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Abstract

In this paper, we present a relationship
extraction based methodology for table
structure recognition in PDF documents.
The proposed deep learning-based method
takes a bottom-up approach to table recog-
nition in PDF documents. We outline the
shortcomings of conventional approaches
based on heuristics and machine learning-
based top-down approaches. In this work,
we explain how the task of table structure
recognition can be modeled as a cell re-
lationship extraction task and the impor-
tance of the bottom-up approach in rec-
ognizing the table cells. We use Multi-
layer Feedforward Neural Network for ta-
ble structure recognition and compare the
results of three feature sets. To gauge the
performance of the proposed method, we
prepared a training dataset using 250 ta-
bles in PDF documents, carefully select-
ing the table structures that are most com-
monly found in the documents. Our model
achieves an overall accuracy of 97.95%
and an F1-Score of 92.62% on the test
dataset.

1 Introduction

Usage of digital documents have elevated dras-
tically over the last two decades and a need for
automatic information extraction from these doc-
uments has increased. Portable Document For-
mat (PDF) has been introduced by Adobe in 1993.
PDF documents are the most common format of
digital documents and are extensively used in sci-
entific research, finance, enterprises etc. As the
production and usage of PDF documents have in-
creased massively, substantial research work has
focused on automating the methods for docu-

ment analysis (Correa and Zander, 2017; Kava-
sidis et al., 2018).

Tabular data is a powerful way to represent the
data, among other elements of a document like
charts, images etc. Tables are found in a variety
of classes of digital documents and are very use-
ful to readers to capture, search and compare the
facts, summarizations and draw conclusions. Au-
tomatically extracting the information from the ta-
bles and representing the information in more con-
venient formats for digital consumption add im-
mense value in the field of document understand-
ing (Gilani et al., 2017; Hao et al., 2016).

Tables contain structured data but often are ren-
dered as semi-structured and unstructured on the
digital documents for human consumption. Data
can be represented using a variety of layouts in ta-
bles without losing the meaning of data (Anand
et al., 2019). The layout of tables can vary in
alignment, line and word spaces, column and row
spans, borders and other styling information. De-
pending on the type of documents and authors, the
tables may not contain any border lines and the
structure of the tables will still be understandable
to readers. The data represented by the tables in
itself can have different semantics. For example,
in a table, a column may contain a list of prices
in dollars, indicating that all the values of that col-
umn contain numeric data only. Similar seman-
tic information is embedded in the table rows as
well. Further, a column may have multiple sub-
columns, making the original column to span mul-
tiple table cells horizontally. In rare cases, rows
can also span multiple table cells vertically. All
these characteristics of a table make the automatic
extraction of table information more challenging.

Table extraction is a sub-problem of document
understanding, that deals with information extrac-
tion and representation of tabular data. Extraction
of information from tables in documents has chal-
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lenged the researchers over the last two decades.
An ample amount of research work has been car-
ried out leading to a diverse list of approaches in-
cluding heuristics, rule-engine, and recently ma-
chine learning based proposals.

We believe, generalizing the patterns across the
variety of table layouts in diverse type of doc-
uments, is best solved by machine learning ap-
proach. We propose a bottom-up approach for ta-
ble structure recognition as a cell relation extrac-
tion task between the table text tokens using deep
learning. The way a human understands the ta-
bles can be analogous to the proposed approach.
Often, relation extraction task involves classifica-
tion of an entity pair to a set of known relations,
using documents containing mentions of the en-
tity pair (Kumar, 2017). By considering the table
recognition task as a relationship extraction prob-
lem, we introduce a novel approach suitable for
several document understanding solutions.

The proposed method deals with the basic
building blocks of any table, the table cells. With
this approach, we hope to solve the column and
row spanning, the presence or absence of borders,
and other challenges mentioned earlier. The table
recognition system operates at token-level and in-
volves learning the complex patterns in order to
extract the cell relationships among the table text
tokens using deep learning.

