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Abstract

We describe a new approach to semantic
parsing based on Combinatory Categorial
Grammar (CCG). The grammar’s se-
mantic construction operators are defined
in terms of a graph algebra, which allows
our system to induce a compact CCG lex-
icon. We introduce an expectation max-
imisation algorithm which we use to fil-
ter our lexicon down to 2500 lexical tem-
plates. Our system achieves a semantic
triple (Smatch) precision that is competit-
ive with other CCG-based AMR parsing
approaches.

1 Introduction

Parsing sentences to formal meaning representa-
tions, known as Semantic Parsing, is a task at the
frontier of Natural Language Understanding. Ab-
stract Meaning Representation (AMR) is a mean-
ing representation language that represents sen-
tence semantics in the form of graphs. Research
on AMR parsing systems has been very productive
in recent years with many competing approaches.

Current AMR parsers vary regarding the extent
to which they rely on a formal grammar. Some
of the most successful systems generate AMRs
through an end-to-end neural architecture, with no
explicit symbolic derivations (Zhang et al., 2019).
Other parsers employ transition systems with lim-
ited explanatory power (Peng et al., 2018). Con-
structing grammar-based semantic analyses that
can be understood in terms of linguistic theory is a
more difficult task than end-to-end AMR parsing
because of the additional structural requirements
on the output and the algorithmic constraints im-
posed thereby.

In this paper, we explore how semantic parsers
can be built to be interpretable and transparent.

Interpretability means that our system exposes
rich symbolic information in the form of CCG de-
rivations. Transparency means that it works with
a compact and intuitively plausible lexicon. The
lexicon is itself an artifact that can be inspected.

We achieve these goals by equipping CCG with
graph-based semantics. Meaning reprentations are
constructed through the operations of a simple
graph algebra, which effectively constrains the
search space for parsing and lexicon induction and
makes the available operations and resulting lex-
ical items easy to understand.

Technical contributions of this paper include
a modified expectation-maximisation (EM) al-
gorithm to induce compact delexicalised CCG lex-
ica, a technique for training a syntactic-semantic
supertagger with incomplete labels, and a hybrid
update mechanism for training the linear parsing
model.

1.1 Related Work

This work builds upon the concept of graph-
algebraic CCG, which has so far been tested only
in the context of lexicon induction (Beschke and
Menzel, 2018). We extend the lexicon induction
process by delexicalisation and EM filtering and
demonstrate the first end-to-end parsing system
based on graph-algebraic CCG. The idea of ap-
plying graph algebras to AMR parsing has also
been applied in the context of Interpreted Regular
Tree Grammar (Groschwitz et al., 2018). Further-
more, improved definitions of graph-composing
CCG combinators have been proposed (Blodgett
and Schneider, 2019) to cover a wider range of se-
mantic phenomena.

Other systems that apply CCG to AMR pars-
ing use an encoding of AMR graphs to λ-calculus
expressions (Artzi et al., 2015; Misra and Artzi,
2016). One drawback of these systems is that lex-
icon induction is coupled to the training loop of a
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Figure 1: An example graph-algebraic CCG deriv-
ation.

parser, which makes it compute-intensive and dif-
ficult to manage. We address this issue by per-
forming lexicon induction in a separate step.

Besides AMR parsing, CCG has also been used
for joint syntactic-semantic parsing in other con-
texts (Krishnamurthy and Mitchell, 2014; Lewis
et al., 2015).

2 Background

This paper uses Combinatory Categorial Gram-
mar (CCG) to derive Abstract Meaning Repres-
entations (AMR) using a graph-algebraic modific-
ation of CCG’s syntax-semantics interface. These
concepts are briefly introduced in this below.

2.1 CCG for Semantic Parsing
Combinatory Categorial Grammar (CCG) de-
scribes syntax and semantics as part of the same
derivation process (Steedman, 2000). CCG deriv-
ations are trees where every node is annotated with
both a syntactic and a semantic category. The cat-
egories at the leaves of the tree are drawn from a
lexicon, while categories at the inner nodes result
from the application of combinatory rules to the
child nodes’ categories. The syntax-semantics in-
terface in CCG is transparent, meaning that the
same rule is always applied to syntactic and se-
mantic categories.

