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Abstract

Determining the temporal order of events
in a text is difficult. However, it is crucial
to the extraction of narratives, plans, and
context. We suggest that a simple, estab-
lished framework of tense and aspect pro-
vides a viable model for ordering a sub-
set of events and times in a given text.
Using this framework, we investigate ex-
tracting features that represent temporal
information and integrate these in a ma-
chine learning approach. These features
improve event-event ordering.

1 Introduction

It is important to understand time in language. The
ability to express and comprehend expressions of
time enables us to plan, to tell stories, and to dis-
cuss change in the world around us.

When we automatically extract temporal infor-
mation, we are often concerned with events and
times – referred to collectively as temporal inter-
vals. We might ask, for example, “Who is the
current President of the USA?.” In order to ex-
tract a single contemporary answer to this ques-
tion, we need to identify events related to persons
becoming president and the times of those events.
Crucially, however, we also need to identify the
ordering between these events and times, by as-
signing a temporal relation type (from e.g. Allen
(1983)). This last task, temporal relation typing,
is challenging (UzZaman et al., 2013; Bethard et
al., 2015), and is the focus of this paper.

When events are expressed as verbs, tense and
aspect are used to convey temporal features of
these events. Thus, it is intuitive that tense and
aspect will be of value in determining the type
of temporal relation that holds between two verb
events, and evidence in human-annotated corpora
supports this intuition.

Event-event relations are often the hardest to la-
bel (Derczynski, 2015). Around 45% of links in
TempEval-3 (UzZaman et al., 2013) event-event
ordering tasks cannot reliably be labelled automat-
ically.

Temporal relations involving at least one argu-
ment with tense or aspect information are preva-
lent. Verb-verb links make up around a third of
TimeBank’s temporal relations,1 and tensed verb-
verb links the largest share of that set, so of all
verb-verb relations, the majority are between two
tensed verbs.

Data-driven approaches to the relation typing
task are hampered in two ways. Firstly, there is a
shortage of ground truth training data. This leads
to low volumes of instances for many combina-
tions of tense and aspect values for pairs of events,
hampering automatic hypothesis learning (Lapata
and Lascarides, 2006). Secondly, the range of
tense and aspect expression in TimeML is rela-
tively limited, describing three “tenses”2 (past and
past participle, present and present participle, and
future) and three “aspects” (none, perfective and
progressive). This markup language may be insuf-
ficiently descriptive to capture relations implied by
variations in linguistic use of tense and aspect.

Reichenbach (1947) offers a theoretical frame-
work for analysis of tense and aspect that can be
used to predict constraints on temporal orderings
between verb events based on their tense and as-
pect, and also between times and tensed verbs.
Applying Reichenbach’s framework requires tense
and aspect information, which may yet be usefully
available in existing corpora.

In this paper, we describe an approach to us-
ing Reichenbachs model to generate features for

1TimeBank is a corpus semantically annotated for tempo-
ral information in TimeML (Pustejovsky et al., 2003; Puste-
jovsky et al., 2004)

2In TimeML v1.2, the tense attribute of events has values
that are conflated with verb form. This conflation is depre-
cated in newer versions of TimeML, post-TimeBank.
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a machine learning approach to temporal relation
typing and report an experiment showing it brings
modest improvement.

2 Reichenbachian Tenses

Reichenbach details nine tenses (see Table 1). The
tenses detailed by Reichenbach are past, present or
future, and may take a simple, anterior or posterior
form. In English, these apply to single finite verbs
and to verbal groups consisting of head verb and
auxiliaries. The tense system describes abstract
time points for each tensed verb – event time E,
speech/utterance time S, and reference time R –
and how they may interact, both for a single verb
and with other events.

In Reichenbach’s view, different tenses specify
different relations between E, R and S. Table 1
shows the six tenses conventionally distinguished
in English. As there are more than six possible or-
dering arrangements of S, E and R, some English
tenses might suggest more than one arrangement.
Reichenbach’s tenses also suffer from this ambi-
guity when converted to S/E/R structures, albeit
to a lesser degree. When following Reichenbach’s
tense names, it is the case that for past tenses, R
always occurs before S; in the future, R is always
after S; and in the present, S and R are simul-
taneous. Further, “anterior” suggests E before R,
“simple” that R and E are simultaneous, and “pos-
terior” that E is after R. The flexibility of this
framework is sufficient to allow it to account for
a very wide set of tenses, including all those de-
scribed by Song and Cohen (1988), and this is suf-
ficient to account for the observed tenses in many
languages. Past, present and future tenses imply
R < S, R = S and S < R respectively. Anterior,
simple and posterior tenses imply E < R, E = R
and R < E respectively.