2 Related Work

According to the well-known ICDAR 2013 Table
Competition (Gbel et al., 2013), the problem of
table understanding can be split into table location
detection, table structure recognition, and table in-
terpretation. Each of these sub-problems has at-
tracted a great deal of attention from researchers
and has extensive work.

A peek at the literature shows that many heuris-
tic solutions have been proposed for table struc-
ture recognition. Most of those work consider
the white space and layout analysis. Yildiz et al.
(2005) propose an algorithm to recognize the
columns of a table using distances between lines
and then identify the cells to find the rows. The al-
gorithm makes a few assumptions about the struc-
ture of the tables. The work of Krüpl and Her-
zog (2006) takes a bottom-up approach towards
structure recognition using heuristics but works on
browser-rendered documents. The methodology
aggregates words into columns by considering the

spatial distance of neighboring words.
Klampfl et al. (2014) experimented with two un-

supervised approaches for table recognition and
showcased the importance of spatial distances be-
tween words of a table using vertical and horizon-
tal histogram projection of words coordinates.

Experiments using rule-engine has been pro-
posed by Shigarov (2015), considers the physi-
cal layout of a rendered table, and the logical lay-
out representing the relationships between the ele-
ments of a table, differently. Another work of Shi-
garov et al. (2016) shows promising results in rec-
ognizing the columns and rows of tables by using
the word and line distances, the order of appear-
ance of text chunks. The methodology makes use
of configurable thresholds in its heuristic decision
making.

The heuristic and rule-based solutions make
various assumptions on the visual, type and con-
tent, structural details of tables and the thresholds
used in the algorithms. These assumptions may
not hold on heterogeneous documents and may
even break the system.

Perez-Arriaga et al. (2016) have made use of
both k-nearest neighbor and layout heuristics,
making it a hybrid methodology to recognize the
table structure. The method groups the words
into rows and columns using spatial distances of
words heuristically. Interestingly, the spatial dis-
tance thresholds are learned using the k-nearest
neighbor algorithm. Their work also proposes a
heuristic method to identify the headers of the ta-
ble. Deep learning based semantic segmentation
has been used by Schreiber et al. (2017) where
an image of a document is fed to the neural net-
work to identify the rows and columns of a ta-
ble. However, the work makes use of a heuristic
post-processing step to improve the table structure
recognition.

Clinchant et al. (2018) have made an exten-
sive comparison of three different Machine Learn-
ing approaches to recognize the table structure
in hand-written register books. The method first
recognizes the cell locations and then groups the
cells into rows. The experimentations do a thor-
ough comparison of CRF, a variation of Graph-CN
called Edge-CN, and conventional Logistic Re-
gression algorithms. However, the method works
on already recognized headers and columns of the
table and addresses only row recognition task.

To the best of our knowledge, most of the re-
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lated work of table recognition try to identify the
columns and rows of tables first and then locate the
intersections of rows and columns as table cells.
A few heuristics based works have considered the
grouping of words into blocks and then aggregat-
ing blocks into rows and columns. A common
downside of these methodologies is that they fail
to capture the information about rows and columns
spanning multiple table cells. Few of the heuristic
approaches do try to solve this issue however, they
fail to generalize the solution.

We propose a purely bottom-up approach by
building the table structure by recognizing the in-
dividual cells of the table and their location in the
document. The task of recognizing the table cells
is addressed as cell-relation extraction between the
tokens present in the table.

3 Methodology

In this section, we first explain how we modeled
the table structure recognition as a relation extrac-
tion task, then the training data preparation, and
finally describe how the binary relationship clas-
sification is modeled using a Multilayer Feedfor-
ward Neural Network.