In CCG, categories are understood as n-ary
functions. Syntactic categories essentially express
the type of the associated semantic category by
specifying the types of constituents that can be
accepted as arguments, either to the right of the

constituent or to the left. This directionality is ex-
pressed by forward and backward slashes. E.g.,
given the atomic syntactic categories S for sen-
tences and NP for noun phrases, the complex cat-
egory (S\NP)/NP represents a transitive verb,
accepting first an NP to the right and then another
NP to the left to produce a sentence.

Semantic categories contain building blocks for
sentential meaning representations. Traditionally,
λ-calculus is used to represent the compositional-
ity of semantic categories, while the object lan-
guage that is being composed is a logical repres-
entation of sentence meaning. This paper deviates
from that tradition by using a graph representation
for semantic categories which is defined Section
2.3.

2.2 Abstract Meaning Representation

The Abstract Meaning Representation (AMR;
Banarescu et al., 2013) is a meaning representa-
tion language that underlies much recent work in
semantic parsing. In AMR, meaning is annotated
on the sentence level in the form of a labeled, dir-
ected graph. While the nodes of the graph rep-
resent instances of concepts, edges represent roles
that these entities play with respect to each other.

2.2.1 Evaluation of AMRs
AMR parsers are usually evaluated with respect to
the Smatch metric (Cai and Knight, 2013), which
measures precision and recall of semantic triples
in an AMR graphs with respect to a gold standard
graph. The computation of Smatch relies on find-
ing an optimal alignment between the two graphs,
which is usually approximated.

2.3 Graph-Algebraic CCG

Graph algebras are an established means to model
the derivation of AMRs (Koller, 2015). A modi-
fication of CCG that applies graph-algebraic oper-
ators to semantic categories has first been presen-
ted by Beschke and Menzel (2018). They define a
set of semantic operators that apply to s-graphs,
which contain specially marked source nodes,
which are consecutively indexed starting from 0.
They also define three semantic operators:

• Application, which 1) merges the root of
an argument graph with the highest-indexed
source node of the function graph and 2)
merges all source nodes that have the same
index.
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Combinator Left Operand Right Operand Result

> X/Y : X 〈0〉 Y : X ⇒ X : X X

< Y : X X\Y : X 〈0〉 ⇒ X : X X

B> X/Y : X 〈0〉 Y/Z : X 〈0〉 ⇒ X/Z : X X 〈0〉
B×< Y/Z : X 〈0〉 X\Y : X 〈0〉 ⇒ X/Z : X X 〈0〉
B2> X/Y : X 〈0〉 (Y/Z1)/Z2 : X 〈0〉

〈1〉
⇒ (X/Z1)/Z2 : X X 〈0〉

〈1〉
conj conj : conj 〈0〉

〈1〉
X : X 〈0〉 ⇒ X\X : conj 〈1〉

X 〈0〉
rp X : X . : ε ⇒ X : X
lp . : ε X : X ⇒ X : X

Table 1: The set of binary combinators used in our system. Circles and diamonds correspond to arbitrary
AMR subgraphs. X and Y represent arbitrary syntactic categories. The conj node represents any concept
corresponding to a conjunction, such as and or contrast. Edge labels are omitted.
The combinators Forward Application (>), Backward Application (<), Forward Composition (B>),
Backward Crossed Composition (B×<), and Forward Generalised Composition (B2>) all use the Ap-
plication semantic operator. The Conjunction (conj) combinator uses the Conjunction semantic operator,
and Left and Right Punctuation (lp, rp) use Identity.

• Conjunction, which 1) merges the root of an
argument graph with the 1-indexed source
node of the conjunction graph, and 2) re-
names the 0-indexed source node of the con-
junction graph so that it becomes the highest-
indexed source node in the combined graph
(thus becoming accessible for application).

• Identity, in which the function graph is
empty and the argument graph is returned un-
changed.

An overview of the rules as well as how they are
applied in the context of CCG derivations is given
in Table 1.

An example derivation is given in Figure 2.

