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Abstract

This paper reports on the task of Native
Language Identification (NLI). We devel-
oped a machine learning system to identify
the native language of authors of English
texts written by non-native English speak-
ers. Our system is based on the language
modeling approach and employs cross-
entropy scores as features for supervised
learning, which leads to a significantly re-
duced feature space. Our method uses the
SVM learner and achieves the accuracy of
82.4 % with only 55 features. We com-
pare our results with the previous similar
work by Tetreault et al. (2012) and ana-
lyze more details about the use of language
modeling for NLI. We experiment with the
TOEFL11 corpus (Blanchard et al., 2013)
and provide an exact comparison with re-
sults achieved in the First Shared Task in
NLI (Tetreault et al., 2013).

1 Introduction

We present a system for identifying the native lan-
guage (L1) of a writer based solely on a sample
of their writing in a second language (L2). In this
work we focus on English as the second language.

According to the weak Contrastive Analysis
Hypothesis (Lado, 1957), speakers and writers of
the same L1 can sometimes be identified by sim-
ilar L2 errors. These errors may be a result of
linguistic interference. Common tendencies of a
speaker’s L1 are superimposed onto their L2. Na-
tive Language Identification (NLI) is an attempt to
exploit these errors in order to identify the L1 of
the speaker from texts written in L2. In the present
study we approach NLI exclusively as a classifi-
cation task where the set of the L1 languages is
known a priori.

1.1 Motivation and Possible Applications
The NLI task is a quickly growing subfield in NLP.
The task is motivated by two types of questions:

1. questions about the native language influence
in non-native speakers’ speech or writing,
and

2. questions about the accuracy of the NLI clas-
sification that is achievable, which also in-
cludes the technical details of the classifica-
tion systems.

Native Language Identification can be used in
educational settings. It can provide useful feed-
back to language learners about their errors. Smith
and Swan (2001) showed that speakers of differ-
ent languages make different kinds of errors when
learning a foreign language. A system which can
detect the L1 of the learner will be able to provide
more targetted feedback about the error and con-
trast it with common properties of the learner’s L1.

The knowledge of the native language can be
used as a feature for authorship analysis (Sta-
matatos, 2009). The plethora of available elec-
tronic texts (e.g., e-mail messages, online forum
messages, blogs, source code, etc.) presents the
potential of authorship analysis in various appli-
cations including criminal law (e.g., identifying
writers of harassing messages, verifying the au-
thenticity of suicide notes), civil law (e.g., copy-
right disputes), and forensic linguistics. In the end,
it includes the traditional applications to literary
research (e.g., attributing anonymous or disputed
literary works to known authors). Bergsma et al.
(2012) consider the NLI task as a sub-task of the
authorship analysis task.

Relatively similar to NLI is the task of Lan-
guage Variety Identification. It has been recently
addressed by the research community (Zampieri
and Gebre, 2012; Sadat et al., 2014; Maier and
Gómez-Rodrı́guez, 2014).
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2 Related Work

2.1 Known Approaches to the Task
Most researchers use a system involving the Sup-
port Vector Machines (SVM) trained on n-gram
based features. The most common features in-
clude character n-grams, function words, parts of
speech, spelling errors, and features of writing
quality, such as grammatical errors, style markers,
and so forth.

In contrast, Swanson and Charniak (2012) in-
troduced the Tree Substitution (TSG) structures,
learned by Bayesian inference. Bykh et al. (2013)
used recurring n-grams, inspired by the variation
n-gram approach to corpus error annotation detec-
tion (Dickinson and Meurers, 2003). Ionescu et
al. (2014) propose a combination of several string
kernels and use multiple kernel learning. Malmasi
and Cahill (2015) provide a systematic study of
feature interaction and propose a function to mea-
sure feature independence effectiveness.

The most important related work is the recent
paper by Tetreault et al. (2012), which was, to our
best knowledge, the first extensive study involving
the use of language modeling and entropy-based
features for the sake of NLI. The comparison with
our work is summarized in Sections 5.4 and 6.

