
Proceedings of Recent Advances in Natural Language Processing, pages 465–472,
Hissar, Bulgaria, Sep 7–9 2015.

A Simple and Efficient Method to Generate Word Sense Representations

Luis Nieto Piña and Richard Johansson
Språkbanken, Department of Swedish, University of Gothenburg

Box 200, SE-40530 Gothenburg, Sweden
{luis.nieto.pina, richard.johansson}@svenska.gu.se

Abstract
Distributed representations of words have
boosted the performance of many Natu-
ral Language Processing tasks. However,
usually only one representation per word
is obtained, not acknowledging the fact
that some words have multiple meanings.
This has a negative effect on the individ-
ual word representations and the language
model as a whole. In this paper we present
a simple model that enables recent tech-
niques for building word vectors to rep-
resent distinct senses of polysemic words.
In our assessment of this model we show
that it is able to effectively discriminate
between words’ senses and to do so in a
computationally efficient manner.

1 Introduction

Distributed representations of words have helped
obtain better language models (Bengio et al.,
2003) and improve the performance of many
natural language processing applications such as
named entity recognition, chunking, paraphrasing,
or sentiment classification (Turian et al., 2010;
Socher et al., 2011; Glorot et al., 2011). Recently,
the Skip-gram model (Mikolov et al., 2013a;
Mikolov et al., 2013b) was proposed, which is able
to produce high-quality representations from large
collections of text in an efficient manner.

Despite the achievements of distributed repre-
sentations, polysemy or homonymy are usually
disregarded even when word semantics may have
a large influence on the models. This results in
several distinct senses of one same word sharing a
representation, and possibly influencing the repre-
sentations of words related to those distinct senses
under the premise that similar words should have
similar representations. Some recent attempts to
address this issue are mentioned in the next sec-
tion.

We present a simple method for obtaining
sense representations directly during the Skip-
gram training phase. It differs from most previ-
ous approaches in that it does not need to create or
maintain clusters to discriminate between senses,
leading to a significant reduction in the model’s
complexity. It also uses a heuristic approach to
determining the number of senses to be learned
per word that allows the model to use knowledge
from lexical resources but also to keep its ability to
work withouth them. In the following sections we
look at previous work, describe our model, and in-
spect its results in qualitative and quantitative eval-
uations.

2 Related Work

One of the first steps towards obtaining word sense
embeddings was that by Reisinger and Mooney
(2010). The authors propose to cluster occur-
rences of any given word in a corpus into a fixed
number K of clusters which represent different
word usages (rather than word senses). Each
word’s is thus assigned multiple prototypes or em-
beddings.

Huang et al. (2012) introduced a neural lan-
guage model that leverages sentence-level and
document-level context to generate word embed-
dings. Using Reisinger and Mooney (2010)’s ap-
proach to generate multiple embeddings per word
via clusters and training on a corpus whose words
have been substituted by its associated cluster’s
centroid, the neural model is able to learn multi-
ple embeddings per word.

Neelakantan et al. (2014) tried to expand the
Skip-gram model (Mikolov et al., 2013a; Mikolov
et al., 2013b) to produce word sense embeddings
using the clustering approach of Reisinger and
Mooney (2010) and Huang et al. (2012). No-
tably, Skip-gram’s architecture allows the model
to, given a word and its context, select and train
a word sense embedding jointly. The authors

465



also introduced a non-parametric variation of their
model which allows a variable number of clusters
per word instead of a fixed K.

Also based on the Skip-gram model, Chen et
al. (2014) proposed to maintain and train con-
text word and word sense embeddings conjunctly,
by training the model to predict both the context
words and the senses of those context words given
a target word. To avoid using cluster centroids to
represent senses, the number of sense embeddings
per word and their initial values are obtained from
a knowledge network.

Our system for obtaining word sense embed-
dings also builds upon the Skip-gram model
(which is described in more detail in the next sec-
tion). Unlike most of the models described above,
we do not make use of clustering algorithms. We
also allow each word to have its own number of
senses, which can be obtained from a dictionary or
using any other heuristic suitable for this purpose.
These characteristics translate into a) little over-
head calculations added on top of the initial word-
based model; and b) an efficient use of memory, as
the majority of words are monosemic.

