
Proceedings of Recent Advances in Natural Language Processing, pages 362–370,
Hissar, Bulgaria, Sep 7–9 2015.

A Supervised Semantic Parsing with Lexical Extension and Syntactic
Constraint

Zhihua Liao
Foreign Studies College

Hunan Normal University
Changsha, China

liao.zhihua61@gmail.com

Qixian Zeng
Foreign Studies College

Hunan Normal University
Changsha, China

wanyouto@qq.com

Qiyun Wang
Foreign Studies College

Hunan Normal University
Changsha, China
qywang@qq.com

Abstract

Existing semantic parsing research has
steadily improved accuracy on a few do-
mains and their corresponding meaning
representations. In this paper, we present
a novel supervised semantic parsing algo-
rithm, which includes the lexicon exten-
sion and the syntactic supervision. This
algorithm adopts a large-scale knowl-
edge base from the open-domain Free-
base to construct efficient, rich Combi-
natory Categorial Grammar (CCG) lexi-
con in order to supplement the inadequacy
of its manually-annotated training dataset
in the small closed-domain while allows
for the syntactic supervision from the
dependency-parsed sentences to penalize
the ungrammatical semantic parses. Eval-
uations on both benchmark closed-domain
datasets demonstrate that this approach
learns highly accurate parser, whose pars-
ing performance benefits greatly from the
open-domain CCG lexicon and syntactic
constraint.

1 Introduction

Semantic parsers convert natural language sen-
tences to logical forms through a meaning repre-
sentation language. Recent research has focused
on learning such parsers directly from corpora
made up of sentences paired with logical meaning
representations (Artzi and Zettlemoyer, 2011; Lu
et al., 2008; Lu and Tou, 2011; Liao and Zhang,
2013; Kwiatkowski et al., 2010; Kwiatkowski et
al., 2011; Kwiatkowski et al., 2012; Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007;
Zettlemoyer and Collins, 2009; Zettlemoyer and
Collins, 2012). And its goal is to learn a gram-
mar that can map new, unseen sentences onto their
corresponding meanings, or logical expressions.

For decades there have been many algorithms
that learn probabilistic CCG grammars. These
grammars are well suited to the semantic parsing
because of the close linking with syntactic and se-
mantic information. Thus, they are used to model
a wide range of complex linguistic phenomena and
are strongly lexicalized, which store all language-
specific grammatical information directly with the
words and the CCG lexicon. This CCG lexicon
is useful for learning parser. However, it often
suffers from the sparsity and the diversity in the
training and testing datasets. Consequently, we
hold that a large-scale knowledge base should play
a key role in the semantic parsing. That is, it
might be quite favorable in training such parser
and resolving these syntactic ambiguities. Using
the knowledge base which contains rich semantic
information from the open-domain such as Free-
base, can improve efficiently the parser’s ability
to solve complex syntactic parsing problem and
benefit the accuracy. Besides, many previous ap-
proaches do not involve the syntactic constraint to
penalize the ungrammatical parses when semantic
parsing.

This paper presents a supervised approach to
learn semantic parsing task using a large-scale
open-domain knowledge base and syntactic con-
straint. The semantic parser is trained to learn
parsing via a large-scale open-domain CCG lex-
icon while simultaneously producing parses that
syntactically agree with their dependency parses.
Combining these two elements allows us to train
a more accurate semantic parser. In particular,
it also contains a factored CCG lexicon from the
closed-domain GeoQuery and ATIS. Therefore,
our approach not only includes two traditional
CCG lexicons from the closed-domain GeoQuery
and ATIS, and from the open-domain Freebase,
but also includes the factored lexicon from the
closed-domain GeoQuery and ATIS. This joint of
such different lexicons does well in dealing with
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the sparsity and the diversity of the dataset where
some words or phrases have been never appeared
during the training and testing procedures.

