
Proceedings of Recent Advances in Natural Language Processing, pages 78–83,
Hissar, Bulgaria, Sep 7–9 2015.

Improving Event Detection with Dependency Regularization

Kai Cao Xiang Li Ralph Grishman
Computer Science Department

New York University
719 Broadway, New York, NY, 10003

{kcao, xiangli, grishman}@cs.nyu.edu

Abstract

Event Detection (ED) is an Information
Extraction task which involves identifying
instances of specified types of events in
text. Most recent research on Event De-
tection relies on pattern-based or feature-
based approaches, trained on annotated
corpora, to recognize combinations of
event triggers, arguments, and other con-
textual information. These combinations
may each appear in a variety of linguis-
tic forms. Not all of these event expres-
sions will have appeared in the training
data, thus adversely affecting ED perfor-
mance. In this paper, we demonstrate
the effectiveness of Dependency Regular-
ization techniques to generalize the pat-
terns extracted from the training data to
boost ED performance. The experimen-
tal results on the ACE 2005 corpus show
that our pattern-based system with the ex-
panded patterns can achieve 70.49% (with
2.57% absolute improvement) F-measure
over the baseline, which advances the
state-of-the-art for such systems.

1 Introduction

Event Detection (ED) involves identifying in-
stances of specified types of events in text, which
is an important but difficult Information Extraction
(IE) task. Associated with each event mention is a
phrase, the event trigger (most often a single verb
or nominalization), which evokes that event. More
precisely, our task involves identifying event trig-
gers and classifying them into specific types. For
instance, according to the ACE 2005 annotation
guidelines1, in the sentence “She was killed in an

1https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-events-guidelines-v5.4.3.pdf

automobile accident yesterday”, an event detec-
tion system should be able to recognize the word
“killed” as a trigger for the event DIE. This task
is quite challenging, as the same event might ap-
pear in the form of various trigger expressions and
an expression might represent different events in
different contexts. ED is a crucial component in
the overall Event Extraction task, which also re-
quires event argument identification and argument
role labeling.

Most recent research on Automatic Content
Extraction (ACE) Event Detection task relies
on pattern-based or feature-based approaches to
building classifiers for event trigger labeling. Al-
though the training corpus is quite large (300,000
words), the test data will inevitably contain some
event expressions that never occur in the training
data. To address this problem, we propose sev-
eral Dependency Regularization methods to help
generalize the syntactic patterns extracted from the
training data in order to boost ED performance.
Among the syntactic representations, dependency
relations serve as important features or part of a
pattern-based framework in IE systems, and play a
significant role in IE approaches. These proposed
regularization rules will be applied either to the de-
pendency parse outputs of the candidate sentences
or to the patterns themselves to facilitate detect-
ing the event instances. The experimental results
demonstrate that our pattern-based system with
the expanded patterns can achieve 70.49% (with
2.57% absolute improvement) F-measure over the
baseline, which is an advance over the state-of-
the-art systems.

The paper is organized as follows: In Section 2,
we will describe the role of dependency analysis
in event detection and how dependency regulariza-
tion methods can improve ED performance. We
will describe our ED systems including the base-
line and enhanced system utilizing dependency
regularization in Section 3, and present experi-

78



mental results in Section 4. We will discuss related
work in Section 5, and Section 6 will conclude this
work and list our research directions.

2 Dependency Regularization

The ACE 2005 Event Guidelines specify a set of
33 types of events; these have been widely used for
research on event extraction over the past decade.

Some trigger words are unambiguous indicators
of particular types of events. For example, the
word murder indicates an event of type Die. How-
ever, most words have multiple senses and so may
be associated with multiple types of events. Many
of these cases can be disambiguated based on the
semantic types of the trigger arguments:

• fire can be either an ATTACK event (“fire a
weapon”) or and END-POSITION event (“fire
a person”), with the cases distinguishable by
the semantic type of the direct object. dis-
charge has the same ambiguity and the same
disambiguation rule.

• leave can be either a TRANSPORT event (“he
left the building”) or an END-POSITION event
(“he left the administration”), again generally
distinguishable by the type of the direct ob-
ject.

Given a training corpus annotated with triggers
and event arguments we can assemble a set of
frames and link them to particular event types.
Each frame will record the event arguments and
their syntactic (dependency) relation to the trig-
ger. When decoding new text, we will parse it with
a dependency parser, look for a matching frame,
and tag the trigger candidate with the correspond-
ing event type.

