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University of Zagreb

nmikelic@ffzg.hr

Abstract

In this paper we describe a semi-automated
approach to extend morphological lexicons
by defining the prediction of the correct
inflectional paradigm and the lemma for
an unknown word as a supervised ranking
task trained on an already existing lexicon.
While most ranking approaches rely only
on heuristics based on a single informa-
tion source, our predictor uses hundreds of
features calculated on the candidate stem,
corpus evidence and statistics calculated
from the existing lexicon. On the exam-
ple of the Croatian language we show that
our approach significantly outperforms a
heuristic-based baseline, yielding correct
candidates in 77% of cases on the first po-
sition and in 95% of cases on the first five
positions.

1 Introduction

Morphological lexicons are a vital resource in au-
tomatic processing of morphologically rich lan-
guages and their construction is a tedious and costly
process.

The most reasonable approach to organizing
inflectional morphological lexicons of morpho-
logically rich languages is to define inflectional
paradigms and assign them to corresponding lex-
emes. In this way, every entry in the morphological
lexicon becomes a pair (l, p) of a lemma l and a
paradigm p which allow to derive all the possible
surface forms of a given word.

In this paper we frame the problem of assisting
a process of extending an existing morphological
lexicon as a supervised ranking problem. Namely,
for each unknown word of a language we generate
all possible pairs (l, p) and rank them with the goal
of positioning existing pairs as high as possible.
The result of the raking process is presented to a

linguist through a graphical interface for labelling
the correct pairs (l, p).drastically lower than would
be the case if the lexicon was built manually.

2 Related Work

A significant amount of research has focused on
the problem of enhancing the process of produc-
ing morphological resources. The most widely
used approach is ranking pairs (l, p) of lemmas
and paradigms by various scoring functions which
rely on corpus evidence, the most popular being the
coverage of all inflected forms derived from a pair
(l, p) in a given monolingual corpus (Clément et al.,
2004; Tadić and Oliver, 2004; Sagot, 2005; Šnajder
et al., 2008; Esplà-Gomis et al., 2011). While our
approach follows the same ranking paradigm, we
argue that a significant amount of additional in-
formation can be gained from corpora and other
information sources, supervised machine learning
being the obvious solution for combining those.

The approach by Lindén (2009) does not rely on
corpus evidence only, but uses the existing lexicon
as well, showing that by combining corpus and
lexicon evidence significant gains can be achieved.

The first approach to exploit machine learning
over multiple sources of information for extend-
ing morphological lexicons is the work of Kauf-
mann and Pfister (2010) who use the informa-
tion from a morphological lexicon, a morpholog-
ical grammar and a corpus, and combine it via a
machine-learning approach to guess the stem and
morphosyntactic information for unknown words.
Using a different approach, Ahlberg et al. (2014)
learns paradigms from an initial collection of in-
flection tables, and new words are assigned to these
paradigms by using a confidence score. This ap-
proach is later extended by Ahlberg et al. (2015) to
use multi-class classification (using support vector
machines) for choosing the best paradigm. In this
work, all the possible suffixes and prefixes from
a given surface form are used as binary features,

379



after applying feature selection in order to optimise
the performance.

Regarding supervised approaches, it is worth
noting the work by Durrett and DeNero (2013), in
which patterns are built from morphologically anal-
ysed corpora to infer paradigms. For a given new
surface form, they are applied in order to obtain all
the inflections, and a hidden Markov model is used
to choose the likeliest paradigm.

The work most similar to ours, on which we
build upon, is the one by Šnajder (2012) who de-
fines a set of string and corpus features and exploits
them in a supervised learning setting, framing the
problem as a binary classification task, i.e. predict-
ing whether a candidate pair (l, p) is correct or not.
This approach enables both a fully automatic lexi-
con construction process and the fact that a surface
form can be a realisation of more than one (l, p)
pair. However, results show that, although quite a
high accuracy of 92% is reported (on an artificially
balanced dataset), the approach is not sufficient for
the positively labeled instances to be included in a
morphological lexicon without human inspection,
while exposing linguists to a collection of pairs
(l, p) that are classified as correct is far from opti-
mal as, in case of a false positive, alternatives are
not given.