3.1 Cell Relationship Extraction in Table
Structure Recognition

Humans will recognize the table structure even
without a need for borders, based on visual clues,
spatial distances and the content of the cells.
These visual clues present in the tables help the
readers to recognize the location of table cells eas-
ily, by bringing all the words of a cell together both
visually and semantically. The proposed method is
based on this idea of identification of cell relation-
ship among the table words. The first step towards
the recognition of rows or columns is the identifi-
cation of table cells and thus the whole process of
table structure recognition is a bottom-up process.
This reasoning is based on the underlying defini-
tion of any table: Unit of a table is a cell, hori-
zontal and vertical alignment of cells forms rows
and columns, respectively. Tokens are generated
by using white-space and new-line characters as
delimiters. In this paper the terms token and word
are used interchangeably.

Relation extraction is a well-known task in Nat-
ural Language Processing, which deals with clas-
sifying whether a given set of n samples have any
of m different relationships. For example, in lin-

guistics, determining whether two or more expres-
sions in a text refer to the same person or thing,
is a relation extraction task. We take the idea of
relation extraction and formulate the task of ta-
ble structure recognition as identifying the cell-
relationship among all the content of individual
cells of a table. When the tokens that are part of
a table are considered as the smallest possible ele-
ments of a table, the relation extraction task will be
to identify whether given two tokens of table text,
belong to the same cell or not. If two tokens be-
long to the same cell, then those two tokens have a
belong-to-same-cell relation. In our experiments,
this task of binary relationship extraction is con-
sidered as a binary classification problem.

For every pair of tokens, the goal of binary rela-
tionship classifier is to determine whether the two
tokens belong to the same cell or not. An impor-
tant thing to note here is that this relationship be-
tween the two tokens is transitive. If a token A is
related to the token B and the token B is related
to the token C, then the token A is related to C.
Hence, we don’t need to generate feature vectors
of all the possible pairs of tokens in a cell to deter-
mine all the tokens of a cell, we only need to make
sure that all the tokens of a cell are connected via
a chain of such transitive dependencies.

Once we predict the belong-to-same-cell rela-
tion between token pairs, we group all the table
tokens into different cells. This is a simple task of
aggregating different token pairs into their respec-
tive cells. Using this data of all the table cells and
the tokens in each of the cells, we can model the
recognition of rows and columns of the table again
as a relation extraction task between the pairs of
table cells themselves. However, in this work, we
concentrate only on cell recognition.

3.2 Data Preparation

Detecting Tables and Training Data
Generation

The detection of the location of tables in PDF doc-
uments is the first task in the process of table ex-
traction and this location information is prerequi-
site to our system. There are several open source
and free of charge tools for detecting table loca-
tions in PDF documents. In our experiments, we
used Tabula to obtain the location details of a table
in the document. The location of a table is repre-
sented by five values, pageNum, (startX, startY)
and (endX, endY). All the coordinates are assigned
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Figure 1: Features used in cell-relation extraction. A) T00, T01, T02,... are the tiles in the first row of tile
matrix. B) T00, T10, T20,... are the tiles in the first column of tile matrix. C) (x1,y1) and (x2,y2) are the
start and end coordinates of a token. D) sameCell=1, Pair of tokens which have sameCell relationship.
E) samceCell=0, Pair of tokens which do not have sameCell relationship.

with respect to a Cartesian plane centered at the
top-left corner of the document page. We used an
off-the-shelf library to get the content in a PDF
document inside a given region, that, along with
the coordinates of characters (x,y), provides the
font style for every character in the document. The
characters along with their coordinates and font
styles are further aggregated into tokens, by using
the white-space and new-line characters as delim-
iters.

With the help of table location and the loca-
tion of individual tokens in the document, only
those tokens which are within the given table loca-
tion are collected by comparing their correspond-
ing coordinate values. Specifically, all the to-
kens, whose x coordinate is between startX and
endX and whose y coordinate is between startY
and endY are collected as table text tokens.

After collecting all the tokens from table text
using the table coordinates, we generate the train-
ing data for the binary relationship classification.
Training data requires a pair of tokens and a tar-
get label indicating whether or not those two to-
kens belong to the same cell or not. Once we have
a list of all the tokens that are part of the table,

for every token, we create a pair of current to-
ken with every token, which is located within an
imaginary rectangular window around the current
token. The size of this imaginary rectangular win-
dow will help us determine the number of pairs of
tokens to generate.