2.2 Results Achieved on the ICLE Corpus
Studies before 2012 experimented with the texts
included in the International Corpus of Learner
English (ICLE) (Granger et al., 2002). Since the
ICLE corpus was not designed with the task of
NLI in mind, the usability of the corpus for this
task is further compromised by idiosyncrasies in
the data such as topic bias.

The highest NLI accuracy was 90.1%, which
was reported by Tetreault et al. (2012). The au-
thors used a system involving SVM with the L1-
regularized logistic regression solver and default
parameters. The system reported in the study by
Tetreault et al. (2012) classified between seven
L1s. The reported accuracy is higher than any of
the previous NLI studies that examined the same
number (Bykh et al., 2013) or even a smaller num-
ber of L1s in the ICLE.

The ensemble method used by Tetreault et al.
(2012) involved the creation of separate classifier
models for each category of features; the L1 affil-
iations of individual texts were later predicted by
the combined probabilities produced by the differ-
ent classifier models. The authors pointed out that

combining all features into a single classifier gave
them an NLI accuracy of only 82.6%, which falls
far short of the 90.1 % they achieved through the
ensemble method.

The study by Jarvis and Paquot (2012) presents
a system that examines 12 L1s in the ICLE. Their
system uses a combination of features that in-
cludes only lexical n-grams (1-grams, 2-grams, 3-
grams, and 4-grams). The system provides the
highest classification accuracy of only 53.6 %.

2.3 The First NLI Shared Task (2013)

The First Native Language Identification Shared
Task (Tetreault et al., 2013), henceforth the Shared
Task, was intended to unify the community and
help the field progress. Tetreault et al. (2013)
report the methods most participants used, the
data they evaluated their systems on, the results
achieved by the different teams, and some sugges-
tions and ideas about what we can do for the next
iteration of the NLI shared task.

The Shared Task used the new corpus TOEFL11
(Blanchard et al., 2013) designed specifically for
the NLI task and provided a common set of L1s as
well as evaluation standards for this competition.
This allows a direct comparison of approaches.
The corpus was published by the Linguistic Data
Consortium1 in 2014.

The Shared Task consisted of three sub-tasks.
We consider our system to be a part of the Closed
sub-task, which is the 11-way classification task
using only the TOEFL11 data for training. Al-
though we use English texts from the Wikipedia to
build the language model of general English, this
common data are not connected with the task.

In total, 29 teams competed in the Shared Task
competition. The majority of teams used Support
Vector Machines. The teams used ensemble meth-
ods for combining their classifiers. There were
a few other teams that tried different methods,
such as Maximum Entropy, Discriminant Function
Analysis, and K-Nearest Neighbors. The most
successful approaches are reported and compared
with our system in Table 5.

In this work we experiment with exactly the
same data, using the same cross-validation splits
as the participants of the Shared Task, so we can
provide the exact comparison with the published
results.

1https://catalog.ldc.upenn.edu/
LDC2014T06
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3 Development Data

3.1 Basic Characteristics of the TOEFL11

The TOEFL11 corpus (Blanchard et al., 2013)
contains 12,100 essays uniformly balanced be-
tween 11 target L1 languages. In addition, it
is sampled as evenly as possible from 8 topics
(prompts) along with 3 proficiency levels (low,
medium, high) for each essay. The proficiency
level has been determined by assessment experts
using a consistent rating procedure for the entire
corpus. The 11 target L1 languages covered by
the corpus are: Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Hindi (HIN), Ital-
ian (ITA), Japanese (JAP), Korean (KOR), Spanish
(SPA), Telugu (TEL), and Turkish (TUR).

The number of essays per target L1 language
is perfectly balanced. It is also almost perfectly
balanced in relation to the prompts written about.
All eight prompts are reflected in all target L1
languages. For 4 target languages (ARA, CHI,
JAP, KOR), all prompts are almost equally repre-
sented with a proportion of approximately 12.5%
per prompt. In other L1s, there is more variability.
The distribution of the proficiency levels is even
more variable. In conclusion, the TOEFL11 is not
a perfectly balanced corpus, but it is much larger
than the ICLE and involves fewer prompts, which
are more evenly distributed across the L1 groups.