One complication is that the frames may be em-
bedded in different syntactic structures: verbal and
nominal forms, relative clauses, active and passive
voice, etc. Because of the limited size of the train-
ing corpus, some triggers will appear with frames
not seen in the training corpus. To fill these gaps,
we will adopt a dual approach using a set of de-
pendency regularization rules: in some cases we
will transform the syntactic structure of the input
to reduce variation; in other cases we will expand
the patterns to handle a wider variety of input.

We describe here three of the regularization
rules we use:

1. verb chain regularization

2. transparent word regularization

3. nominalization regularization

2.1 Verb Chain Regularization

We use a fast dependency parser (Tratz and Hovy,
2011) that analyzes multi-word verb groups (with
auxiliaries) into chains with the first word at the
head of the chain. Verb Chain (vch) Regulariza-
tion reverses the verb chains to place the main (fi-
nal) verb at the top of the dependency parse tree.
This reduces the variation in the dependency paths
from trigger to arguments due to differences in
tense, aspect, and modality. Here is an example
sentence containing a verb chain:

Kobe has defeated Michael . (1)

has

defeated

dobj

Michael

vch

nsubj

K obe

Figure 1: Original Dependency Tree

has

defeated

K obe

dobj

Michael

vch

nsubj

Figure 2: Dependency Tree with Verb Chain Reg-
ularization

In the above sentence, “has” is originally rec-
ognized as the root of the dependency parse
tree, while “defeated” is the dependent of the
word “has”. The dependency label of (has,

79



defeated) is vch. However, the semantic head
of the sequence (the word which determines the
event type) is the last word in the verb chain. To
bring the trigger and its arguments closer, we regu-
larize the dependency structure by making the last
verb in this chain the head of the whole verb chain.
A further example:

You must come to school tomorrow . (2)

must

come

to

school

tomorrow

nsubj

You

vch

prep

pobj

tmod

Figure 3: Original Dependency Tree

must

come

to

school

tomorrow

nsubj

You

vch

prep

pobj

tmod

Figure 4: Dependency Tree with Verb Chain Reg-
ularization

2.2 Transparent Word Regularization
Some words, such as those expressing quantities,
are semantically ‘transparent’: they take on the se-
mantic type of their object. For purposes of de-
termining event types, we want to ‘look through’
such words in the dependency parse. We do so
by restructuring the tree. This is one of the most
useful dependency regularization rules, since the
dependency path is shortened and the head should
reach the “real” dependent directly.

The army killed thousands of people . (3)

The

Ar my

killed

thousands

of

people

det

nsubj dobj

pr ep

pobj

Figure 5: Original Dependency Tree

The

Ar my

killed

thousands

of

people

det

nsubj dobj

pr ep

pobj

Figure 6: Dependency Tree with Transparent Reg-
ularization

In this case the semantic type of the object of
the verb “kill” is determined by the word “peo-
ple” instead of the word “thousands”. Especially
in the pattern-based framework, this kind of im-
provement helps substantially in finding the roles
of the events.

2.3 Nominalization Regularization

Most types of events can be expressed by verbal
or nominal constructions. However, in a number
of cases the ACE training corpus includes the ver-
bal construction but not the corresponding nomi-
nal one. We addressed this problem by automati-
cally generating the nominal pattern from the ver-
bal one. (The reverse case, with only a nominal
pattern, was less frequent.)

Nomlex (NOMinalization LEXicon) is a dictio-
nary of English nominalizations developed at New
York University under the direction of Catherine
Macleod. NOMLEX seeks not only to describe
the allowed complements for a nominalization, but
also to relate the nominal complements to the ar-
guments of the corresponding verb. Therefore
with Nomlex we can expand the patterns evoked

80



Methods P R F
Sentence-level in (Ji and Grishman, 2011) 67.6 53.5 59.7
MaxEnt classifier with local features in (Li et al., 2013) 74.5 59.1 65.9
Joint beam search with local features in (Li et al., 2013) 73.7 59.3 65.7
Joint beam search with local and global features in (Li et al., 2013) 73.7 62.3 67.5
Cross-entity in (Ji and Grishman, 2011) † 72.9 64.3 68.3
AceJet baseline system 65.4 70.6 67.9
AceJet with dependency regularization 68.2 72.8 70.4

Table 1: Performance comparison (%) with the state-of-the-art systems. † beyond sentence level.

by verb triggers to patterns evoked by noun trig-
gers. This translation is based on the correspon-
dence between a verb with its arguments and a
nominalization with its arguments.