This paper is structured as follows. We first pro-
vide some background information about Freebase
dataset, Combinatory Categorial Grammar, prob-
abilistic CCG (PCCG) and syntactic constraint
function in Section 2. Section 3 describes how we
use FUBL algorithm to construct a semantic parser
FUBLLESC, and Section 4 presents our experi-
ments and reports the results. Section 5 describes
the related work. Finally, we make the conclusion
and give the future work in Section 6.

2 Background

2.1 Freebase Dataset
Freebase is a free, online, user-contributed, rela-
tional database covering many different domains
of knowledge (Cai and Yates, 2013; Cai and Yates,
2014; Reddy et al., 2014). The full schema and
contents are available for download1. One main
motivation we adopt Freebase is that it provides a
much rich knowledge base to build a large-scale
CCG lexicon for semantic parsing than traditional
benchmark database like GeoQuery. The Geo-
Query database contains only a single geography
domain, 7 relations, and 698 total instances. How-
ever, the “Freebase Commons” subset of Freebase
consists of 86 domains, an average of 25 relations
per domain (total of 2134 relations), and 615000
known instances per domain (53 million instances
total). The total dataset can be divided into 11 dif-
ferent subsets in terms of the domain types.

2.2 Combinatory Categorial Grammar
CCG is a linguistic formalism that tightly couples
syntax and semantic (Steedman, 1996; Steedman,
2000). It can be used to model a wide range of lan-
guage phenomena. A traditional CCG grammar
includes a lexicon Λ with entries like the follow-
ing:

flights ` N : λx.flight(x)

to ` (N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)

Boston ` NP : bos

where each lexical item w ` X : h has words
w, a syntactic category X , and a logical form h.
For the first example, these are flights, N , and
λx.flight(x). Furthermore, we also introduce the

1http://www.freebase.com

factored lexicon as (lexeme,template) pairs, as de-
scribed in Subsection 3.3.

CCG syntactic categories may be atomic (such
as S or NP ) or complex (such as (N\N)/NP )
where the slash combinators encode word order
information. CCG uses a small set of combina-
tory rules to build syntactic parses and semantic
representations concurrently. It includes forward
(>) and backward (<) application rules, and for-
ward (>B) and backward (<B) composition rules
as well as coordination rule. Except for the stan-
dard forward and backward slashes of CCG we
also include a vertical slash for which the direc-
tion of application is underspecified.

2.3 Probabilistic CCG
Due to the ambiguity in both the CCG lexicon and
the order in which combinators are applied, there
will be many parses for each sentence. We dis-
criminate between competing parses using a log-
linear model which has a syntactic constraint func-
tion Φ that will be described in the next Sub-
section 2.4, a feature vector φ, and a parameter
vector θ. The probability of a parse y that re-
turns logical form zi, i = 1 . . . n, given a sentence
xi, i = 1 . . . n and a weak supervision variable µ
is defined as:

P (y, zi, µ|xi; θ,Λ) =
Φ(xi, y, µ)eθ·φ(xi,y,zi,µ)

Σy′,z′,µ′Φ(xi, y′, µ′)eθ·φ(xi,y
′,z′,µ′) (1)

Subsection 4.3 fully defines the set of features
used in the system presented. The most impor-
tant of these control the generation of lexical items
from (lexeme,template)pairs. Each (lexeme, tem-
plate) pair used in a parse fires three lexical fea-
tures as we will see in more details in Subsection
4.3.

The parsing or inference problem done at the
testing step requires us to find the most likely log-
ical form z given a sentence xi and a weak su-
pervision variable µ to encourage the agreement
between the semantic parses and syntactic-based
dependency ones, assuming that the parameters θ
and lexicon Λ are known:

f(xi) = arg max
z
p(z|xi; θ,Λ) (2)

where the probability of the logical form is
found by summing over all parses that produce it:

p(z|xi; θ,Λ) = Σy∈Y st.µ=1p(y, z, µ|xi; θ,Λ) (3)
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In this approach the distribution over parse trees
y is modeled as a hidden variable. Thereby, the
parse tree y must agree with a dependency parse
of the same sentence xi. That is, it must guaran-
tee the weak supervision variable µ value to be 1.
For each sentence xi, we perform a beam search to
produce all possible semantic parse y, then check
the value of the syntactic constraint function Φ for
each generated parse and eliminate parses which
are not consistent with their dependency parses.
The sum over parses can be calculated efficiently
using the inside-outside algorithm with a CKY-
style parsing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates. Given a set
of n sentence-meaning pairs (xi, zi) : i = 1 . . . n,
we update the parameters θ iteratively, for each
example i, by following the local gradient of
the conditional log-likelihood objective Oi =
logP (zi|xi; θ,Λ). The local gradient of the indi-
vidual parameter θj associated with feature φj and
training instance (xi, zi) is given by:

∂Oi
∂θj

= Ep(y,µ|xi,zi;θ,Λ)[φj(xi, y, zi, µ)]

− Ep(y,z,µ|xi;θ,Λ)[φj(xi, y, z, µ)]

(4)

All of the expectations in above equation are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. For a sentence
of length m, each parse chart span is pruned using
a beam width proportional to m

2
3 , to allow larger

beams for shorter sentences.

2.4 Syntactic Constraint Function Φ

A main problem within the above semantic pars-
ing is that it admits a large number of ungram-
matical parses. This may result in the waste of
time for searching the parse space. Our motiva-
tion using the syntactic constraint is that it can
shrink the space of searching parse tree and re-
duce the time of finding the correct parse. Thus,
it will enhance the efficiency of semantic pars-
ing. The syntactic constraint function penalizes
ungrammatical parses by encouraging the seman-
tic parser to produce parse trees that agree with
a dependency parse of the same sentence (Kr-
ishnamurthy and Mitchell, 2012; Krishnamurthy
and Mitchell, 2013; Krishnamurthy and Mitchell,
2015). Specifically, the syntactic constraint re-
quires the predicate-argument structure of the

CCG parse to agree with the predicate-argument
structure of the dependency parse.

Therefore, the agreement can be defined as a
function of each CCG rule application in y. In
the parse tree y, each rule application combines
two subtrees, yh and yc, into a single tree span-
ning a larger portion of the sentence xi. A rule
application AGREE(y,t) is consistent with a de-
pendency parse t if the head words of yh and
yc have a dependency edge between them in t.
Here, the weak supervision variable µ is defined as
AGREE(y,t). Therefore, the syntactic Constraint
function Φ(µ, y, xi) is true if and only if every rule
application AGREE(y,t) in y is consistent with t.

Φ(µ, y, xi) =

{
1 if µ = AGREE(y,DEPPARSE(xi))
0 otherwise

(5)

3 Learning Factored PCCGs with
Lexicon Extension and Syntactic
Constraint

Our factored unification based learning method
with lexicon extension and syntactic constraint
(FUBLLESC) extends the factored unification
based learning (FUBL) algorithm (Kwiatkowski
et al., 2011) to induce an open-domain lexicon,
while also simultaneously adding dependency-
based syntactic constraint to permit semantic pars-
ing. In this section, we first define knowledge base
K - Freebase and construct the open-domain CCG
lexicon ΛO, then provide the factored lexicon ΛF

from the closed-domain GeoGuery and ATIS, and
finally present our FUBLLESC algorithm.

3.1 Knowledge Base K - Freebase
The main input in our system is a propositional
knowledge base K = (E,<, C,∆) (Hoffmann et
al., 2011). It contains entities E, categories C,
relations <, and relation instances ∆. The cate-
gories and relations are predicates which operate
on the entities and return truth values; the cate-
gories c ∈ C are one-place predicates and the re-
lations r ∈ < are two-place predicates. The entity
e ∈ E represents a real-world entity and has a set
of known text names. Examples of such knowl-
edge base come from the open-domain Freebase.

This knowledge base influences the semantic
parser by two ways. Firstly, CCG logical forms
are constructed by combining the categories, re-
lations and entities from the knowledge base with
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logical connectives; hence, the predicates in the
knowledge base determine the expressivity of the
parser’s semantic representation. Secondly, the
known relation instances r(e1, e2) ∈ ∆ are used
to train the semantic parser.