3.2 Experiment Settings

For the purposes of the Shared Task, the cor-
pus was split into three sets: training (TOEFL11-
TRAIN), development (TOEFL11-DEV), and test
(TOEFL11-TEST). The training corpus consisted
of 900 essays per L1, the development set con-
sisted of 100 essays per L1, and the test set con-
sisted of another 100 essays per L1. The Shared
Task organizers asked the participants to perform
10-fold cross-validation on a data set consisting of
the union of TOEFL11-TRAIN and TOEFL11-DEV.
For a direct comparison with the Shared Task par-
ticipants, we experiment with the same folds as in
the competition.

4 Feature Engineering

We define a small set of cross-entropy based fea-
tures computed over different language models,
which leads to significant reduction of the usual
feature space based on n-grams. The features are
then used by a SVM classifier.

4.1 Use of Language Modeling
Our system is inspired by Moore and Lewis
(2010). They show how to select a good sub-
set of the available data as a training portion for
a language model that improves the match be-
tween the language model from that data source
and the desired application output. In their work
they score text segments by the difference of the
cross-entropy of a text segment according to the
in-domain language model compared to the cross-
entropy of the text segment according to a lan-
guage model trained on a random sample of the
data source from which the text segment is drawn.
The introduced cross-entropy difference selection
method produces language models that are both a
better match to texts in a restricted domain and re-
quire less data for training than any of the other
data selection methods tested.

Moreover, Axelrod et al. (2011) reported an im-
provement of their end-to-end machine translation
system using domain adaptation based on extract-
ing sentences from a large general-domain parallel
corpus that are most relevant to the target domain
selected with simple cross-entropy based methods.

4.2 Cross-entropy Scoring
We apply the idea of scoring texts by the differ-
ence in cross-entropy and developed the system
for classifying target L1 languages. We built 11
special language models of English, each based
on the texts with the same L1 language available
in the training data. To compare these special
language models with general English, we have
built a general language model of English, using
Wikipedia. Then we use cross-entropy to measure
the similarity between a given test instance and
target L1 languages. These cross-entropy scores
then serve as features for the SVM classifier.

Formally, the cross-entropy of text t with empir-
ical n-gram distribution p given a language model
M with distribution q is

H(t, M) = −
∑
x

p(x) log q(x).

For each L1 to be classified (L1, . . . ,L11) we
built a language model Mi. We also built a model
of general English MG. Then we define the nor-
malized cross-entropy score:

DG(t, Mi) = H(t, Mi)− H(t, MG).

In the subsequent machine learning process, the
scores DG(t, Mi), for i = 1, . . . , 11, are used as
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elements of the feature vector describing text t.
The usage of the language model of general En-
glish is motivated by the idea that we are interested
only in text features which distinguish author’s L2
language (i.e. his or her specific English) from
other authors with different L1 languages. Cor-
rect language constructions typically occurring in
general English are removed from the comparison.

4.3 Computing the L1 Language Models

To build the L1 language models Mi with as many
training data as possible, we used the leave-one-
out method.

Let ti be the i-th training instance and gs(ti)
is the true L1 of text ti. To calculate the cross-
entropy for the instance ti, using the language
model for language Lj 6= gs(ti), we built the
model Mj using all available training instances tk
such that gs(tk) = Lj .

To calculate the cross-entropy for the instance
ti, using the language model for language Lj =
gs(ti), we built Mj using all available training in-
stances tk except the instance ti itself: tk,Lj =
gs(ti), k 6= i.

Because of this approach, the cross-entropy
scores proposed in Section 4.2, are only approx-
imate. Each cross-entropy was computed with re-
spect to a slightly different vocabulary, resulting
in a different out-of-vocabulary (OOV) rate. OOV
tokens in the scoring text were excluded from the
computation, so the measurements are not strictly
comparable.

We believe that this drawback is reasonable: (1)
it allows us to compute scores for all training in-
stances, and (2) we do not have to split the training
data into two parts – one for building the language
model and the other for the cross-entropy calcula-
tion.

4.4 Language Model of General English

We built a language model of general English
MG using Wikipedia. The official Wikipedia
dumps contain a lot of technical pages and it
is not straightforward to extract meaningful sen-
tences and portions useful for language model-
ing. In order to avoid the duplication of the
laborious efforts, we gratefully used the project
TC Wikipedia2 provided by Artiles and Sekine
(2009).