3 Model Description

3.1 From Word Forms to Senses

The distributed representations for word forms
that stem from a Skip-gram (Mikolov et al.,
2013a; Mikolov et al., 2013b) model are built on
the premise that, given a certain target word, they
should serve to predict its surrounding words in a
text. I.e., the training of a Skip-gram model, given
a target word w, is based on maximizing the log-
probability of the context words of w, c1, . . . , cn:

n∑
i=1

log p(ci|w). (1)

The training data usually consists of a large col-
lection of sentences or documents, so that the role
of target word w can be iterated over these se-
quences of words, while the context words c con-
sidered in each case are those that surround w
within a window of a certain length. The objec-
tive then becomes maximizing the average sum of
the log-probabilities from Eq. 1.

We propose to modify this model to include a
sense s of the word w. Note that Eq. 1 equals

log p(c1, . . . , cn|w) (2)

if we assume the context words ci to be indepen-
dent of each other given a target word w. The no-
tation in Eq. 2 allows us to consider the Skip-gram
as a Naı̈ve Bayes model parameterized by word
embeddings (Mnih and Kavukcuoglu, 2013). In
this scenario, including a sense would amount then
to adding a latent variable s, and our model’s be-
haviour given a target word w is to select a sense s,
which is in its turn used to predict n context words
c1, . . . , cn. Formally:

p(s, c1, . . . , cn|w) =
p(s|w) · p(c1, . . . , cn|s) =

p(s|w) · p(c1|s) . . . p(cn|s).
(3)

Thus, our training objective is to maximize the
sum of the log-probabilities of context words c
given a sense s of the target word w plus the log-
probability of the sense s given the target word:

log p(s|w) +
n∑

i=1

log p(ci|s). (4)

We must now consider two distinct vocabular-
ies: V containing all possible word forms (context
and target words), and S containing all possible
senses for the words in V , with sizes |V | and |S|,
resp. Given a pre-set D ∈ N, our ultimate goal is
to obtain |S| dense, real-valued vectors of dimen-
sion D that represent the senses in our vocabulary
S according to the objective function defined in
Eq. 4.

The neural architecture of the Skip-gram model
works with two separate representations for the
same vocabulary of words. This double represen-
tation is not motivated in the original papers, but
it stems from word2vec’s code1 that the model
builds separate representations for context and tar-
get words, of which the former constitute the ac-
tual output of the system. (A note by Goldberg
and Levy (2014) offers some insight into this sub-
ject.) We take advantage of this architecture and
use one of these two representations to contain
senses, rather than word forms: as our model only
uses target words w as an intermediate step to se-
lect a sense s, we only do not need to keep a repre-
sentation for them. In this way, our model builds a
representation of the vocabulary V , for the context
words, and another for the vocabulary S of senses,
which contains the actual output. Note that the

1http://code.google.com/p/word2vec/

466



representation of context words is only used inter-
nally for the purposes of this work, and that con-
text words are word forms; i.e., we only consider
senses for the target words.

3.2 Selecting a Sense
In the description of our model above we have
considered that for each target word w we are able
to select a sense s. We now explain the mecha-
nism used for this purpose. The probability of a
context word ci given a sense s, as they appear
in the model’s objective function defined in Eq. 4,
p(ci|s), ∀i ∈ [1, n], can be calculated using the
softmax function:

p(ci|s) =
evᵀ

ci
·vs∑|V |

j=1 e
vᵀ

cj
·vs

=
evᵀ

ci
·vs

Z(s)
, (5)

where vci (resp. vs) denotes the vector represent-
ing context word ci (resp. sense s), vᵀ denotes
the transposed vector v, and in the last equality we
have used Z(s) to identify the normalizer over all
context words. With respect to the probability of
a sense s given a target word w, for simplicity we
assume that all senses are equally probable; i.e.,
p(s|w) = 1

K for any of the K senses s of word w,
senses(w).

Using Bayes formula on Eq. 3, we can now ob-
tain the posterior probability of a sense s given the
target word w and the context words c1, . . . , cn:

p(s|c1, . . . , cn, w) =
p(s|w) · p(c1, . . . , cn|s)∑

sk∈senses(w) p(sk|w) · p(c1, . . . , cn|sk)
=

e(vc1+ ···+vcn )·vs · Z(s)−n∑
sk∈senses(w) e(vc1+ ···+vcn )·vsk · Z(sk)−n

.