3.2 Construct the Open-domain CCG
Lexicon ΛO

The first step in constructing the semantic parser
is to define a open-domain CCG lexicon ΛO.
We construct ΛO by applying simple dependency-
parse-based heuristics to sentences in the train-
ing corpus (i.e., NYT-Freebase2). Here we
adopt MALTPARSER (Nivre et al., 2006) as the
dependency-parser. The resulting lexicon Λ0 cap-
tures a variety of linguistic phenomena, includ-
ing verbs, common nouns, noun compounds and
prepositional modifiers. Next, we use the men-
tion identification procedure to identify all men-
tions of entities in the sentence set xi, i = 1 . . . n.
Here we adopt sentential relation extractor MUL-
TIR (Hoffmann et al., 2011), which is a state-
of-the-art weakly supervised relation extractor for
multi-instance learning with overlapping relation
that combines a sentence-level extraction model
with a simple, corpus-level component for aggre-
gating the individual facts. This process results in
(e1, e2, xi) triple, consisting of sentences with two
entity mentions. The dependency path between e1
and e2 in xi is then matched against the depen-
dency parse patterns in Table 1. Each matched
pattern adds one or more lexical entries to ΛO.

Each pattern in Table 1 has a corresponding
lexical category template, which is a CCG lexi-
cal category containing parameters e, c and r that
are chosen at initialization time. Given the triple
(e1, e2, xi), the relations r are chosen such that
r(e1, e2) ∈ ∆, and the categories c are chosen
such that c(e1) ∈ ∆ or c(e2) ∈ ∆. The template is
then instantiated with every combination of these
e, c and r values.

3.3 Factored Lexicon ΛF

A factored lexicon includes a set L of lexemes
and a set T of lexical templates (Kwiatkowski
et al., 2011). A lexeme (w,~c) pairs a word se-
quence with an ordered list of logical constants
~c = [c1 . . . cm]. For example, lexemes can con-
tain a single lexeme (flight, [flight]). It also can
contain multiple constants, for example (cheapest,

2http://iesl.cs.umass.edu/riedel/data-univSchema/

[arg max,cost]). A lexical template takes a lexeme
and produces a lexical items. Templates have the
general form λ(ω,~v).[ω ` X : h~v], where h~v is
a logical expression that contains variables from
the list ~v. Applying this template to input lex-
eme (w,~c) gives the full lexical item w ` X : h
where the variable ω has been replaced with the
wordspan w and the logical form h has been cre-
ated by replacing each of the variables in ~v with
the counterpart constants from ~c. Then the lexi-
cal items are constructed from the specific lexemes
and templates.

3.4 The FUBLLESC Algorithm

Figure 1 shows the FUBLLESC learning algo-
rithm. We assume training data {(xi, zi) : i =
1 . . . n} where each example is a sentence xi

paired with a logical form zi. The algorithm in-
duces a factored PCCG with lexicon extension and
syntactic constraint, including traditional CCG
lexicon ΛT from the closed-domain GeoQuery
and ATIS, the CCG lexicon ΛO from the open-
domain Freebase, the lexeme L, templates T , the
factored lexicon ΛF from the closed-domain Geo-
Query and ATIS, and parameter θ.

This algorithm is online, repeatedly performing
both lexical expansion (Step 1) and parameter up-
date (Step 2) procedures for each training exam-
ple. The overall approach is closely related to the
FUBL algorithm (Kwiatkowski et al., 2011), but
includes a large-scale CCG lexicon from the open-
domain Freebase knowledge base and the syntac-
tic constraint function from the dependency parser.

Inputs: Training set{(xi, zi) : i = 1 · · ·n} where each ex-
ample is a sentence xi paired with a logical form zi.
Set of entity name lexemes Le. Number of iteration J .
Learning rate parameter α0 and cooling rate parameter
c. Set of entity name lexemes Le. Empty lexeme set L.
Empty template set T . Set of NP lexical items lF from
the factored lexicon ΛF . Set of NP lexical items lT
from the closed-domain CCG lexicon ΛT . Set of NP
lexical items lO from the open-domain CCG lexicon
ΛO .