For example, the sentence “Microsoft acquired
Nokia yesterday” is an instance of the Transfer-
Ownership event. “The acquisition of Nokia from
Microsoft was successful yesterday” is also an
event instance of the same type. However, they
do not share the same event pattern. Our heuristic
methods of dependency regularization transform
one pattern into the other.

There are three types of pattern transforma-
tions, assigning different roles to the object of the
verb. Let us suppose the original sentence is:

IBM appointed Alice Smith as vice president .
(4)

Then we would automatically generate addi-
tional patterns for:

1. DET-POSS: a possessive determiner.

Alice Smith’s appointment as vice president
(5)

2. N-N-MOD: a nominal modifier

the Alice Smith appointment as vice president
(6)

3. PP-OF: object of the preposition

the appointment of Alice Smith as vice president
(7)

In the sentences above , “Alice Smith” is the per-
son who gets the job, and the phrase “vice presi-
dent” is Alice’s position. Thus the sentences share
the same arguments, although the syntactic pat-
terns are different.

3 System Description

Jet, the Java Extraction Toolkit2, provides a set of
NLP components which can be combined to create
information extraction systems. AceJet3 is a sub-
system of Jet to extract the types of information
(entities, relations, and events) annotated on the
ACE corpora. The AceJet Event Extraction frame-
work is a combination of a pattern-based system
and feature-based system.

Training proceeds in three passes over the an-
notated training corpus. Pass 1 collects all the
event patterns, where a pattern consists of a trigger
and a set of arguments along with the path from
the trigger to each argument; both the dependency
path and the linear sequence path (a series of noun
chunks and words) are recorded. Pass 2 records
the frequency with which each pattern is associ-
ated with an event type – the ‘event score’. Pass
3 treats the event score as a feature, combines it
with a small number of other features and trains a
maximum entropy model.

At test time, to classify a candidate trigger (any
word which has appeared at least once as a trig-
ger in the training corpus) the tagger finds the best
match between an event pattern and the input sen-
tence and computes an event score. This score,
along with other features, serves as input to the
maximum entropy model to make the final ED pre-
diction.

We incorporate the proposed Dependency
Regularization techniques based on the AceJet
baseline system to improve the system perfor-
mance.

2http://cs.nyu.edu/grishman/jet/jet.
html

3http://cs.nyu.edu/grishman/jet/guide/
ACEutilities.html

81



4 Experiment

In this section, we will introduce the evaluation
dataset, compare the performance of applying de-
pendency regularization with other state-of-the-art
systems, and discuss the contributions of these dif-
ferent dependency regularization rules.

4.1 Data set

We used the ACE 2005 corpus as our testbed. For
comparison, we used the same test set with 40
newswire articles (672 sentences) as in (Ji and Gr-
ishman, 2008; Liao and Grishman, 2010) for the
experiments, and randomly selected 30 other doc-
uments (863 sentences) from different genres as
the development set. The remaining 529 docu-
ments (14,840 sentences) are used for training.

Regarding the correctness criteria: following
previous work (Ji and Grishman, 2008; Liao and
Grishman, 2010; Ji and Grishman, 2011; Li et al.,
2013), a trigger candidate is counted as correct if
its event subtype and offsets match those of a ref-
erence trigger. The ACE 2005 corpus has 33 event
subtypes that, along with one class “None” for the
non-trigger tokens, constitutes a 34-class classifi-
cation problem in this work. Finally we use Preci-
sion (P), Recall (R), and F-measure (F1) to evalu-
ate the overall performance.

Table 1 presents the overall performance of the
systems with gold-standard entity mention and
type information. We can see that our system with
dependency regularizations can improve the per-
formance over our baseline setting, and also ad-
vances the current state-of-the-art systems.

4.2 Contributions of different dependency
regularizations

Table 2 lists the system performance applying the
different dependency regularization rules. The last
line shows the performance with the combination
of three types of Nomlex pattern expansion.