(6)

During training, thus, given a target word w and
context words c1, . . . cn, the most probable sense
s ∈ senses(w) is the one that maximizes Eq. 6.
Unfortunately, in most cases it is computationally
impractical to explicitly calculate Z(s). From a
number of possible approximations, we have em-
pirically found that considering Z(s) to be con-
stant yields the best results; this is not an unrea-
sonable approximation if we expect the context
word vectors to be densely and evenly spread out
in the vector space. Under this assumption, the
most probable sense s of w is the one that maxi-
mizes

e(vc1+···+vcn )·vs∑
sk∈senses(w) e(vc1+···+vcn )·vsk

(7)

For each word occurrence, we propose to select
and train only its most probable sense. This ap-
proach of hard sense assignments is also taken in
Neelakantan et al. (2014)’s work and we follow it
here, although it would be interesting to compare
it with a soft updates of all senses of a given word
weighted by the probabilities obtained with Eq. 6.

The training algorithm, thus, iterates over a se-
quence of words, selecting each one in turn as a
target word w and its context words as those in a
window of a maximum pre-set size. For each tar-
get word, a number K of senses s is considered,
and the most probable one selected according to
Eq. 7. (Note that, as the number of senses needs
to be informed –using, for example, a lexicon–,
monosemic words need only have one representa-
tion.) The selected sense s substitutes the target
word w in the original Skip-gram model, and any
of the known techniques used to train it can be sub-
sequently applied to obtain sense representations.
The training process is drafted in Algorithm 1 us-
ing Skip-gram with Negative Sampling.

Negative Sampling (Mikolov et al., 2013b),
based on Noise Contrastive Estimation (Mnih and
Teh, 2012), is a computationally efficient approx-
imation for the original Skip-gram objective func-
tion (Eq. 1). In our implementation it learns the
sense representations by sampling Nneg words
from a noise distribution and using logistic regres-
sion to distinguish them from a certain context
word c of a target word w. This process is also
illustrated in Algorithm 1.

4 Experiments

We trained the model described in Section 3 on
Swedish text using a context window of 10 words
and vectors of 200 dimensions. The model re-
quires the number of senses to be specified for
each word; as a heuristic, we used the number of
senses listed in the SALDO lexicon (Borin et al.,
2013). Note, however, that such a resource is not
vital and could be substituted by any other heuris-
tic. E.g., a fixed number of senses per word, as
Neelakantan et al. (2014) do in their parametric
approach.

As a training corpus, we created a corpus of 1
billion words downloaded from Språkbanken, the
Swedish language bank.2 The corpora are dis-
tributed in a format where the text has been to-
kenized, part-of-speech-tagged and lemmatized.

2http://spraakbanken.gu.se

467



Algorithm 1: Selection of senses and training using Skip-gram with Negative Sampling. (Note that
vx denotes the vector representation of word/sense x.)

Input: Sequence of words w1, . . . , wN , window size n, learning rate α, number of negative words Nneg

Output: Updated vectors for each sense of words wi, i = 1, . . . , N
1 for t = 1, . . . , N do
2 w = wi

3 K ← number of senses of w
4 context(w) = {c1, . . . , cn | ci = wt+i, i = −n, . . . , n, i 6= 0}
5 for k = 1, . . . ,K do
6 pk = e

(vc1+···+vcn )·vsk∑K
j=1 e

(vc1+···+vcn )·vsj

7 s = arg maxk=1,...,K pk

8 for i = 1, . . . , n do
9 f = 1

1+e
vci

·vs

10 g = α(1− f)
11 ∆ = g · vci

12 vci = vci + g · vs

13 for j = 1, . . . , Nneg do
14 dj ← word sampled from noise distribution, dj 6= ci
15 f = 1

1+e
vdj

·vs

16 g = −α · f
17 ∆ = ∆ + g · vdj

18 vdj = vdj + g · vs

19 vs = vs + ∆

Compounds have been segmented automatically
and when a lemma was not listed in SALDO, we
used the parts of the compounds instead. The input
to the software computing the embeddings con-
sisted of lemma forms with concatenated part-of-
speech tags, e.g. dricka-verb for the verb ‘to drink’
and dricka-noun for the noun ‘drink’.