Training sample is a vector of all the features of
a pair of tokens as denoted by 1.

V = [W1Fi,W2Fi, sameCell] (1)

Where, W1Fi are n features of first token, W2Fi

are n features of second token, and sameCell is the
target class indicating True if the two tokens be-
long to the same cell, False otherwise (see Figure
1).

The target class, sameCell is captured using Da-
toin’s WYSIWYG annotation tool, that allows to
select a sequence of words on the PDF document
and tag those words as a table cell. The training
data is generated using the annotated PDF doc-
uments and the target label sameCell is assigned
accordingly for all the pair of words.

Cell Relationship Features
For each token in the table, we generate a set of lo-
cational and visual features. Use of semantic fea-
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tures of tabular data along with the mentioned fea-
tures of this work can be one of the future works
with the intention of improving the accuracy of the
system.

We group the features used in the relation learn-
ing task as four categories as below.

Location and Tile features(LTF). The absolute
location of a token is important evidence to in-
dicate that it is indeed part of the table. Along
with the absolute location, a more generalized po-
sitional information of tokens relative to the docu-
ment makes the contextualization and localization
of tokens easier for a reader.

To capture these relative location and distance
information, for each token in the table, we con-
sider (x,y) of starting of the token, and (x,y) of
the ending of the token in documents (see Figure
1). In order to incorporate contextual information
about a token, we split the entire document page
into an imaginary matrix of tiles of size (n X m)
and for each tile, we assign a tile number. For
each table token, based on its coordinates we find
in which tile the token is located, and we include
its tile number, the row, and columns of the tile as
features of that token (see Figure 1).

Neighborhood features(NF). The position of the
surrounding tokens of a given token indicates the
relative position of a token to its neighbors and
captures the empty spatial distance around a to-
ken. For a given table token, we find a list of n
nearest tokens in all the four directions, left, right,
top and bottom based on the neighboring tokens’
spatial distances with respect to the current token
(see Figure 1). The horizontal and vertical rela-
tive distances between these neighboring tokens
are used as features. The Location and Tile fea-
tures of neighboring tokens are also included as
part of the given token’s feature set. This feature
ensures that there exists a chain of transitive de-
pendency connecting all the tokens of a cell.

Clustering and Alignment features(CAF). A hu-
man reader makes use of the relative closeness
and horizontal and vertical alignments of a given
word, especially when a table is not completely
bordered, to decide which cell the word belongs
to. The proximity of a pair of tokens and the pres-
ence of neighboring tokens for each token in four
different directions captures the information about
the relative closeness.

Among all the neighborhood tokens, we iden-
tify whether a given token is nearer to the left

neighbor or right neighbor. Similarly, we identify
whether that token is nearer to the top neighbor or
bottom neighbor (see Figure 1). We have used the
absence of neighborhood tokens as a set of four
categorical features as well, indicating whether or
not a given token has left, right, top and bottom
neighbor token.

Type and Style features(TSF). Another signifi-
cant visual clue used by humans in determining
whether two words belong to the same cell or not
is the content and the styles used in the words. A
binary feature representing whether a token is a
number or not was used to capture the data simi-
larity within a row or a column. For every pair of
tokens, the comparison of font size and bold styles
are used to indicate whether the two tokens have a
similar font style or not. Use of semantic features
of the content of words could be another important
clue in differentiating the words into cells.

We find that Neighborhood, Clustering and
Alignment features play a critical role in distin-
guishing the tokens that do not belong to the same
cell. All of the feature generation techniques are
based on the coordinates of each of the tokens and
the coordinates of the table itself. The number of
tiles and the number of neighboring tokens are the
parameters which can be tuned to achieve better
table structure recognition accuracy.