3 Lexicon Induction

For parsing with graph algebraic CCG, a lexicon
must first be obtained. We achieve this using the
recursive splitting algorithm by Beschke and Men-
zel (2018), which uses the following information
to induce lexical items from an AMR-annotated
sentence:

• The sentence’s AMR

• A syntactic CCG parse obtained from a syn-
tax parser

• A set of alignments linking tokens in the sen-
tence to nodes in the meaning representation,
obtained from automatic alignment tools

A set of lexical items explaining the sentence
can then be obtained by walking down the syn-
tactic parse tree, starting at the root with the full
sentential meaning representation. At each binary
derivation step, the meaning representation is par-
titioned into two subgraphs by unmerging nodes
as appropriate. Each split is done in such a way
that it can be reversed using a graph algebraic
combinator and the token-to-node alignments are
honored.

For any token, this procedure may generate sev-
eral or no lexical entries. If the alignments do not
uniquely specify how the meaning representation
should be divided in a splitting step, all alternat-
ives are explored. Also, splitting may abort at an
inner node of the derivation if there is no combin-
ator that satisfies the alignment constraint.

This work adds two steps to the lexicon induc-
tion process: the delexicalisation of lexical items,
followed by filtering for the most probable deriva-
tion for each sentence according to EM estimates.

3.1 Delexicalisation
We achieve generalisation over content words by
delexicalising lexical entries. We follow the ap-
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proach from Kwiatkowski et al. (2011) which di-
vides lexical entries into templates and lexemes. A
template is a graph wherein up to one node has
been replaced by a lex marker. A lexeme x—y is a
pair of a word x and a node label y. For examples
of templates and lexemes, see Table 2.

The idea of the delexicalisation algorithm is that
a node in the graph which corresponds to the lex-
ical meaning of the lexical entry is replaced by a
marker, converting it into a template. Since it is
not known in advance which node carries the lex-
ical meaning, we replace every node in turn and
add all resulting templates to the lexicon. Every
replaced node label is associated with the token
currently under consideration and stored as a lex-
eme.

Not all lexical entries contain a node with lex-
ical meaning, e.g. in the case of function words.
Therefore, the original meaning representation is
also added to the lexicon as a template along with
an empty lexeme.

Special lexemes are also added that map any
word to a node labeled by the word’s lemma, its
surface form in quotes, or any of the propbank
frame names associated with its lemma.

This process creates a large amount of super-
flous template/lexeme pairs. Therefore, the lex-
icon is subsequently filtered using Expectation
Maximisation.

3.2 Expectation Maximisation

Both splitting and delexicalisation generate spuri-
ous templates and lexemes. We wish to keep only
those that generalise well by being broadly applic-
able. In contrast, noise introduced during gram-
mar induction should be removed.

This noise manifests itself in spurious deriva-
tions for the sentences of the training set. Expect-
ation Maximisation (EM) is applied to identify a
single most likely derivation per sentence. Every
template and lexeme that in not used in at least one
of these derivations is deleted.

We use a variant of the inside-outside algorithm
(Baker, 1979) to estimate multinomial distribu-
tions Pt for templates and Pl for lexemes. From
these, we derive a probability distribution over de-
rivations:

P (d) =
∏

(t,l)∈LEX(d)

Pt(t)Pl(l)

where LEX(d) gives all template-lexeme pairs

Algorithm 1 Variation of the inside-outside al-
gorithm to estimate parameters over CCG deriv-
ations. See Section 3.2 for function definitions.
Input: Data set S; scoring function SCOREi

Output: Distributions P i+1
T and P i+1

L

1: countT [j]← 0 for 0 ≤ j < |T |
2: countL[j]← 0 for 0 ≤ j < |L|
3: for s ∈ S do
4: chart← SPLIT(s)
5: likelihood←

∑
e∈chart[0,|s|−1] INi+1(e)

6: for e ∈ chart do
7: c← SCOREi(e)OUTi+1(e)

likelihood
8: for (t, l) ∈ DELEX(e) do
9: countT [t]← countT [t] + c

10: countL[l]← countL[l] + c
11: end for
12: end for
13: end for
14: P i+1

T (t) = countT [t]∑
t′∈T countT [t′]| for t ∈ T

15: P i+1
L (l) = countL[l]∑

l′∈L countL(l′)| for l ∈ L

instantiated by the derivation.
Our inside-outside algorithm operates on split

charts, which keep track of all derivation nodes
created during recursive splitting. A split chart c
for a sentence s contains cells c[i, j] with 0 < i ≤
j, j < |s|. A cell contains a number of entries e,
each of which is associated with a meaning rep-
resentation MR(e) and a (possibly empty) set of
child pairs (l, r) ∈ CLD(e), which are in turn
entries. An entry can also have several parents
e′ ∈ PAR(e), in which case it also has a neighbour
NB(e, e′) for every parent e′.