Dependency Regularization could help match
patterns that failed in the original framework. For
example,

1. With Verb Chain Regularization, the sen-
tence “Taco ball is appealing.” is detected as
an APPEAL event, which was ignored in the
original framework.

2. With Transparent Regularization, the sen-
tence “The army killed thousands of people.”

is detected as a DIE event, which was ignored
in the original framework.

3. With Nomlex Regularization, the sentence
“The acquisition of Banco Zaragozano...” is
detected as a TRANSFER-OWNERSHIP event,
which was ignored in the original framework.
This is because all the relevant sentences in
the training data use the same trigger “ac-
quire”.

5 Related Work

Although there have been quite a few distinct
designs for event extraction systems, most are
loosely based on using patterns to detect instances
of events, where the patterns consist of a pred-
icate, event trigger, and constraints on its lo-
cal syntactic context. The constraints may in-
volve specific lexical items or semantic classes.
Some recent studies use high-level information
to aid local event extraction systems. For exam-
ple, Finkel et al. (2005), Maslennikov and seng
Chua (2007), Ji and Grishman (2008) and Pat-
wardhan and Riloff (2007) tried to use discourse,
document, or cross-document information to im-
prove information extraction. Other research ex-
tends these approaches by introducing cross-event
information to enhance the performance of multi-
event-type extraction systems. Liao and Grishman
(2010) use information about other types of events
to make predictions or resolve ambiguities regard-
ing a given event. Li et al. (2013) implements a
joint model via structured prediction with cross-
event features.

Event extraction systems have used patterns and
features based on a range of linguistic represen-
tations. For example, Miwa et al. (2014) used
both a deep analysis and a dependency parse. The
original NYU system for the 2005 ACE evalua-
tion (Grishman et al., 2005) incorporated GLARF,
a representation which captured both notions of
transparency and verb-nominalization correspon-
dences.4 However, assessment of the impact of
individual regularizations has been limited; this
prompted the investigation reported here.

6 Conclusion and Future Work

In this paper we have proposed several Depen-
dency Regularization steps to improve the perfor-

4The official evaluations were made with a complex value
metric and so are hard to compare with more recent results.

82



Regularization Recall Precision F-measure
original 65.45 70.59 67.92

vch 66.82 70.84 68.77
transp 65.68 71.18 68.32

vch & transp 67.27 71.50 69.32
vch & transp & Nomlex 68.18 72.82 70.42

Table 2: Trigger identification performance (%) with different dependency regularizations, where origi-
nal – original dependency parse output without regularization, vch – verb chain regularization, transp –
transparent regularization, and Nomlex – Nomlex regularization.

mance of the Event Detection framework, includ-
ing Verb Chain Regularization, Transparent Regu-
larization, and Nomlex Regularization. The exper-
imental results have demonstrated the effective-
ness of these techniques, which has helped our
pattern-based system achieve 70.49% (with 2.57%
absolute improvement) F-measure over the base-
line, which significantly advances the state-of-the-
art systems.

Dependency regularization is only one of the
measures we can take to improve performance.
The training corpus cannot include all possible
trigger words or all the senses of the triggers it
does include. Simply enlarging the training corpus
by sequential annotation would yield small gain at
a large cost. In parallel work we have shown that
carefully targeted active learning of new triggers
and senses can produce significant improvement
in event detection at modest cost.

References

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of ACL.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. NYU’s English ACE 2005 system descrip-
tion. In Proceedings of the ACE 2005 Evaluation
Workshop.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of ACL.

Heng Ji and Ralph Grishman. 2011. Using cross-entity
inference to improve event extraction. In Proceed-
ings of ACL.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of ACL.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of ACL.

Mstislav Maslennikov and Tat seng Chua. 2007. A
multi-resolution framework for information extrac-
tion from free text. In Proceedings of ACL.

Makoto Miwa, Paul Thompson, Ioannis Korkontze-
los, and Sophia Ananiadou. 2014. Comparable
study of event extraction in newswire and biomed-
ical domains. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers.

Siddharth Patwardhan and Ellen Riloff. 2007. Ef-
fective information extraction with semantic affin-
ity patterns and relevant regions. In Proceedings of
EMNLP.

Stephen Tratz and Eduard Hovy. 2011. Fast, effec-
tive, non-projective, semantically-enriched parser.
In Proceedings of EMNLP.

83