The training time of our model on this corpus
was 22 hours. For the sake of time performance
comparison, we run an off-the-shelf word2vec
execution on our corpus using the same parameter-
ization described above; the training of word vec-
tors took 20 hours, which illustrates the little com-
plexity that our model adds to the original Skip-
gram.

4.1 Inspection of nearest neighbors

We evaluate the output of the algorithm qualita-
tively by inspecting the nearest neighbors of the
senses of a number of example words, and com-
paring them to the senses listed in SALDO.

Table 1 shows the nearest neighbor lists of the
senses of two words where the algorithm has been
able to learn the distinctions used in the lexicon.
The verb flyga ‘to fly’ has two senses listed in
SALDO: to travel by airplane and to move through
the air. The adjective öm ‘tender’ also has two
senses, similar to the corresponding English word:
one emotional and one physical. The lists are se-
mantically coherent, although we note that they

are topical rather than substitutional; this is ex-
pected since the algorithm was applied to lemma-
tized and compound-segmented text and we use a
fairly wide context window.

flyg ‘flight’ flaxa ‘to flap wings’
flygning ‘flight’ studsa ‘to bounce’
flygplan ‘airplane’ sväva ‘to hover’
charterplan ‘charter plane’ skjuta ‘to shoot’
SAS-plan ‘SAS plane’ susa ‘to whiz’

(a) flyga ‘to fly’

kärleksfull ‘loving’ svullen ‘swollen’
ömsint ‘tender’ ömma ‘to be sore’
smek ‘caress’ värka ‘to ache’
kärleksord ‘word of love’ mörbulta ‘to bruise’
ömtålig ‘delicate’ ont ‘pain’

(b) öm ‘tender’

Table 1: Examples of nearest neighbors of the two
senses of two example words.

In a related example, Figure 1 shows the projec-
tions onto a 2D space3 of the representations for
the two senses of åsna: ’donkey’ or ’slow-witted
person’, and those of their corresponding nearest
neighbors.

For some other words we have inspected, we
fail to find one or more of the senses. This is typ-
ically when one sense is very dominant, drowning
out the rare senses. For instance, the word rock

3The projection was computed using scikit-learn
(Pedregosa et al., 2011) using multidimensional scaling of
the distances in a 200-dimensional vector space.

468



åsna-1

mulåsna(mule)

kamel(camel)

tjur(bull)
får(sheep)lama(llama)

åsna-2

idiot

dummer(fool)

fåne(jerk)

tönt(dork)

fårskalle(muttonhead)

Figure 1: 2D projections of the two senses of
åsna (’donkey’ and ’slow-witted person’) and their
nearest neighbors.

has two senses, ‘rock music’ and ‘coat’, where the
first one is much more frequent. While one of the
induced senses is close to some pieces of clothing,
most of its nearest neighbors are styles of music.

In other cases, the algorithm has come up with
meaningful sense distinctions, but not exactly as
in the lexicon. For instance, the lexicon lists two
senses for the noun böna: ‘bean’ and ‘girl’; the al-
gorithm has instead created two bean senses: bean
as a plant part or bean as food. In some other
cases, the algorithm finds genre-related distinc-
tions instead of sense distinctions. For instance,
for the verb älska, with two senses ‘to love’ or ‘to
make love’, the algorithm has found two stylis-
tically different uses of the first sense: one stan-
dard, and one related to informal words frequently
used in social media. Similarly, for the noun
svamp ‘sponge’ or ‘mushroom’/‘fungus’, the al-
gorithm does not find the sponge sense but distin-
guishes taxonomic, cooking-related, and nature-
related uses of the mushroom/fungus sense. It’s
also worth mentioning that when some frequent
foreign word is homographic with a Swedish
word, it tends to be assigned to a sense. For in-
stance, for the adjective sur ‘sour’, the lexicon lists
one taste and one chemical sense; the algorithm
conflates those two senses but creates a sense for
the French preposition.