Our approach tries to facilitate the best of the
two worlds – producing a ranked output for every
unknown word as this is the optimal representation
for the necessary human inspection, and combining
all available information sources and the supervised
learning paradigm to produce an output with the
highest quality possible.

The remainder of the paper is structured as fol-
lows: in the following section we describe the com-
ponents of our method. Section 4 describes the
experimental setting while Section 5 gives the dis-
cussion of the results of the experiments. The paper
ends with the conclusions in Section 6.

3 The Method

Our approach for producing a ranked list of candi-
date pairs (l, p) for each unknown word consists of
three steps: 1) generating candidates; 2) extracting
features from each candidate; and 3) ranking the
candidates by supervised learning. We describe
those in detail in the remainder of this section.

3.1 Candidate Generation

When we want to add an unknown surface form to a
morphological lexicon we first need to know which
pairs (l, p) are compatible with it. In this work, we
focus on languages using suffixing for morphologi-
cal inflection. This strategy is the most frequent for
languages all around the world (Dryer, 2013), and
it is the one specifically used by Croatian, which
is our case of study. For suffixing languages, a
paradigm in a morphological lexicon adds suffixes
to a given stem in order to produce surface forms.
Therefore, a good hint to find out the candidate
paradigms from an unknown word is the inflection
suffix. Unfortunately, finding out which is the suf-
fix of a surface form without knowing its paradigm
is not straightforward. Our strategy consists in
checking which suffixes in the whole collection of
suffixes generated by all the paradigms in a mor-
phological lexicon match the unknown word, so
we can obtain a collection of (stem, suffix) can-
didate pairs (l, p). Having these candidates it is
possible to identify which paradigms produce the
suffixes and consequently to obtain a collection of
candidate pairs (l, p).

To simplify the search of candidate suffixes for
a given unknown word, we use a generalised suffix
tree (McCreight, 1976) containing all the possible
suffixes from the paradigms in our lexicon.1 Each
of these suffixes is labeled with the index of the
corresponding paradigms that can produce it. The
generalised suffix tree data structure allows to re-
trieve the paradigms compatible with an unknown
word by efficiently searching for all the compatible
suffixes; when a suffix is found, the collection of
paradigms generating it is retrieved and the list of
candidates is enlarged with the new pairs (l, p).

3.2 Ranking the Candidates

Our approach is aimed at producing a ranked list of
candidate pairs (l, p) for a given unknown surface
form to be added to the lexicon. To do so, we use a
binary classification approach which classifies each
candidate pair (l, p) as either correct or incorrect,
as well as a certainty measure for the candidate pair
to belong to the positive class. We finally use that
certainty measure to rank our candidates from the
most suitable to the least suitable one.

To train our prediction models we define several
features by which each candidate in our dataset is

1Note that this method could be easily adapted to prefixing
languages by using a prefix tree instead a suffix tree.
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represented. A significant part of the features we
use are those proven to be informative by Šnajder
(2012). We extended that list of features with those
using probabilities of paradigm-conditioned suf-
fixes of different length, probabilities of paradigm-
conditioned prefixes, coverage of morphosyntactic
classes, and coverage of surface forms tagged in
the corpus with the corresponding morphosyntactic
description (MSD).

The rest of this section describes the specific
groups of features.