2.1 Verb Interactions
While each tensed verb involves a speech, event
and reference time, multiple verbs may share one
or more of these points. For example, all narrative
in a news article usually has the same speech time
(that of document creation). Further, two events
linked by a temporal conjunction (e.g. after) are
very likely to share the same reference time. Basic
methods of linking between verb events or linking
verbs to fixed points on a time scale are described
below.

Figure 1: An example of permanence of the reference point.

2.2 Special Properties of the Reference Point
The reference point R has two special uses. These
relate to verbs in the same temporal context and to
the effect of time expressions on verbs. Reichen-
bach relies on a notion of “same temporal context”
without ever defining it precisely. It could be sim-
ilar to the concept put forward by Dowty (1986)
with temporal discourse interpretation princi-
ple (TDIP). Below we operationalise the concept
in several ways to mean either “same sentence” or
“adjacent sentence pairs”, though other interpreta-
tions are also possible.

Permanence Firstly, when sentences are com-
bined to form a compound sentence, tensed main
verbs interact, and implicit grammatical rules re-
quire tenses to be adjusted. These rules operate
such that R is the same in all cases in the sequence.
Reichenbach names this principle permanence of
the reference point. Figure 1 contains an example
of this principle.

Positional Secondly, when temporal expres-
sions (such as a TimeML TIMEX3 of type DATE,
but not DURATION) occur in the same clause as a
verbal event, the temporal expression does not (as
one might expect) specify event time E, but in-
stead is used to position reference time R. This is
named positional use of the reference point.
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Relation Reichenbach’s Tense Name English Tense Name Example
E<R<S Anterior past Past perfect I had slept
E=R<S Simple past Simple past I slept
R<E<S

}
R<S=E Posterior past I expected that I
R<S<E would sleep
E<S=R Anterior present Present perfect I have slept
S=R=E Simple present Simple present I sleep
S=R<E Posterior present Simple future I will sleep (Je vais dormir)
S<E<R

}
S=E<R Anterior future Future perfect I will have slept
E<S<R
S<R=E Simple future Simple future I will sleep (Je dormirai)
S<R<E Posterior future I shall be going to sleep

Table 1: Reichenbach’s tenses; from Mani et al. (2005)

e1 ↓; e2 → Sim Past Pos Past Ant Pres Sim Pres Ant Fut Sim Fut
Sim Past vague after vague after after after
Pos Past before vague vague vague after after
Ant Pres vague vague vague after vague after
Sim Pres before vague vague overlap vague after
Ant Fut before before vague vague vague after
Sim Fut before before before before before vague

Table 2: Verb-verb event orderings based on the Reichenbachian tenses that map directly to those in TimeML. Cell values
describe the e1 [rel] e2 relationship.

In Example 1, the reference point is determined
positionally with an explicit time (10 o’clock).

(1) It was 10 o’clock, and Sarah had brushed
her teeth.

The verb group had brushed is anterior past
tense; that is, E < R < S. The event is complete
before the reference time – that is, at any point
until 10 o’clock – and so the relation between the
event and timex can be determined (brushed BE-
FORE 10 o’clock).

2.3 Feature Extraction
Two interpretations of the model are used in fea-
ture extraction. Firstly, a simple view is taken as-
suming permanence of the reference point. This
provides a constraint dependent on the pairing
of Reichenbachian tenses used, and is detailed
in Table 2. Secondly, an advanced interpreta-
tion is used, following Derczynski and Gaizauskas
(2013). This approach fully populates all Reichen-
bachian tense combinations using Freksa’s tempo-
ral semi-interval algebra (Freksa, 1992) to derive a
(large) temporal constraint table, which for space
reasons is omitted here.

In all cases, the gold standard tense and aspect
features annotated on the events in TimeBank are
used as the basis for Reichenbachian representa-
tions.

3 The Framework in TLINK Typing

TimeML provides some of the information that
Reichenbach’s framework alone does not cater for
and vice versa. A combination of the two may lead
to better labelling performance, but relying on Re-
ichenbach’s framework alone for rule-based tem-
poral relation label constraint is insufficient. How-
ever, the framework has shown to inform prior sys-
tems effectively (Chambers et al., 2014). The
situations we examine are those where two verb
events occur in the same temporal context, where
a timex directly influences a verb event, and also
verb events that report other verb events.

Reichenbach’s framework is used as a linguistic
model that generates temporal ordering features,
which are added to a base feature set. The base
features are those as in Mani et al. (2007), i.e.:

For each event: text; TimeML tense and aspect;
modality; cardinality; polarity; event class; part-
of-speech tag.