Definitions: NEW-LEX(y) returns a set of new lexical items
from a parse y. MAX-FAC(l) generates a (lexeme,
template) pair from a lexical item l ∈ lF ∪ lT ∪
lO . PART-FAC(y) generates a set of templates from
parse y. The distributions p(y, µ|x, z; θ,ΛF ) and
p(y, z, µ|x; θ,ΛF ) are defined by the log-linear model.

Initialization: Let

• For i = 1 · · ·n.
* (Ψ, π) = MAX-FAC (xi ` S : zi)
* L = L ∪Ψ, T = T ∪ π

• set L = L ∪ Le.
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Part of Speech Dependency Parse Pattern Lexical Category Template
Proper (name of entity e) w := N : λx.x = e
Noun Sacramento Sacramento := N : λx.x = Sacramento

Common e1
SBJ
=⇒ [is, are, was, . . .]

OBJ⇐= w w := N : λx.c(x)
Noun Sacramento is the capital capital := N : λx.City(x)

Noun e1
NMOD⇐= e2 Type changeN : λx.c(x) toN |N : λf.λx.∃y.c(x) ∧ f(y) ∧ r(x, y)

Modifier Sacramento, California N : λx.City(x) toN |N : λf.λx.∃y.City(x) ∧ f(y) ∧ LocatedIn(x, y)

e1
NMOD⇐= w

PMOD⇐= e2 w := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ r(x, y)
Preposition Sacremento in California in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LocatedIn(x, y)

e1
SBJ
=⇒ V B∗ ADV⇐= w

PMOD⇐= e2 w := PP/N : λf.λx.f(x)
Sacramento is located in California in := PP/N : λf.λx.f(x)

e1
SBJ
=⇒ w∗ OBJ⇐= e2 w∗ := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento governs California governs := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LocatedIn(x, y)

e1
SBJ
=⇒ w∗ ADV⇐= [IN, TO]

OBJ⇐= e2 w∗ := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)
Verb Sacramento is located in California islocated := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LocatedIn(x, y)

e1
NMOD

=⇒ w∗ ADV⇐= [IN, TO]
OBJ⇐= e2 w∗ := (S\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ r(x, y)

Sacramento located in California located := (S\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ LocatedIn(x, y)
Forms of “to be” (none) w∗ := (S\N)/N : λf.λg.∃x.g(x) ∧ f(x)

Table 1: Dependency parse pattern used to instantiate lexical categories for the semantic parser lexicon
ΛO. Each pattern is followed by an example phrase that instantiates it. An ∗ indicates a position that
may be filled by multiple consecutive words in the sentence. e1 and e2 are the entities identified in the
sentence, r represents a relation where r(e1, e2), and c represents a category where c(e1). Each template
may be instantiated with multiple values for the variables e, c, r.

• set ΛF = (L, T ).
• set ΛF = ΛF ∪ ΛT ∪ ΛO .
• Initialize θ using coocurrence statistics.

Algorithm: For t = 1 · · · J , i = 1 · · ·n:

Step 1: Add Lexemes and Templates

• Let y∗ = arg maxy,µi p(y, µi|xi, zi; θ,
ΛF )

• For l ∈ NEW-LEX(y∗)
* (Ψ, π) = MAX-FAC(l)
* L = L∪Ψ, T = T ∪π, ΛF = ΛF ∪ (Ψ, π)

• Π = PART-FAC (y∗), T = T ∪Π

Step 2: Update Parameters with Syntactic Constraint

• Let γ = α0
1+c×k where k = i+ t× n.

