/d17-1008
https://aclanthology.info/papers/D17-1008/d17-1008
https://aclanthology.info/papers/D17-1008/d17-1008
https://aclanthology.info/papers/D17-1008/d17-1008
https://aclanthology.info/papers/D17-1008/d17-1008
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
https://aclanthology.info/papers/N18-1202/n18-1202
https://aclanthology.info/papers/N18-1202/n18-1202
https://aclanthology.info/papers/N18-1202/n18-1202
https://aclanthology.info/papers/N18-1202/n18-1202
https://aclweb.org/anthology/papers/N/N19/N19-1128/
https://aclweb.org/anthology/papers/N/N19/N19-1128/
https://aclweb.org/anthology/papers/N/N19/N19-1128/
https://aclweb.org/anthology/papers/N/N19/N19-1128/
https://aclweb.org/anthology/papers/N/N19/N19-1128/
http://aclweb.org/anthology/S07-1016
http://aclweb.org/anthology/S07-1016
http://aclweb.org/anthology/S07-1016
http://aclweb.org/anthology/S07-1016
https://aclanthology.info/papers/E17-2025/e17-2025
https://aclanthology.info/papers/E17-2025/e17-2025
https://aclanthology.info/papers/E17-2025/e17-2025
https://aclanthology.info/papers/E17-2025/e17-2025
https://aclanthology.info/papers/E17-2025/e17-2025
https://aclanthology.info/papers/D17-1120/d17-1120
https://aclanthology.info/papers/D17-1120/d17-1120
https://aclanthology.info/papers/D17-1120/d17-1120
https://aclanthology.info/papers/D17-1120/d17-1120
https://aclanthology.info/papers/D17-1120/d17-1120
https://www.aclweb.org/anthology/papers/E/E17/E17-1010/
https://www.aclweb.org/anthology/papers/E/E17/E17-1010/
https://www.aclweb.org/anthology/papers/E/E17/E17-1010/
https://www.aclweb.org/anthology/papers/E/E17/E17-1010/
https://www.aclweb.org/anthology/papers/E/E17/E17-1010/
http://aclweb.org/anthology/P/P16/P16-1162.pdf
http://aclweb.org/anthology/P/P16/P16-1162.pdf
http://aclweb.org/anthology/P/P16/P16-1162.pdf
http://aclweb.org/anthology/P/P16/P16-1162.pdf
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://aclanthology.info/papers/W04-0811/w04-0811
https://aclanthology.info/papers/W04-0811/w04-0811
https://aclanthology.info/papers/W04-0811/w04-0811
https://aclanthology.info/papers/W04-0811/w04-0811
http://aclweb.org/anthology/K/K15/K15-1037.pdf
http://aclweb.org/anthology/K/K15/K15-1037.pdf
http://aclweb.org/anthology/K/K15/K15-1037.pdf
http://aclweb.org/anthology/K/K15/K15-1037.pdf
http://aclweb.org/anthology/K/K15/K15-1037.pdf
https://www.aclweb.org/anthology/papers/L/L18/L18-1168/
https://www.aclweb.org/anthology/papers/L/L18/L18-1168/
https://www.aclweb.org/anthology/papers/L/L18/L18-1168/
https://www.aclweb.org/anthology/papers/L/L18/L18-1168/
https://www.aclweb.org/anthology/papers/L/L18/L18-1168/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1811.00960
http://arxiv.org/abs/1811.00960
http://arxiv.org/abs/1811.00960
http://arxiv.org/abs/1811.00960
http://arxiv.org/abs/1811.00960
http://aclweb.org/anthology/P/P15/P15-1058.pdf
http://aclweb.org/anthology/P/P15/P15-1058.pdf
http://aclweb.org/anthology/P/P15/P15-1058.pdf
http://aclweb.org/anthology/P/P15/P15-1058.pdf
http://aclweb.org/anthology/C/C16/C16-1130.pdf
http://aclweb.org/anthology/C/C16/C16-1130.pdf
http://aclweb.org/anthology/C/C16/C16-1130.pdf
http://aclweb.org/anthology/C/C16/C16-1130.pdf
http://www.aclweb.org/anthology/P10-4014
http://www.aclweb.org/anthology/P10-4014
http://www.aclweb.org/anthology/P10-4014
http://www.aclweb.org/anthology/P10-4014