To compute a probability for an entry, we em-
ploy a function DELEX which decomposes the
entry’s meaning representation into all possible
template-lexeme pairs.

Inside and outside probabilities for entries are
calculated recursively as follows:

INi+1(e) = SCOREi(e)

+
∑

(l,r)∈CLD(e)

INi+1(l) · INi+1(r)

OUTi+1(e) =
∑

e′∈PAR(e)

OUTi+1(e′)

· INi+1(NB(e, e′))

where
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SCOREi(e) =
∑

(t,l)∈DELEX(MR(e))

P i
T (t)P

i
L(l)

A given meaning representation MR(e) can be
created by either instantiating a lexical entry with
probability SCOREi(e), or by deriving it using
any of its pairs of children (l, r) with probability
INi(l)INi(r). All of these are alternative choices;
therefore, the probabilities are summed to make
up the inside probability. The outside probability
is composed of the entry’s parents’ outside prob-
abilities and the entry’s neighbours’ inside prob-
abilities.

Algorithm 3.2 describes how an updated set of
parameters is estimated using these calculations.

4 Parsing

Our parser uses a CKY-style chart parsing al-
gorithm to parse sentences to AMR. For each
token, template-lexeme pairs are drawn from the
lexicon. Recursively, derivation nodes are created
according to CCG/AMR rules. All candidate de-
rivation nodes are evaluated with respect to a lin-
ear model. A beam search limitation is applied,
meaning that only the top n candidates from each
chart cell are kept.

The flip side of using a delexicalised lexicon is
that every template can now be applied to every
token. To limit the number of leaves that have
to be considered, we employ a supertagger which
predicts the most suitable template for each token.
We then limit our search to the most probable tem-
plates as predicted by the supertagger.

4.1 Supertagging
For supertagging, we use a single-layer BiLSTM.
For inputs, the raw tokens and syntactic CCG cat-
egories predicted by a CCG supertagger are used.
The model is then trained to predict the template
instantiated by each token.

The following preprocessing steps are applied:

• Tokens are embedded using the third layer
produced by ELMo (Peters et al., 2018).

• CCG supertags, as well as templates, that oc-
cur in less than two sentences are replaced by
UNK.

To predict supertags on the dev and test sec-
tions, we train the supertagger on the entire train

section and output the predicted token-wise su-
pertag distributions (clipping at 99% cumulative
probability). To obtain supertag predictions on the
train section, we employ 5-way jackknifing: the
data is split into five parts and predictions for each
part are obtained by training on the remaining four
parts.

During training, the occurrence of the correct
label within the top-10 predictions for every token
is monitored and training aborted when this meas-
ure stops improving (early stopping).

4.1.1 Limited Supervision
The grammar induction process as described in
Section 3 attempts to find lexical items for every
individual token, but may stop early if no combin-
atory rule fitting the alignment constraint is avail-
able. In this case, no supervision for training the
tagger is available at the token level. We over-
come this issue by labelling the respective tokens
as UNK (the same label used for rare templates oc-
curring only once) and masking UNK tokens in the
loss function.

This allows the tagger to fill in the gaps with
reasonable templates that are in the lexicon. How-
ever, it also means that not every sentence from the
train set can be perfectly parsed any more, because
it is possible that its meaning representation can-
not be constructed using the induced token-level
lexical entries.