• Let µi = AGREE(y,DEPPARSE(xi)).
• Let

∆ = Ep(y,µi|xi,zi;θ,ΛF )[φ(xi, y, zi, µi)]

− Ep(y,z,µi|xi;θ,ΛF )[φ(xi, y, z, µi)]

• Set θ = θ + γ∆

Output: Lexeme L, template T , factored lexicon ΛF , and
parameters θ.

Figure 1: The FUBLLESC algorithm.

Initialization This model is initialized with two
traditional CCG lexicons and a factored lexicon as
follow. Firstly, a traditional CCG lexicon ΛT is
built from the closed-domain GeoQuery and ATIS
whereas another CCG lexicon ΛO is constructed
from the open-domain Freebase. Secondly, we
start to build the factored lexicon ΛF from the
closed-domain GeoQuery and ATIS. MAX-FAC is

a function that takes a lexical item l and returns the
maximal factoring of it, that is the unique, maxi-
mal (lexeme,template) pair that can be combined
to construct l. We apply MAX-FAC to each of the
training examples (xi, zi), creating a single way of
producing the desired meaning z from a lexeme
containing all of the words in xi. The lexemes
and templates created in this way provide the ini-
tial factored lexicon ΛF . Finally, we combine the
initial factored lexicon ΛF with these two tradi-
tional CCG lexicons ΛT and ΛO to create a new
larger factored lexicon ΛF .

Step 1: The first step of the learning algorithm
adds lexemes and templates to the factored model
given by performing manipulations on the high-
est scoring correct parse y∗ of the current train-
ing example (xi, zi). NEW-LEX function gener-
ates lexical items by splitting and merging nodes
in the best parse tree of each training example. The
splitting procedure is a three-step process that first
splits the logical form h, then splits the CCG syn-
tactic category X and finally splits the string w.
The merging procedure is to recreate the original
parse tree X : h spanning w by recombining two
new lexical items with CCG combinators (appli-
cation or composition). First, the NEW-LEX pro-
cedure is run on y∗ to generate new lexical items.
We then use the function MAX-FAC to create the
maximal factoring of each of these new lexical
items and these are added to the factored repre-
sentation of the lexicon ΛF . New templates can
also be introduced through partial factoring of in-

366



ternal parse nodes. These templates are generated
by using the function PART-FAC to abstract over
the wordspan and a subset of the constants con-
tained in the internal parse nodes of y∗. This step
allows for templates that introduce new semantic
content to model elliptical language.

Step 2: The second step does a stochastic gradi-
ent descent update on the parameter θ used in the
parsing model. In particular, this update first com-
putes the weak supervision variable µi value for
each parse tree y through the syntactic constraint
function Φ and then judges whether the punish-
ment need to be done. More details about this up-
date are described in Subsection 2.3.

4 Experimental Setup

This section describes our experimental setup
and comparisons of the result. We follow the
setup of Zettlemoyer and Collins (2007; 2009)
and Kwiatkowski et al. (2010; 2011), including
datasets, features, evaluation metrics, and initial-
ization as well as systems, as reviewed below. Fi-
nally, we report the experimental results.

4.1 Datasets

We evaluate on two benchmark closed-domain
datasets. GeoQuery is made up of natural lan-
guage queries to a database of geographical in-
formation, while ATIS contains natural language
queries to a flight booking system (Zettlemoyer
and Collins, 2007; Zettlemoyer and Collins, 2009;
Zettlemoyer and Collins, 2012; Kwiatkowski et
al., 2010; Kwiatkowski et al., 2011). The Geo880
dataset has 880(English sentence, logical form)
pairs split into a training set of 600 pairs and a test
set of 280 ones. The Geo250 dataset is a subset
of the Geo880, and is used 10-fold cross valida-
tion experiments with the same splits of this sub-
set. The ATIS dataset contains 5410 (English sen-
tence, logical form) pairs split into a 5000 example
development set and a 450 example test set.

4.2 Evaluation Metrics

We report exact math Recall, Precision and F1.
Recall is the percentage of sentences for which
the correct logical form was returned, Precision
is the percentage of returned logical forms that are
correct, and F1 is the harmonic mean of Precision
and Recall. For ATIS we also report partial match
Recall, Precision and F1. Partial match Recall is
the percentage of correct literals returned. Partial

match Precision is the percentage of returned lit-
erals that are correct.