2http://nlp.cs.nyu.edu/wikipedia-data/

4.5 Cross-entropy Based Features
We adopted and experimented with all success-
ful feature families used in the previous works re-
ported in Section 2.

For each feature family, we defined 11 cross-
entropy scores derived from the 11 language mod-
els coresponding to the 11 target L1 languages.

• Tokens (T). Token based language model.

• Characters (C). Character based language
model.

• Suffixes (Sn). Language models built on to-
ken suffixes of the length n ∈ {2, ..., 6}.
• POS tags (P). Language model built on POS

tags. We tagged the TOEFL11 corpus as well
as the whole Wikipedia by the Stanford tag-
ger (Toutanova et al., 2003).

For each feature family we built and compared
the performance of two language models: one
from the original text, and the other using the
same, but lower-cased text. Moreover, we exper-
imented with and compared different smoothing
methods, as described in details in Section 5.2.

4.6 Other features
To complete the list of feature families, we added 9
statistical (ST) and two categorical (PR) features:

Text length characteristics include the num-
ber of sentences, number of tokens and number of
characters for the given instance. It also includes
the average sentence length (# of tokens / # of sen-
tences) and average token length (# of characters /
# of tokens).

Lexical variety family includes the number of
unique tokens (in the original as well as the lower-
cased text) and the so called lexical variety. It
is defined as the ratio between a unique number
of tokens and the overall number of tokens in the
classified instance. We provide two features for
both the original and the lower-cased text.

Prompt and proficiency (PR) are two categori-
cal features available for each TOEFL11 instance,
which encode the topic of the essay and the profi-
ciency level of the writer, respectively.

5 Results and Discussion

The experiments presented in this paper represent
the results of exploring a range of various features
and machine learning approaches. We describe
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Maximum n-gram order
Smoothing method 3 4 5 6 7 8
Witten and Bell (1991) 61.3 61.8 61.8 61.9 62.0 62.0
Witten and Bell (1991)* 65.8 66.4 66.4 66.3 66.3 66.2
Ristad (1995) 69.6 69.7 69.6 69.7 69.6 69.8
Chen and Goodman (1996) 56.8 58.5 58.8 68.8 59.0 59.0
Kneser and Ney (1995) 59.0 60.6 61.0 61.2 61.2 61.3
Kneser and Ney (1995)* 77.5 77.8 77.8 77.9 77.9 77.9

Table 1: The influence of different smoothing methods and n-gram ranges (from [1,3] to [1,8]) on the
system accuracy. Each system uses 11 cross-entropy based features over token based language models.

Maximum n-gram order
ID Feature family 3 4 5 6 7 8
C Characters 61.4 70.5 73.0 74.1 74.6 74.9
S2 Suffixes (2) 68.8 68.4 68.3 68.3 68.3 68.2
S3 Suffixes (3) 73.6 73.2 73.2 73.2 73.1 73.0
S4 Suffixes (4) 75.5 75.3 75.4 75.5 75.4 75.4
S5 Suffixes (5) 77.1 76.9 77.2 77.1 77.1 77.1
S6 Suffixes (6) 77.7 77.8 77.8 77.8 77.7 77.8
T Tokens 78.0 78.0 77.9 78.0 77.9 78.0
P POS tags 53.1 53.2 52.0 50.4 49.1 48.2

Table 2: Accuracy of the system using background language models built on different feature families
and n-gram ranges (from [1,3] to [1,8]). Each system uses 11 cross-entropy based features over specified
language model.

a number of models and compare: (1) different
smoothing methods; (2) performance of different
feature families; (3) different n-gram range used
by language model; (4) different combinations of
feature families.

5.1 SVM Settings

Our most successful system uses a linear SVM
multiclass classifier. In our experiments, we did
not observe any gain from using either polynomial
or RBF kernels. This observation is exactly in line
with previous research (see Section 2). The pa-
rameter Cost was optimized through cross valida-
tion.