5 Training

To drive the parser, we train a linear model over
graph algebraic CCG derivations. Since we do not
observe derivations in the data, this is an instance
of latent variable learning and a supervision signal
must be generated. We take a dual approach by
combining two weak supervision signals:

1. An oracle is used to heuristically generate
silver-standard derivations, which can then
be used for training.

2. The derivations found by the parser are eval-
uated and used for cost-sensitive parameter
updates.

5.1 Model
We train a linear model using a structured per-
ceptron algorithm (Collins, 2002) with Adadelta
updates (Zeiler, 2012). We use features over paths
in the graph as well as the identities of invoked
templates, lexemes, and combinators.
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Template Lexeme Combined

N : lex weapons—weapon N : weapon

NP/N : 〈0〉 the—∅ NP/N : 〈0〉
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〈1〉

ARG0
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NP : country

name

lex

name

op1

Iran—“Iran” NP : country

name

“Iran”

name

op1

Table 2: Selected templates and lexemes from the induced lexicon. The templates are among the 20 most
highly scored according to EM parameters; the lexemes among the top 50.
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Figure 2: A derivation for a subsequence of PROXY NYT ENG 20020406 0118.25, as produced by
our parser.
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5.2 Oracle Parsing

In latent variable learning in structured prediction
settings, the challenge is to obtain an unobserved
derivation for a known gold-standard result. In
this case, gold-standard sentential AMRs are an-
notated in the AMR corpus, but they are not re-
lated to the sentence by a grammatical derivation.

A common approach to this challenge is forced
decoding (Artzi et al., 2015): the parser is used
to construct derivations which lead to the correct
result by pruning all hypotheses from the search
space which deviate from the gold-standard AMR.
E.g., all AMRs that contain elements not present
in the gold-standard could be pruned.

However, as noted in Section 4.1, not every
gold-standard AMR can be reconstructed perfectly
using the induced lexicon due to the incomplete-
ness of the splitting algorithm, which defies find-
ing correct parses using forced decoding.

Instead, we train the parser using an oracle
driven by a heuristic scoring function which scores
the correctness and completeness of an intermedi-
ate hypothesised AMR. We parse the sentence us-
ing CKY with beam search, ranking intermediate
results according to the harmonic mean of the fol-
lowing values:

• Triple precision: the proportion of node-
edge-node triples in the intermediate result
that also occur in the gold standard meaning
representation.

• Alignment recall: the proportion of node la-
bels that are linked by an alignment edge to
one of the intermediate result’s tokens that
also occur in the intermediate result.

This scoring function is designed to rank res-
ults in proportion to their deviation from the gold
standard, achieving a soft form of pruning.

Having obtained a set of derivations using or-
acle parsing, we finally re-rank these derivations
by their Smatch f1 scores and use the best deriva-
tion to perform a parameter update using an early
update strategy (Collins and Roark, 2004).

5.3 Cost-Sensitive Update

Another approach to training with weak super-
vision for structured prediction are cost-sensitive
updates. While the gold-standard to update to-
wards is unknown, an evaluation metric is avail-
able for the AMR that results from a specific

derivation. Cost-sensitive updates let the parser
search for complete derivations and enforce a
margin between the best derivations in the beam
and all the others. We follow Singh-Miller and
Collins (2007) by implementing a cost-sensitive
perceptron algorithm which weights hypotheses
according to their Smatch f1 score.

5.4 Combined Update Strategy

While early updates are efficient, our oracle is im-
perfect. To allow the parser to improve over oracle
parses, we use a cost-sensitive update whenever a
parse has been found whose Smatch f1 score sur-
passes that of the oracle parse.

6 Experimental Setup

We evaluate our parser1 on the proxy section of
the AMR 1.0 corpus (LDC2014T12; Knight et al.,
2014). This section consists of newswire texts.

Sentences are tokenised and lemmatised us-
ing Stanford NLP (Manning et al., 2014). We
use EasyCCG to obtain CCG parses and super-
tags (Lewis and Steedman, 2014). Token-to-
AMR alignments are obtained by combining out-
puts generated by the JAMR aligner (Flanigan
et al., 2014) and the ISI aligner (Pourdamghani
et al., 2014), as described by Beschke and Men-
zel (2018).

First, we induce a CCG/AMR lexicon from
the entire proxy-training section, delexicalise the
entries, and filter for the best derivations using
EM, as described in Section 3. We perform 100 it-
erations of EM. Sentences longer than 100 tokens
are filtered out. The resulting lexicon contains
15630 templates and 10504 lexemes.