4.3 Features
We introduce two types of features to discriminate
among parses: lexical features and logical-form
features. First, for each lexical item L ∈ ΛT ∪ΛO

from the closed-domain CCG lexicon ΛT and the
open-domain CCG lexicon ΛO, we include a fea-
ture φL that fires when L was used. Second, For
each (lexeme, template) pair used to create an-
other lexical item (l, t) ∈ ΛF about the factored
lexicon ΛF we have indicator features φl for the
lexeme used, φt for the template used, and φl,t

for the pair that was used. Thereby, the lexi-
cal feature includes φL and φl,t. We assign the
features on the lexical templates a weight of 0.1
to prevent them from swamping the far less fre-
quent but equally informative lexeme features. For
each logical-form feature, it is computed on the
lambda-calculus expression z returned at the root
of the parse. Each time a predicate p in the out-
put logical expression z takes a argument a with
type T (a) in position i, it triggers two binary indi-
cator features: φ(p,a,i) for the predicate-argument
relation and φ(p,T (a),i) for the predicate argument-
type relation.

4.4 Initialization
The weights for lexeme features are initialized ac-
cording to coocurrance statistics between words
and logical constants. They are estimated with the
GIZA++ implementation of IBM Model 1 (Och
and Ney, 2003; Och and Ney, 2004). The weights
of the seed lexical entries from the closed-domain
CCG lexicon ΛT and the open-domain CCG lex-
icon ΛO are set to 10 that can be equivalent to
the highest possible coocurrence score. The ini-
tial weights for templates are set by adding −0.1
for each slash in the syntactic category and −2 if
the template contains logical constants. Features
on (lexeme, template) pairs and all parse features
are initialized to zero. We use the learning rate
α0 = 1.0 and cooling rate c = 10−5 in all train-
ing, and run the algorithm for J = 20 iterations.

4.5 Systems
We compare this performance to those recently-
published and directly-comparable results. For
GeoQuery, they include the ZC07 (Zettlemoyer
and Collins, 2007), λ-WASP (Wong and Mooney,
2007), UBL (Kwiatkowski et al., 2010) and

367



system Rec. Pre. F1
ZC07 74.4 87.3 80.4
UBL 65.6 67.1 66.3
FUBL 81.9 82.1 82.0
FUBLLESC 85.2 92.8 88.8

Table 3: Performance of Exact Match on the ATIS
development set.

FUBL (Kwiatkowski et al., 2011). For ATIS,
we report results from ZC07 (Zettlemoyer and
Collins, 2007), UBL (Kwiatkowski et al., 2010)
and FUBL (Kwiatkowski et al., 2011).

4.6 Results

Tables 2-4 present all the results on the GeoGuery
and ATIS domains. In all cases, FUBLLESC

achieves at state-of-the-art recall and precision
when compared to directly comparable systems
and it significantly outperforms FUBL and ZC07.
Most importantly, it is obvious that on precision
our FUBLLESC remarkably exceeds other sys-
tems because of the joint effect about the addi-
tion of an open-domain CCG lexicon and the us-
age of syntactic constraint. As shown in Table 2,
on Geo250 FUBLLESC achieves the highest recall
86.2% and precision 92.0%, whereas on Geo880
the only higher recall and precision (90.8% and
95.6%) are also achieved by FUBLLESC. On the
ATIS development set, FUBLLESC outperforms
FUBL by 3.3% of recall and by 10.7% of preci-
sion, which is shown in Table 3. Table 4 indicates
that on the ATIS test set FUBLLESC significantly
outperforms FBUL by 10% of precision on Exact
Match and 5% of precision on Partial Match, re-
spectively.

