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Abstract 

 

Since language model (LM) is very sensitive 

to domain mismatch between training and test 

data, using a group of techniques to adapt a 

big LM to specific domains is quite helpful. In 

this paper, we, benefit from salient perfor-

mance of recurrent neural network to improve 

domain adapted LM. In this way, we first ap-

ply an automatic data selection procedure on a 

limited amount of in-domain data in order to 

enrich the training set. After that, we train a 

domain specific N-gram LM and improve it by 

using recurrent neural network language mod-

el trained on limited in-domain data. Experi-

ments in the framework of EUBRIDGE
1
 

project on weather forecast dataset show that 

the automatic data selection procedure im-

proves the word error rate around 2% and 

RNNLM makes additional improvement over 

0.3%. 

Keywords: Language model, automatic data se-

lection, neural network language model, speech 

recognition 

1 Introduction 

Language models are widely used in different 

applications such as automatic speech 

recognition (ASR), machine translation; spell 

checking, handwriting detection etc. Basically, a 

language model tries to predict the next word in 

a sentence by considering a history of previous 

words. To provide this history, the language 

model needs to be trained on a large set of texts. 

                                                 
1  This work has been partially founded by the European 

project EUBRIDGE, under the contract FP7-287658 

Generally, the larger train set the better language 

model.  

A main issue in language modeling arises 

from data sparseness in training set. It means that 

in a large training set, many of the n-grams2 are 

very rare and, consequently, their probabilities 

are very small. Katz (1987) tried to overcome 

this problem by proposing back-off technique. In 

it, the probabilities of rare n-grams are estimated 

through linear interpolation of the probabilities 

of the lower order n-grams.  

Discounting methods such as Witten-Bell es-

timate (Witten and Bell, 1991), absolute dis-

counting (Ney and Essen, 1991), Kneser-Ney 

method (Kneser and Ney, 1995) and modified 

Kneser-Ney (Chen and Goodman, 1999) allow 

estimating back-off coefficients.  

Recently, using neural network language 

model (NNLM) has been become of interest be-

cause it results more generalization in compari-

son to N-gram models. In NNLM, the words are 

represented in a continuous space. The idea of 

representing words in a continuous space for 

language modeling was started by Bengio 

(2003). It was followed by Schwenk (2007) who 

applied neural network for language modeling in 

large scale vocabulary speech recognition and 

obtained a noticeable improvement in word error 

rate. Mikolov (2010) pursued this way and used 

recurrent neural network for language modeling 

(RNNLM). The advantage of RNNLM on feed 

forward neural network, which was used by 

Bengio (2003) and Schwenk (2007) is that 

RNNLM can consider an arbitrary number of 

preceding words to estimate the probability of 

                                                 
2 Sequence of n words (usually 2, 3 or 4 words). By n-gram 

(with small “n”) we refer to an n-word sequence and by 

N-gram (with capital “N”) we refer to a language model 

based on n-grams 
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next word, while, feed forward NNLM can only 

see a fixed number of preceding words. Thanks 

to positive performance of RNNLM toolbox de-

veloped by Mikolov (2011), we use this, in our 

specific task which is weather forecast transcrip-

tion in the framework of EUBRIDGE project.  

In addition to data sparseness, the performance 

of language model is affected by mismatch be-

tween training and test data. This leads to reduc-

tion of language model accuracy. The problem is 

that it is not always easy to collect sufficient 

amount of related data in order to train a specif-

ic-domain LM. Therefore, research on LM do-

main adaptation, as well as automatic selection 

of auxiliary text data is still of large interest. 

There are methods which try to adapt a big 

language model to a limited amount of in-

domain data such as Latent Semantic Analysis 

(Bellegarda, 1988), Mixture (Foster, 2007), 

Minimum Discrimination information (Federico, 

1999) and Lazy MDI (Ruiz, 2012). Another 

group of methods try to automatically retrieve 

auxiliary documents from text resources such as 

Internet. Among them, we are interested in the 

ones reported in (Maskey, 2009) and (Falavigna, 

2012) which are based on information retrieval 

measures such as LM perplexity and Term 

Frequency Inverse Document Frequency (TF-

IDF). 

This paper aims at transcribing a weather fore-

cast speech corpus consisting of audio recordings 

that are divided into development and test sets. 

In addition, a small text corpus of weather fore-

cast has been given within EUBRIDGE project. 

We use this corpus as in-domain data. In this 

way, we first utilize an automatic data selection 

procedure to collect more an auxiliary data set. 

Then, we train an N-gram language model on the 

selected data and decode the test audio recording. 