3.2.1 Stem Features

Stem features capture information about the stem
obtained from the surface form after removing the
suffix according to the pair (l, p) to be evaluated.
These features are the following:

EndsIn – categorical feature containing the last
character of the stem
EndsInCons – binary feature whether the stem
ends with a consonant
EndsInPals – binary feature whether the stem
ends with a palatal voice
EndsInVelars – binary feature whether the stem
ends with a velar voice
NumSyllables – number of the syllables of the
stem
OneSyllable – binary feature whether the stem
contains one syllable only
StemLength – length of the stem

3.2.2 Lexicon Features

The lexicon features represent the information
from the existing lexicon about the relation
between a paradigm and suffixes and prefixes
of stems and lemmata that belong to that
paradigm. This information is encoded as
paradigm-conditioned probabilities of affixes of
length n, i.e. P (affixn|paradigm). The features
are the following:

LemmaSuffixProbn – probability of a lemma
suffix of length n given the paradigm
StemSuffixProbn – probability of a stem suffix
of length n given the paradigm
StemPrefixProbn – probability of a stem prefix
of length n given the paradigm

For each of these features n ∈ {1, 2, 3}, mean-
ing that there are all together 9 different lexicon
features.

3.2.3 Corpus Features

The corpus features are extracted from an external
monolingual corpus. If such a corpus is available,
it can be used to confirm the existence of the word
forms derived from the pair (l, p) and to measure
whether the observed frequency distribution of dif-
ferent forms is close to the expected one as calcu-
lated on existing lexicon entries. Additionally, we
propose here to use a morphosyntactically anno-
tated corpus which allows us to indirectly introduce
the contextual information used by the tagger in
its decision process. The corpus features are the
following:

Freq – corpus frequency of the unknown word
LemmaAttested – binary feature whether the
candidate lemma was attested in the corpus
NumAttForms – number of attested word forms
from the expanded candidate paradigm
NumAttTags – number of morphosyntactic tags
with at least one attested word form
PropAttForms – proportion of attested word
forms
PropAttTags – proportion of morphosyntactic
tags with at least one attested word form
PropAttFormsPoS – proportion of attested words
forms tagged with the corresponding PoS
PropAttFormsMSD – proportion of attested
words forms tagged with the corresponding mor-
phosyntactic description
SumAttForms – sumation of corpus frequencies
of word forms generated
SimTagDistrJS – Jensen-Shannon divergence be-
tween the expected paradigm-conditioned proba-
bility distribution of morphosyntactic categories
(measured on the training portion of the existing
lexicon and the corpus) and the observed proba-
bility distribution of morphosyntactic categories
of the candidate (measured on the candidate and
the corpus)
SimTagDistrCos – cosine distance of distribu-
tions used to obtain SimTagDistrJS

3.2.4 Other Features

Two categorical features are included in this cate-
gory: the paradigm and the part-of-speech (PoS) of
a given candidate. These features enable the model
to capture the a-priori probability of each paradigm
and PoS and possible dependences of other fea-
tures on the paradigm or PoS. To clarify the latter
with an example, the number of syllables of a stem
is hardly a good predictor of the correctness of a
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candidate if it is not joined with the information on
the paradigm of the candidate. Namely, there are
paradigms that prefer stems with a specific number
of syllables.

4 Experimental Setting

4.1 The Datasets

The two main sources of information we use in
building our system are an existing morphological
lexicon of Croatian and a corpus of Croatian. While
we use both for extracting features (see Sections
3.2.2 and 3.2.3), we use the lexicon for producing
the annotated dataset we train our predictor on.

4.1.1 The Lexicon

The morphological lexicon of Croatian we use
in our experiments is part of the Apertium rule-
based machine translation system (Forcada et al.,
2011). It is the only freely available morphologi-
cal lexicon of Croatian which contains both defini-
tions of paradigms and lexemes attached to these
paradigms.2

At the time we ran our experiments, the lexi-
con consisted of 413 paradigms from open-word
classes, out of which 204 were noun paradigms,
167 were verbal and 42 adjectival. There were
10,183 lexemes in the lexicon annotated with one
of the 413 paradigms. The whole lexicon was, up
to that point, produced manually by the members
of the Apertium community.