Next, we extract template tag sequences and
train our suppertagger on them. First, tags for the
training data are predicted using 5-way jackknif-
ing. Then, a model is trained on the entire training
section and used to predict tags for the dev and test
sections of the corpus. Since only templates are
predicted that occur in at least two training sen-
tences, a set of 2453 templates is used for predic-
tion. The top-10 recall of the annotated supertags
is 96.4% on a randomly chosen held-out portion
of the training set.

Finally, the induced lexicon as well as the pre-
dicted tag sequences are used to parse the proxy-
test section of the AMR corpus. We use a beam

1 For information on reproducing the experiments, see
https://gitlab.com/nats/gramr-ranlp19/.
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System P R F

This paper 0.688 0.423 0.524
Artzi et al. (2015) 0.668 0.657 0.663
Misra and Artzi (2016) 0.681 0.642 0.661
Liu et al. (2018) - - 0.731

Table 3: Smatch results on the proxy-test section
of LDC2014T12. Liu et al. (2018) did not report
precision and recall in their paper. P stands for
precision, R for recall, F for f1 score.

size of 15 during parsing and 20 for finding oracle
derivations (see Section 5.2). Parses whose root
categories do not match any of the top-10 deriva-
tions produced by EasyCCG are dropped from the
parser output2.

The smatch tool3is used to calculate Smatch
precision, recall, and f1 scores for the parser out-
put.

7 Results

We compare our system to two previous CCG-
based AMR parsers (Artzi et al., 2015; Misra and
Artzi, 2016), as well as the current state of the art
in AMR parsing on this data set (Liu et al., 2018).
The results are shown in Table 7. The system in-
troduced in this paper achieves comparable preci-
sion to the other CCG-based systems, but lower
recall.

This gap is largely, but not completely, ex-
plained by sentences that were not parsed at all:
when unparsed sentences are excluded from the
evaluation, our system achieves a precision of
0.701 and a recall of 0.6154. Oracle parsing
achieves a Smatch precision of 0.886 and an f1
score of 0.706.

The evaluation set contains 823 sentences in
total, of which 170 were not parsed, resulting
in a coverage of 79%. Of these sentences, 68
were skipped because they were longer than 40
tokens. The remaining 102 are unparsed because
the parser failed to find a complete parse.

2This restriction was included because the parser tended
to favour interpretations of sentences as NP instead of S.

3https://github.com/snowblink14/smatch,
revision ad7e655

4The precision improves when unparsed sentences are
excluded because the smatch tool does not permit empty
AMRs to be specified. Unparsed sentences are therefore rep-
resented by single-node placeholder AMRs, which are penal-
ised in terms of precision.

7.1 Discussion
The parser output in Figure 5 shows some of
the most common errors produced by our parser.
Firstly, the sequence International Science and
Technology Center is not recognised as a contigu-
ous named entity. Additionally, Technology Cen-
ter is misrecognised as a country. Both of these
issues can be classified as supertagging errors, as
they result from the templates chosen from the lex-
icon. In this specific case, the supertagger’s beha-
viour could likely be improved by adding named
entity features to its input. In general, the super-
tagging task is challenging, especially in the case
of function words, which tend to be highly poly-
semous.

Additionally, the scopes of and and of are inver-
ted. This can be interpreted as a weakness of the
parsing model, which misjudges the probability of
the respective scope assignments. Although one
would hope for a semantic parser to improve pre-
cisely upon these semantically informed syntactic
decisions, this behaviour is perhaps to be expected
given that we train a sparse linear model with a re-
latively small amount of training data. Replacing
the linear classifier with a neural model that com-
putes embeddings of graph meanings, such as the
architecture proposed by (Misra and Artzi, 2016),
could improve the parser’s judgment.

8 Conclusion

We have introduced a pipeline for training a CCG
parser which jointly models syntax and semantics.
A central element of our architecture are efforts to
reduce the lexicon size. With 2453 delexicalised
templates, our parser uses a relatively small lex-
icon despite the templates being induced automat-
ically. We employ a semantic construction mech-
anism that is less powerful with λ-calculus, but
still achieve competitive precision.

Future directions in this line of work could in-
clude applications that make use of the system’s
transparency, such as the interactive training of
parsers without gold-standard annotations, or the
application of external constraints such as contex-
tual knowledge to the parser.
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