3.3 Relation Classification Using Multilayer
Feedforward Neural Network

We have used a Multilayer Feedforward Neural
Network to model the binary relationship classifier
in the experiments. In order to learn the complex
patterns that exist in the table layouts, and gen-
eralize these patterns we decided that deep learn-
ing is the right tool. Working at token-level, we
have huge training data as well and deep neural
networks seemed a right candidate for the task.

The generated training data is fed into the Mul-
tilayer Feedforward Neural Network that uses relu
activation function in the hidden layers and a sig-
moid activation function in the output layer. The
models were trained using Adam optimizer and Bi-
nary cross-entropy loss function as defined in 2
(Zhang, 2019).

Loss = − [y log(p) + (1− y) log(1− p)] (2)

Where y is a binary indicator of correct predic-
tion of a sample, p is the predicted probability for
a training sample.
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Feature Parameter Value
Number of left, right, top and bottom neighbor tokens 1
Window size for token pair generation 30 x 30 pixels
Number of tiles 20 tile rows x 20 tile columns

Table 1: Word-level feature generation parameters

The input feature vector of N dimension is fed
into the network and the sigmoid output value is
decoded as binary classes, 0 indicating that the two
tokens do not belong to the same cell, 1 indicating
that the two tokens belong to the same cell. In
our experiments, the Multilayer Feedforward neu-
ral network has been built using Keras backed by
Tensorflow, for quick experimentation and devel-
opment.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics
Due to the lack of publicly available datasets that
suit our methodology, we prepared the training
data on our own. The dataset used for the experi-
ments contains a total of 250 PDF documents, hav-
ing one table per document. We ensured that the
tables present in our dataset represent the possi-
ble diverse type of tables that are most commonly
used. Our dataset has tables with and without bor-
ders, with and without column headings, with col-
umn and row spans, with all types of text align-
ments, varying line, and word spacing, and font
styles. All the PDF documents were annotated us-
ing Datoin’s WYSIWYG annotation tool.

Using the parameters listed in Table 1, we cre-
ated approximately 0.3 million training samples
from all the tokens of 250 tables, containing 83
different features. Training samples are split by a
9 to 1 ratio for training and testing, keeping ap-
proximately 30,000 samples for testing.

Training data Test Data
True Class 60,000 9,000
False Class 2,10,000 21,000
Samples size 2,70,000 30,000

Table 2: Approximate distribution of target labels

The distribution of target labels in our training
and testing dataset is shown in Table 2. The imbal-
ance in the distribution of classes makes sense be-
cause for every token in the table, within an imag-
inary rectangular window around that token, the

number of tokens that are in the same cell will be
less than the number of tokens that are not in the
same cell.

Measuring how many predicted cells are actual
cells in a given table, would be a more explana-
tory metric for evaluation. However, if one to-
ken among all the tokens of a cell is wrongly pre-
dicted by the relationship classification model as
belonging to a different cell, then measuring the
correctness of this prediction at a cell-level would
be challenging. So we decided to use the accu-
racy of the binary classification model itself as our
evaluation metric. This token-level metric is sim-
pler and straightforward.

4.2 Hyperparameters
We have experimented with the hyperparameters
of the neural network architecture itself. Table 3
defines the set of hyperparameters used in our ex-
periments. In terms of the number of weights, Set-
1 is a simpler network with fewer weights to learn
and Set-2 is a more complex network.

Hyperparameter Set-1 Set-2
Number of layers 4 5
Number of Epochs 200 300
Batch size 300 100
Learning Rate 0.001 0.001

Table 3: Hyperparameters used in Multilayer
Feedforward Neural Network

Feature Set Features
LTF Location and Tile features
NF CAF Neighborhood features,

Clustering and
Alignment features

TSF Type and Style features

Table 4: Feature sets used in the experiments

It is important to note here that a smaller batch
size and a higher number of epochs do increase the
F1-Scores and help the model to learn more com-
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Feature Set Class Precision Recall F1-Score
LTF True 77.89% 91.33% 83.51%

False 95.13% 85.91% 90.29%
LTF & NF CAF True 93.65% 89.50% 91.07%

False 94.07% 96.10% 95.73%
LTF, NF CAF & TSF True 94.10% 90.85% 92.62%

False 97.56% 98.27% 98.15%

Table 5: Results of binary relation classification using Hyperparameter Set-2

plex patterns in the data, at the cost of increased
training time.