These lexemes produce almost 70 thousand dif-
ferent surface forms. Once those surface forms are
used to generate all candidate pairs (l, c), which are
the instances we perform classification and ranking
on, we end up with around 7 million instances, with
a ratio of positive and negative examples of 1:100.

Given that the amount of the available training
data is huge, we randomly split the existing lexicon
in two parts: 80% of the lexical entries were used
for development, while the remaining 20% of the
entries were put aside for testing.

The final development set contains 55,458 sur-
face forms, while the test set consists of 12,089
surface forms. Each of these surface form has at
least one pair (l, p) from which it could be derived.
While 90% surface forms can be only derived from
one pair (l, p), 9% can be derived from two of
them and the remaining 1% can be derived from

2http://sourceforge.net/p/apertium/
svn/HEAD/tree/languages/apertium-hbs/

up to 7 pairs (l, p).3 Generating candidate pairs
(l, p) for the surface forms produced 6.1 million
development and 1.3 million testing instances.

4.1.2 The Corpus
For gathering corpus evidence we used the largest
available corpus of Croatian: the second version
of the Croatian web corpus hrWaC (Ljubešić and
Klubička, 2014), consisting of 2 billion words. The
corpus is morphosyntactically tagged and lemma-
tised (Agić et al., 2013) with tools trained on a 90k-
token training corpus (Agić and Ljubešić, 2014).

4.2 The Classifiers

We consider two classifiers for our task: support
vector machines (SVM) and Random Forests (RF).
While SVM has proven to be the best performing
classifier on many different problems, the strengths
of RF are comparable prediction strength and much
higher speed. We use the Scikit-learn implementa-
tions of the two classifiers (Pedregosa et al., 2011).

Given that the RF classifier is a stochastic pro-
cess, each experiment on that classifier is run 10
times and we report the mean and standard devia-
tion of the scoring function.

For optimising our binary classifiers, we use ran-
domised search for RF as the number of hyper-
parameters is quite high, while we perform grid
search on SVM with the RBF kernel.

During classifier optimisation we use the F1 of
the positive class as our scoring function since the
dataset is highly unbalanced, having for each posi-
tive instance 100 negative ones.

4.3 Ranking

For producing ranked results we opt for the sim-
ple pointwise ranking approach in which we use
certainty of the positive class on the binary classifi-
cation problem as our ranking function.

We do not take pairwise ranking under consid-
eration as we expect 1.1 correct answers among
100 candidates, making the computational cost of
a drastically higher number of necessary classifica-
tions for pairwise ranking hard to argue for.

We perform ranking with both of our classifiers.
In case of RF we rank the candidates by the de-
scending probability of the positive class, while

3The high amount of surface forms which can be derived
from two paradigms can be explained by the fact that different
verbal paradigms exist regarding verb’s aspect, transitivity and
reflexivity. Consequently, if a verb is biaspectual, it is given
two paradigms.
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Figure 1: Ranking performance of both classifiers as a function of training data size

with SVMs we use the descending distance of each
instance to the separating hyperplane.

We evaluate the ranking results via mean recip-
rocal rank (MRR) (Craswell, 2009) as for most
of the surface forms there exists only one correct
candidate pair. While reciprocal rank of a ranked
result is the multiplicative inverse of the position
of the (first) correct pair (l, p) in the ranking, the
MRR is the average of reciprocal ranks of all the
ranked results.

As our heuristic-based baseline, we take the scor-
ing function from Esplà-Gomis et al. (2011). Given
a pair (l, p), this approach produces the collection
of surface forms that can be derived from it and
calculates a confidence score based on the number
of these surface forms attested in the corpus.

5 Results

We perform two sets of experiments. In the first set,
we optimise both classifiers on the binary classifica-
tion task, using F1 score on the positive class as our
scoring function. In the second set of experiments
we use the optimised classifiers for pointwise rank-
ing, using MRR as our scoring function.