In this work, the SVM implementation of the R
package e10713 is applied, which is based on the
LIBSVM library (Chang and Lin, 2011). To pro-
vide a multiclass classifier, we experimented with
two common strategies: (i) one-vs-one and (ii)
one-vs-all. The first strategy yields consistently
better results.

3http://cran.r-project.org/web/
packages/e1071/

5.2 Best Smoothing Method

We used the SRILM software4 (Stolcke, 2002) to
build langauge models (LM) as well as to calcu-
late cross-entropy based features. This software
offers several smoothing algorithms. Experiments
showed that selecting an appropriate smoothing
method is essential for model quality. Table 1
presents averaged accuracies from the cross val-
idation over TOEFL11-TRAIN. The token-based
LMs are built with different smoothing strategies.

Witten-Bell (Witten and Bell, 1991) and
Kneser-Ney smoothing (Kneser and Ney, 1995)
currently support interpolation. This option
causes the discounted n-gram probability esti-
mates at the specified order n to be interpo-
lated with lower-order estimates. This sometimes
yields better models with some smoothing meth-
ods. In Table 1, interpolated smoothing methods
are marked with *.

According to the results from Table 1, we se-
lected the Kneser and Ney (1995) discounting with
interpolation as the most successful smoothing al-

4http://www.speech.sri.com/projects/
srilm/
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ID Feature family Original Lower-case
C Characters 44.4 61.4
S2 Suffixes (2) 55.9 68.8
S3 Suffixes (3) 67.4 73.6
S4 Suffixes (4) 70.3 75.5
S5 Suffixes (5) 71.7 77.1
S6 Suffixes (6) 73.2 77.7
T Tokens 74.6 78.0

Table 3: Accuracy of the system using background
language models built on original texts compared
with language models built on lower-cased texts.

gorithm and we used it in all next experiments.

5.3 Individual Feature Families

The results presented in this section are aver-
aged accuracies over the 10-fold cross-validation
on the combined TOEFL11-TRAIN and TOEFL11-
DEV sets. The cross-validation folds were ex-
actly defined by the organizers of the Shared Task.
Statistical significance was computed using the
corrected resampled (two tailed) t-Test (Nadeau
and Bengio, 2003), which is suitable for cross-
validation based experiments. The test signifi-
cance was 0.05.

We experimented with almost all types of n-
gram features used by the participants of the
Shared Task. For each feature family we built 6
different LMs based on a different n-gram range
(from [1,3] to [1,8]).

Table 2 shows the classifier performance us-
ing different feature families individually. For
each family we selected the most successful n-
gram range. We noticed that a higher n-gram or-
der improves only character based features. For
other feature families the differences in perfor-
mance were not statistically significant. In such
cases we selected the lowest n-gram order to keep
the model as simple as possible.

The accuracies presented in Table 2 were ob-
tained using language models built from the lower-
cased texts. Table 3 shows the accuracy improve-
ment based on the lower-case transformation. We
consider language models built on original train-
ing data to be too sparse. Transformation to lower-
case makes the data less sparse and language mod-
els more expressive. Each model in Table 3 uses
11 cross-entropy based features. Language mod-
els contains n-grams from the range [1, 3].

C T S4 P PR ST Accuracy
x x x x x x 82.43 ± 0.5
x x x x x 82.18 ± 0.8
x x x x 82.16 ± 0.6

x x x x 81.97 ± 0.5
x x x x x 81.91 ± 0.6
x x x 81.31 ± 0.4

x x 81.07 ± 0.5
x x 80.94 ± 0.7
x x x x x 78.29 ± 0.7

x 77.99 ± 0.7

Table 4: Accuracy with confidence intervals of
the system using combinations of different feature
families, as defined in Section 4.5: C – characters,
T – tokens, S4 – suffixes of length 4, P – POS tags,
PR – proficiency, and prompt, ST – statistical fea-
tures.

5.4 Feature Families Combinations

To obtain the best performance we tried to find out
the most successful combination of the proposed
feature families. Table 4 shows several interesting
combinations.