4.2 Quantitative Evaluation

Most systems that automatically discover word
senses have been evaluated either by clustering the
instances in an annotated corpus (Manandhar et
al., 2010; Jurgens and Klapaftis, 2013), or by mea-
suring the effect of the senses representations in a
downstream task such as contextual word similar-

ity (Huang et al., 2012; Neelakantan et al., 2014).
However, Swedish lacks sense-annotated corpora
as well as word similarity test sets, so our evalua-
tion is instead based on comparing the discovered
word senses to those listed in the SALDO lexi-
con. We selected the 100 most frequent two-sense
nouns, verbs, and adjectives and used them as the
test set.

To evaluate the senses discovered for a lemma,
we generated two sets of word lists: one derived
from the lexicon, and one from the vector space.
For each sense si listed in the lexicon, we cre-
ated a list Li by selecting the N senses (for other
words) most similar to si according to the graph-
based similarity metric by Wu and Palmer (1994).
Conversely, for each sense vector vj in our vector-
based model, a list Vj was built by selecting the
N vectors most similar to vj , using the cosine
similarity. We finally mapped the senses back to
their corresponding lemmas, so that the two sets
L = {Li} and V = {Vj} of word lists could be
compared.

These lists were then evaluated using standard
clustering evaluation metrics. We used three dif-
ferent metrics:

• Purity/Inverse-purity F-measure (Zhao and
Karypis, 2001), where each of the lexicon-
based lists Li is matched to the vector-based
list Vj that maximizes the F -measure, the
harmonic mean of the cluster-based precision
and recall:

P (Vj , Li) = |Vj∩Li|
|Cj | R(Vj , Li) = |Vj∩Li|

|Li|

The overall F -measure is defined as the
weighted average of individual F -measures:

F =
∑

i

|Li|∑
k |Lk| max

j
F (Vj , Li)

• B-cubed F-measure (Bagga and Baldwin,
1998), which computes individual precision
and recall measures for every item occurring
in one of the lists, and then averaging all pre-
cision and recall values. The F -measure is
the harmonic mean of the averaged precision
and recall.

• V-measure (Rosenberg and Hirschberg,
2007), the harmonic mean of the homogene-
ity and the completeness, two entropy-based
metrics. The homogeneity is defined as the

469



relative reduction of entropy in V when
adding the information about L:

h(V,L) = 1− H(V |L)
H(V )

Conversely, the completeness is defined

c(V,L) = 1− H(L|V )
H(L)

.

Both measures are set to 1 if the denominator
is zero.

Table 2 shows the results of the evaluation for
nouns, verbs, and adjectives, and for different val-
ues of the list size N . As a strong baseline, we
also include an evaluation of the sense represen-
tations discovered by the system of Neelakantan
et al. (2014), run with the same settings as our
system. This system is available only in its para-
metric version. (I.e., the number of senses per
word is a fixed parameter.) As the words used
in the experiments always have two senses as-
signed, this parameter is set to 2. This accounts
for fairness in the comparison with our approach,
which is given the right number of senses by the
lexicon (and thus in this case also 2). We used
the three metrics mentioned above: Purity/Inverse-
purity F-measure (Pu-F), B-cubed F-measure (B3-
F), and V-measure (V). As we can see, our sys-
tem achieves higher scores than the baseline in al-
most all the evaluations, despite using a simpler
algorithm that uses less memory. Only for the V -
measure the result is inconclusive for verbs and
adjectives; for nouns, and for the other two evalu-
ation metrics, our system is consistently better.

5 Conclusions and Future Work

In this paper, we present a model for automat-
ically building sense vectors based on the Skip-
gram method. In order to learn the sense vectors,
we modify the Skip-gram model to take into ac-
count the number of senses of each target word.
By including a mechanism to select the most prob-
able sense given a target word and its context, only
slight modifications to the original training algo-
rithm are necessary for it to learn distinct repre-
sentations of word senses from unstructured text.