5 Related Work

Semantic parsers have been thought of mapping
sentences to logical representations of their un-
derlying meanings. There has been significant
work on supervised learning for inducing se-
mantic parsers. Various techniques were ap-
plied to this problem including machine trans-
lation (Wong and Mooney, 2006; Wong and
Mooney, 2007), using CCG to building mean-
ing representations (Zettlemoyer and Collins,
2005; Zettlemoyer and Collins, 2007; Zettlemoyer
and Collins, 2009; Zettlemoyer and Collins,
2012), higher-order unification (Kwiatkowski et
al., 2010; Kwiatkowski et al., 2011), model-

ing child language acquisition (Kwiatkowski et
al., 2012),generative model (Ruifang and Mooney,
2006; Lu et al., 2008), inductive logic program-
ming (Zelle and Mooney, 1996; Thompson and
Mooney, 2003; Tang and Mooney, 2000), proba-
bilistic forest to string model for language gener-
ation (Lu and Tou, 2011), and the extension from
English to Chinese (Liao and Zhang, 2013). The
algorithm we develop in this paper builds on some
previous work on the supervised learning CCG
parsers (Kwiatkowski et al., 2010; Kwiatkowski
et al., 2011), as described in Section 3.4.

Recent research in this field has focused on
learning for various forms of relatively weak but
easily gathered supervision. This includes unan-
notated text (Poon and Domingos, 2009; Poon and
Domingos, 2010), learning from question-answer
pairs (Liang et al., 2011; Berant et al., 2013),
via paraphrase model (Berant and Liang, 2014),
from conversational logs (Artzi and Zettlemoyer,
2011), with distant supervision (Krishnamurthy
and Mitchell, 2012; Krishnamurthy and Mitchell,
2013; Krishnamurthy and Mitchell, 2015; Cai
and Yates, 2013; Cai and Yates, 2014), and from
sentences paired with system behaviors (Artzi
and Zettlemoyer, 2013) as well as via semantic
graphs (Reddy et al., 2014).

Our approach builds on a number of ex-
isting algorithm ideas which include adopt-
ing PCCG to building the meaning representa-
tion (Kwiatkowski et al., 2010; Kwiatkowski et
al., 2011), using the weakly supervised param-
eter leaning with the syntactic constraint (Kr-
ishnamurthy and Mitchell, 2012; Krishnamurthy
and Mitchell, 2013), and employing the open-
domain Freebase to semantic parsing (Cai and
Yates, 2013).

6 Conclusion and Future Work

This paper presents a novel supervised method
for semantic parsing which induces PCCG from
sentences paired with logical forms. This ap-
proach contains an open-domain Freebase lexicon
and syntactic constraint which employs depen-
dency parser to penalize uncorrect CCG parsing
tree. The experiments on both benchmark datasets
(i.e., GeoQuery and ATIS) show that our method
achieves higher performances.

In the future work, we are interested in ex-
ploring morphological model and containing more
open-domain lexicons as well as more syntactic
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(a) The Geo250 test set

system Rec. Pre. F1
λ-WASP 75.6 91.8 82.9
UBL 81.8 83.5 82.6
FUBL 83.7 83.7 83.7
FUBLLESC 86.2 92.0 89.0

(b) The Geo880 test set

system Rec. Pre. F1
ZC07 86.1 91.6 88.8
UBL 87.9 88.5 88.2
FUBL 88.6 88.6 88.6
FUBLLESC 90.8 95.6 93.1

Table 2: Performance of Exact Match between the different GeoQuery test sets.

(a) Exact Match

system Rec. Pre. F1
ZC07 84.6 85.8 85.2
UBL 71.4 72.1 71.7
FUBL 82.8 82.8 82.8
FUBLLESC 86.4 92.8 89.5

(b) Partial Match

system Rec. Pre. F1
ZC07 96.7 95.1 95.9
UBL 78.2 98.2 87.1
FUBL 95.2 93.6 94.6
FUBLLESC 97.2 98.6 97.9

Table 4: Performance of Exact and Partial Matches on the ATIS test set.

information. Besides, it will also be important to
better model some variations within the existing
lexemes.
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