5.1 Classification

Given that optimising classifiers on multiple
millions of instances would be extremely time-
consuming, we limit our development data on 500
thousand instances, as it showed to produce stable
results during our early experiments. On both clas-

sifiers we perform optimisation via 10-fold cross-
validation on the development data. We perform a
final evaluation of the optimised classifiers on our
test data.

The result on the binary classification task ob-
tained on the test data for SVM is 70.4% and for
RF 59.8±2.4%. Regarding the time necessary for
training and annotating the test set, SVM takes
215.86 and 99.04 seconds, while RF takes 3.28 and
0.46 seconds.

These results show quite clearly that, while the
RF classifier is magnitudes faster on both train-
ing and testing, SVM outperforms RF with a wide
margin.

5.2 Ranking

In the first ranking experiment we compare the two
optimised classifiers while taking into account the
amount of data used for training. We plot the re-
sults in form of learning curves in Figure 1. For
RF we vary the training data size from 10 thou-
sand instances to 1 million instances in 10k-size
steps. Given that the training time for SVM is much
higher than for RF, we evaluate SVMs by increas-
ing the amount of training data by 100k instances.

The results show that on the pointwise ranking
task SVM still outperforms RF, but not as drasti-
cally as on the classification task.

Regarding the impact of the amount of train-
ing data on the ranking output, we observe a steep
learning curve up to 100k learning instances (climb-
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Figure 2: Distribution of positions of first correct candidates with both classifiers and the heuristic baseline

ing up to 0.831 MRR with SVM), with a mod-
erate increase in MRR up to 500k (0.852 with
SVM). The improvement obtained when doubling
the amount of training data to one million instances
is just 0.004 MRR (0.856 with SVM). Therefore
we will perform the remainder of our experiments
by using 500k training instances.

The heuristic-based baseline (Esplà-Gomis et al.,
2011) does not depend on the amount of training
data and produces an MRR of 0.674. Therefore we
can conclude that our machine learning approaches
significantly outperform our heuristic baseline.

5.3 Analysis of the Results

In this section we perform a deeper analysis of
the ranking results obtained by using 500k training
instances.

In Figure 2 we plot the distribution of the po-
sition of the first correct candidate for both our
classifiers and compare it to our heuristic-based
baseline. With both classifiers we position the cor-
rect candidate on the first position in 77% of cases.
A slight difference in the classifier performance
can be seen when we compare the percentage of
surface forms for which a correct candidate can
be found on the first three positions, where SVM
reports 92.4% and RF 91.4%. If we assume that a
human annotator can easily inspect the first 5 posi-
tions, correct candidates can be found with SVM
in 94.7% and with RF in 93.1% of cases.

The heuristic-based approach shows signifi-
cantly worse results, actually quite worse than re-
ported in (Esplà-Gomis et al., 2011), which is due
to the much higher morphological complexity of
the language used in these experiments.While for

only 52.8% of surface forms correct candidates are
found on the first position, the first three and five
positions contain correct candidates for 77.1% and
90.9% of surface forms respectively.

part of speech RF SVM
all 0.833 ± 0.004 0.852
noun 0.816 ± 0.010 0.827
verb 0.778 ± 0.009 0.838
adjective 0.935 ± 0.007 0.903

Table 1: Ranking performance by part of speech

In Table 1 we show the MRR score obtained
on each part-of-speech of the surface form. The
noticeably best results are obtained on adjectives,
which is to be expected as their inflection is quite
regular in Croatian. Worst results are obtained on
verbs although nouns have the highest number of
candidate paradigms. This can be explained by a
much more complex inflectional system of verbs,
part of which is used very infrequently.

Interestingly, the more successful SVM classifier
performs slightly better on ”hard” parts-of-speech,
especially verbs, while RF outperforms SVM on
the ”easy” adjectival class.