To evaluate our model we train it on a 1-billion-
word Swedish corpus and use the SALDO lexi-
con to inform the number of senses associated to
each word. Over a series of examples in which we

Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 9.4 10.7 2.5 2.8 8.9 10.6
20 9.5 10.8 2.1 2.4 6.7 8.9
40 9.0 9.9 1.8 2.0 5.1 7.2
80 7.8 8.9 1.4 1.7 4.3 5.6
160 7.4 8.2 1.3 1.5 3.9 4.7

(a) Nouns.

Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 9.1 10.8 2.0 2.5 11.3 7.6
20 8.1 9.3 1.4 1.7 6.7 7.5
40 7.3 8.2 1.0 1.3 4.5 4.5
80 7.5 8.7 1.0 1.3 3.7 3.2

160 8.2 10.3 1.2 1.7 1.2 1.5

(b) Verbs.

Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 6.8 7.6 1.4 1.7 9.4 10.7
20 6.5 7.6 1.3 1.5 8.5 7.2
40 6.4 7.3 1.1 1.3 5.4 5.8
80 6.5 7.0 1.0 1.1 5.2 4.7

160 6.9 7.5 1.0 1.1 4.1 4.4

(c) Adjectives.

Table 2: Evaluation of the senses produced by our
system and that of Neelakantan et al. (2014).

analyse the nearest neighbors of some of the rep-
resented senses, we show how the obtained sense
representations are able to replicate the senses de-
fined in SALDO, or to make novel sense distinc-
tions in others. On instances in which a sense is
dominant we observe that the obtained represen-
tations favour this sense in detriment of less com-
mon ones.

We also give a quantitative evaluation of the
sense representations learned by our model using a
variety of clustering evaluation metrics, and com-
pare its performance with that of the model pro-
posed by Neelakantan et al. (2014). In most in-
stances of this evaluation our model obtains higher
scores than this baseline, despite its relative lower
complexity. Our model’s low complexity is char-
acterized by a) the simple word sense disambigua-
tion algorithm introduced in Section 3.2, which al-
lows us to fit word sense embeddings into Skip-
gram’s existing architecture with little added com-
putations; and b) the flexible number of senses per
word, which takes advantage of the monosemic
condition of most words to make an efficient use
of memory. This low complexity is demonstrated
by our training algorithm’s small increase in run-
ning time with respect to that of the original, word-

470



based Skip-gram model.
In this work, our use of a lexicon is limited

to setting the number of senses of a given word,
While this information proves useful for obtain-
ing coherent sense representations, an interesting
line of research lies in further exploiting exist-
ing knowledge resources for learning better sense
vectors. E.g., leveraging the network topology
of a lexicon such as SALDO, that links together
senses of semantically related words, could ar-
guably help improve the representations for those
rare senses with which our model currently strug-
gles, by learning their representations taking into
account those of neighbour senses in the network.

Acknowledgments

We would like to thank the reviewers for their con-
structive comments. This research was funded
by the Swedish Research Council under grant
2013–4944, Distributional methods to represent
the meaning of frames and constructions.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings of
the 1st International Conference on Language Re-
sources and Evaluation, pages 563–566, Granada,
Spain.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Lars Borin, Markus Forsberg, and Lennart Lönngren.
2013. SALDO: a touch of yin to WordNet’s yang.
Language Resources and Evaluation, 47:1191–
1211.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1025–1035.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 513–520.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word

representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 873–882. Asso-
ciation for Computational Linguistics.

David Jurgens and Ioannis Klapaftis. 2013. SemEval-
2013 task 13: Word sense induction for graded and
non-graded senses. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 290–299, Atlanta, United States.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. Semeval-2010 task 14:
Word sense induction & disambiguation. In Pro-
ceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 63–68, Uppsala, Sweden.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in Neural Information Pro-
cessing Systems, pages 2265–2273.

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117. Association for Computational Lin-
guistics.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural

471



Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410–
420, Prague, Czech Republic.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, pages 801–809.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384–394. Association for
Computational Linguistics.

Zhibiao Wu and Martha Palmer. 1994. Verb seman-
tics and lexical selection. In Proceedings of the
32nd Annual Meeting of the Association for Com-
putational Linguistics, pages 133–138, Las Cruces,
United States.

Ying Zhao and George Karypis. 2001. Criterion
functions for document clustering: Experiments and
analysis. Technical Report TR 01-040, Department
of Computer Science, University of Minnesota.

472