For each event pair: booleans for: are events
in the same sentence; are events in adjacent sen-
tences; do events have the same TimeML aspect,
and again for tense; does event 1 textually precede
event 2.
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Base features Extended features
Classifier Acc Err. red. Acc Err. red.
MCC 48.04% - 48.04% -
Maxent 57.47% 22.86% 57.65% 23.19%
ID3 56.52% 21.14% 57.47% 22.86%
N.Bayes 58.31% 24.37% 58.72% 25.12%

Table 3: Using Reichenbach-suggested event ordering fea-
tures representing permanence of the reference point, consid-
ering only same-sentence TLINKs, using the advanced inter-
pretation. 562 instances.

Base features Extended features
Classifier Acc Err. red. Acc Err. red.
MCC 44.87% - 44.87% -
Maxent 62.28% 31.58% 62.55% 32.07%
ID3 59.21% 26.01% 58.74% 25.16%
N.Bayes 56.96% 21.92% 57.58% 23.05%

Table 4: Reichenbach-suggested event ordering feature rep-
resenting permanence of the reference point, same-sentence
and adjacent-sentence TLINKs. 858 instances.

3.1 Same Context Event-Event Links
Reichenbach’s framework provides information
for ordering events in the same temporal context
(same context event-event relations, SCEE). This
applies to any two verb events that have a shared
reference point.

Verb events are those in TimeML that have a
POS attribute of VERB. We exclude those with a
TENSE of NONE or INFINITIVE. Shared reference
points are assumed for event-event links having
both arguments in the same or adjacent sentences.

4 Experimental Results

We conducted an experiment to test the utility of
the Reichenbach-motivated temporal ordering fea-
tures in a supervised learning approach to the tem-
poral relation typing task. The goal is to find
a way to incorporate Reichenbach’s framework
into a machine learning model. The experiment
was conducted with 10-fold cross validation, us-
ing from TimeBank v1.2. Links in each document
were never shared across a split (i.e., splits were
made at document level). Experiments were con-
ducted with relation folding, where the set of tem-
poral relation types is reduced; e.g. AFTER and
BEFORE can be switched between by flipping their
argument order – A BEFORE B and B AFTER A are
equivalent. The impact of Reichenbach’s frame-
work is measured by comparing classifier perfor-
mance on SCEE links using the basic feature set
and using the basic feature set plus the new fea-
ture. Features representing the text (i.e. lexical

form) of events were removed as they consistently
harmed performance, likely due to the sparsity of
their values. Results are shown in Table 3. In this
instance, the extended features provide a perfor-
mance boost regardless of classifier choice. This
shows that the framework can be integrated into a
machine learning model for temporal relation typ-
ing. However, the improvements are modest. This
can be attributed to a variety of factors salient to
the relation typing task.

Firstly, the sizes of datasets, while not tiny, are
still small. More temporally-annotated data will
help here, though larger corpora using the same
annotation standard are hard to come by. Next,
Reichenbach can be applied with full accuracy to
a tiny number of cases (where it makes an unam-
biguous suggestion) (Chambers et al., 2014), but
this is only the first attempt to use it for constrain-
ing (rather than specifying) the target temporal re-
lation type. Last, temporal context is not defined
precisely but rather approximated. This is likely to
affect results, and so we investigate further.

In the next case, the scope of temporal context
is broadened to include cases where events are in
adjacent sentences. Results are shown in Table 4.
Here, classifiers with inductive biases toward the
independence assumption do better with the ex-
tended feature set.

In both cases, there was a consistent perfor-
mance increase from almost all classifiers with
the introduction of the feature derived from the
advanced interpretation of Reichenbach’s frame-
work. The performance increase was consistent
when assuming that event-event relations in the
same sentence are also in the same temporal con-
text. The increase is smaller when context is
stretched to adjacent sentences. We attribute this
to weaknesses in modelling context, a task that
others have also tackles (Miller et al., 2013) that
remains an open and interesting research problem.

5 Conclusion

Reichenbach’s framework for tense and aspect is
intuitive, and of utility in typing temporal re-
lations. Automatic identification of where the
framework applies remains difficult. One ques-
tion is how to formally define and annotate tem-
poral context.We investigate two approximations
for temporal context, both of which are useful.
The other question is how to map Reichenbach’s
framework to features based on a common seman-
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tic annotation standard. We proposed two ways of
using Reichenbach’s framework to generate fea-
tures for machine learning of temporal relations,
which improved relation typing performance in
this difficult task. The framework suggests helpful
constraint of relation types in cases where verbs
are in the same context, helping in the difficult task
of automatic temporal relation typing.
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