5.4 Feature Analysis

In this section we inspect the impact of the de-
fined features on our task by measuring the loss
in MRR as they are either removed or used ex-
clusively. Given the large number of features and
the consequently large number of necessary ex-
periments, we perform these with the faster RF
classifier only.
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except only
stem 0.708 ± 0.012 0.452 ± 0.001
corpus 0.651 ± 0.009 0.737 ± 0.006
lexicon 0.865 ± 0.007 0.398 ± 0.003
other 0.818 ± 0.010 0.569 ± 0.000

Table 2: Ranking performance of RF as features
of a specific group are either removed (except) or
used exclusively (only)

In the first experiment we either remove a feature
group, as defined in section 3.2, or remove all but
that feature group. The results of this experiment
are shown in Table 2.

While removing feature groups, a significant loss
in performance can be observed when removing
corpus features. When removing lexicon features,
a slight increase in MRR can be observed pointing
to the conclusion that performing feature reduction
on this feature group should be performed. First
insights point to the conclusion that the features
deteriorating our predictions are StemPrefix2 and
StemPrefix3 while all the remaining features of this
group improve our predictions. We leave this task
for future work.

On the other hand, when using feature groups
exclusively, i.e. using each of them separately, the
best performance is obtained with corpus features.
Lexicon features show to be of least help when
used alone.

A reasonable performance is obtained when us-
ing the “other” feature group only. This group
models the a priori probability of a paradigm given
its part-of-speech and can be considered the most-
frequent-paradigm baseline.

In the final experiment we focus on the most
informative group of features – the corpus group.
Again, we run experiments when removing a spe-
cific feature, or when training our predictor on that
feature only.

The first thing we observe is that proportions of
attested entities alone, as one would expect, are
more informative than the numbers of the same.
The most informative type of corpus information
when used alone is the proportion of attested forms,
outperforming the proportion of attested tags. Us-
ing annotated corpora, i.e. constraining attested
forms only to those annotated with the expected
morphosyntactic description (MRR 0.646) or part
of speech (MRR 0.619), does outperform using
raw text only (MRR 0.593). Distribution distances

alone are not very informative (MRR 0.185), but
generate the biggest loss in MRR once they are re-
moved, proving the uniqueness of the information
they provide.

5.5 Linguist Speed Improvements

A final inquiry was made in the speed improve-
ments obtained by using the presented tool. A
linguist very well acquainted with the paradigms
at his disposal required on average 66 seconds for
an entry when not using the tool, 76 seconds when
using the candidate generator without the ranker,
and 42 seconds when using both. From this we con-
clude that the tool brings a productivity increase
by a factor of 1.6 while presenting unranked candi-
dates does not bring any productivity gains.

6 Conclusion

In this paper we have presented a supervised rank-
ing approach to assisting the expansion of an ex-
isting morphological lexicon. We have shown that
such approach outperforms the traditional heuristic-
based scoring approach by a wide margin.

We have used two classifiers during our exper-
iments, one more accurate, the other much faster.
While SVM does perform better than RF, in a pro-
duction scenario the difference is not crucial and if
computational capacity is limited, one should opt
for RF.

An inspection of specific types of features
showed the corpus type to be the most informative.
Inside that feature type the proportion of attested
word forms that are tagged in the corpus with the
expected morphosyntactic description is proven to
be the overall most informative feature.

An initial inquiry in speed gains when using
the predictor showed to increase the linguists pro-
ductivity by a factor of 1.6. A potential increase in
accuracy has to be verified with future experiments.

Future work should also include a feature se-
lection process. Namely, we have noticed that,
regardless of using classifiers that perform implicit
feature selection, there are some features among
the lexicon-based ones that do deteriorate our re-
sults.

Finally, as the features using annotations from
the corpora have shown to be more informative
than those using raw text only, additional features
using that information source should be added to
the feature space.
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Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830,
November.

Benoı̂t Sagot. 2005. Automatic acquisition of a slo-
vak lexicon from a raw corpus. In Václav Ma-
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