4.3 Experiments

We have experimented with many combinations of
feature sets and feature generation parameters and
selected the best three sets of features, as listed in
Table 4. The Neighborhood features and Cluster-
ing and Alignment features are combined into one
set because both the features measure the togeth-
erness of two given table tokens.

In each of these experiments, we have further
experimented with 2 sets of neural network hyper-
parameters listed in Table 3.

4.4 Results and Discussion

All the experiments with the two sets of neural
network hyperparameters listed in Table 3, indi-
cated that Set-2 outperforms the Set-1. So, we
have listed only the results of experiments carried
out using hyperparameters Set-2 in Table 5.

Multiple experiments indicated that neighbor-
hood features have sufficient information to cap-
ture the table structure and the use of visual clues
does increase accuracy. However, one experiment
showed that increasing the number of neighboring
tokens for each token, reduces the Recall measure
of True class. Increased number of False classes
could be a possible explanation for this behavior.
Also, increasing the number of hidden layers or
hidden units of the network did not improve the
accuracy further.

The model achieved an overall accuracy of
97.95% on the test set after training the network
for about an hour. Clearly, the model is predicting
the cell-relationships on unseen token pairs with
very high accuracy. A set of 20 documents con-
taining a variety of tables, which are not part of
training documents, are considered as a validation
set.

The F1-Score of False class is much better than

that of True class. One possible reason for this
could be, the tokens that are not likely to be in the
same cell will clearly have a distinguishable set of
locational and neighboring features. It is clear that
the recall of True class is causing the F1-Score to
be low. Our training dataset has comparably fewer
training samples for the True class this could be a
possible reason for the low recall scores.

Manual verification of individual table cells
with the prediction of the relation classifier shows
that the model is able to generalize the cell recog-
nition task across a variety of table cells. The
cell relationships are identified accurately irre-
spective of the presence of borders lines, column,
and row spans and text alignments. The rela-
tionship among the tokens of a table is learned
by the model based on Neighborhood, Clustering
and Alignment features of the tokens. However,
for a few tokens where the neighborhood features
do not have a clear separation with tokens from
nearby cells, the model combines the tokens from
adjacent cells, producing wrong predictions. Be-
cause of the absence of visual separation among
the tokens of two closely aligned cells, the model
predicts those multiple cells as a single cell.

5 Conclusion and Future Work

By applying the idea of relation extraction in ta-
ble structure recognition task, we have shown the
possibility of high accuracy information extraction
in unstructured documents. Table structure recog-
nition as relation extraction task is a novel ap-
proach in table extraction process and to the best
of our knowledge has never been explored. We
have taken the first step towards this direction and
have proved that a bottom-up approach of cell re-
lationship extraction is the right way towards ta-
ble structure recognition task. We have compared
three sets of features and showcased the signifi-
cance of cognitive features in our experiments.

For a few of the tables, closely aligned adja-
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cent cells are wrongly identified as one cell. In-
corporating the semantic features of the content of
the words, especially using Natural Language Pro-
cessing, will enrich the feature vector and should
help the model to do better generalizations. Ex-
ploring the different layout and visual features and
improving the accuracy of the proposed method
could be one of the possible future works.

Building on top of cell-relationship recognition
work, we hope to explore the table structure ex-
traction further. The knowledge of table cells can
be used to build up the rest of the table structures
from bottom-up. We believe that the relation ex-
traction methodologies apply to other document
understanding tasks and we hope to explore them
as well.
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