The individual suffix model achieved best per-
formance with the length of 6 (see Table 2). How-
ever, in combination with other families, it finally
appeared that the best performance was achieved
with the suffixes with the length of 4, which was
found using the cross-validation on the training
data set. Our hypothesis is that the suffix mod-
els with the length greater than 4 are rather sim-
ilar to the token models, since many tokens have
less than 5 characters, which implies that the gain
from their combination is quite poor. Therefore
the choice of S4 does not seem to be dependent on
the training data set.

The full combination of the feature families
consists of 55 features. We wanted to examine
whether we could reduce this amount even more.
According to Table 4, the most important family
is the token feature family. Its removal from the
model causes a large decrease in accuracy. On the
other hand, the removal of the statistical feature
family (ST) and POS tags feature family (P) leads
to almost the same system performance.

Our models based only on token- or character-
n-grams language models significatly outperform
the system reported by Tetreault et al. (2012).
Their model based on 5-gram language models
reaches 73.9 % accuracy (see Table 3 in the cited
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System # of feat. Acc. Approach
Gebre et al. (2013) - 84.6 n-grams (tokens, characters, POS, spelling errors)
Jarvis et al. (2013) 400,000 84.5 n-grams (tokens, lemmas, POS)
Lynum (2013) 867,479 83.9 n-grams (tokens, characters, suffixes)
Malmasi et al. (2013) - 82.5 n-grams (tokens, function words, POS, syntactic features)
Our system 55 82.4 language models (tokens, characters, POS, suffixes)
Bykh et al. (2013) - 82.4 n-grams (tokens, POS, syntactic dependences, suffixes)

Table 5: Final comparison of different NLI systems submitted to the closed sub-task. Number of features
is not provided for the Shared Task participants who did not specified it in their reports.

paper), while our models with the accuracy be-
tween 78 % and 81.3 % are significantly better.
Since we do not know all details of their imple-
mentation, we can only hypothesize that the big
difference in accuracy is mainly due to different
smoothing methods used, or perharps due to dif-
ferent computation of the entropic scores.

5.5 Best Shared Task Systems – Comparison

Our experiment settings are perfectly in line with
the Shared Task guidelines, so we can directly
compare the performance of our system with the
best participants of the Shared Task, see Table 5.
All the best systems used n-grams of tokens, char-
acters, and POS tags. Two systems (Malmasi et
al., 2013; Bykh et al., 2013) used also syntacti-
cally based n-grams and function words. The sys-
tems differ in the value type provided for n-gram
feature vectors. The most successful systems (Ge-
bre et al., 2013; Lynum, 2013) used TF-IDF. Other
systems used binary values as well as absolute and
relative frequencies.

In fact, all compared systems work with hun-
dreds of thousands of n-gram features. Training
models with such a huge number of features re-
quires specific hardware and could be time con-
suming. Of course, our model also deals with a
huge number of n-grams, but are hidden in the lan-
guage models consisting of smoothed linear com-
binations of n-grams. All the statistical informa-
tion extracted and collected when the 11 language
models are learned from the training data is finally
comprised in a small number of features. The re-
sulting benefit is that the SVM learner then works
only with a few already trained and smoothed lin-
ear n-gram combinations and in contrast to the
other compared models it does not need to learn a
huge number of parameters/weights for all n-gram
features.

6 Conclusion

We described our system for identifying the native
language (L1) of a non-native English writer. Our
research was focused on the use of a significantly
reduced feature space. The language modeling ap-
proach and using cross-entropy scores led to an
enormous decrease in the feature space dimension:
from hundreds of thousands to 55 features.

In comparison with the recent work by Tetreault
et al. (2012), who also examined the use of lan-
guage models in a similar way, we obtained a bet-
ter result when using only the features based on
language modeling, which is probably due to the
fact that (1) we used a different (and for our pur-
pose significantly better) smoothing method, and
(2) we succesfully combined several approches
to language modeling using different types of
n-grams. Another difference is in using our “nor-
malized cross-entropy scores” as features in con-
trast to their “perplexity scores”, the exact effect
of which, however, is not known.

We experimented with and combined several
feature families and a number of different lan-
guage models. Cross-validation testing on the
TOEFL11 corpus revealed that our best model ac-
curacy is 82.4 % in categorizing essays into 11 L1
languages, which is a result comparable to the
state-of-the-art.
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