For each audio, an n-best list is produced which 

is then processed and re-ranked by means of a 

neural network language model. We show the N-

gram which is trained on the automatically se-

lected data is around 2% (in terms of word error 

rate) better than the original one and neural net-

work language model improves it up to 0.3%.  

In Section 2 and 3, we briefly describe Neural 

Network Language Model (NNLM) and Recur-

rent NNLM, respectively. Then, in section 4 we 

describe the process of preparing data and also 

the experiments which are confirmed by perplex-

ity and WER results. Finally, Section 5 con-

cludes the paper. 

2 Neural Network Language Model 

(NNLM)  

In NNLM, a word is represented by a |V|-

dimensional vector of 0s and 1s. |V| is the size of 

vocabulary. In vectorwi that represents i
th
 word in 

the vocabulary, all the elements are zero except 

i
th
 element which is 1 (see Figure 1). For a 4-

gram NNLM, three vectors are concatenated and 

given to the input layer. Thus, the input vector 

would be 3x|V|-dimensional and the input layer 

has the same number of neurons.  

Usually there is a projection layer with linear 

activation function which reduces the dimension 

of input vectors and maps them into a continuous 

space. The output of the projection layer is given 

to a hidden layer with nonlinear activation func-

tion (sigmoid, hyperbolic tangent etc). The out-

put of hidden layer is then given to the output 

layer which has |V| neurons for |V| candidate 

words. j
th
 neuron in this layer computes the prob-

ability of observing j
th
 word after three previous 

words (in 4-gram NNLM). The activation func-

tion that is used in this layer is a softmax func-

tion which guarantees that the sum of all proba-

bilities is 1 and each probability is between zero 

and 1 (Schwenk, 2007). 
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Figure 1: Neural network LM 

 

The computations that are needed for each 

layer are as follows: 
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dj is the output of j
th
 neuron in projection 

layer. U and V are the weight matrices from pro-
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jection to hidden and from hidden to output lay-

ers, respectively. b and k are the bias vectors of 

hidden and output layers, respectively. oi shows 

the output of i
th
 output neuron. The training pro-

cedure is done using a back-propagation algo-

rithm (Schwenk, 2007). 

3 Recurrent Neural Network Language 

Model (RNNLM) 

Instead of projection layer, in RNNLM, there are 

recursive arcs in hidden layer which connect the 

outputs of hidden neurons to their input and work 

as a cache memory for neural network. 
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Figure 2: Recurrent Neural Network LM 

 

For a training set with I unique words, an in-

put layer with I neurons is needed. If the size of 

hidden layer is |H|, then the weight matrix be-

tween input and hidden layers (U) will be I×|H|-

dimensional. Since the hidden neurons are fully 

connected by the recursive arcs, there are 

|H|×|H| additional weighted connections. Fur-

thermore, we need a 1×|H|-dimensional vector to 

store the activation function of each hidden neu-

ron. 

In a class based language model, there are two 

types of output: probability of classes and proba-

bility of words. To implement a class-based 

RNNLM, two sets of neurons in the output layer 

are needed: one for computing the probabilities 

of words and the other for the probabilities of 

classes. From hidden neurons to word output 

neurons there are |H|×|O| connections, which are 

shown in matrix V and from hidden neurons to 

class output neurons there are |H|×|C| connec-

tions which are shown in matrix W (the number 

of classes is equal to |C|).  

Considering this architecture for neural net-

work language model, the formulation of each 

layer should be changed as follows:  

 TTT tstwtx )1()()(     (4) 

x(t), that is the input vector of hidden layer is a 

|V|+|H|-dimensional vector; w(t) is the vector of 

observed word at time t; s(t-1) is the output of 

hidden layer at time t-1 (s(0) can be initialized by 

0.1). The output of the hidden layer is computed 

by:  
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In which, sj(t) is the output of j
th
 hidden neu-

ron. xi(t) is i
th
 element of input vector and Uji in-

dicates the weight of the connection between 

neuron i and neuron j from input to hidden layer, 

respectively. The probability over the classes is 

computed by: 
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In which cl(t) is the output of l
th
 output neuron 

which shows the probability of class l for the 

word which has been observed at time t. wlj is the 

weight of the connection between j
th
 neuron of 

hidden layer and l
th
 neuron of output layer. Using 

a similar equation just by replacing matrix W by 

matrix V, we can compute the probability of each 

word over the classes. 














  cj

j

jc VtsSOFTMAXty .)()(   (8) 

Therefore, the overall probability of a word is 

computed by: 

))(,|())(|()|( tscwPtscphistorywp iiii   (9) 

where i varies from 1 to the number of voca-

bulary size. ci is the class that wi belongs to that. 

 Because of the complexity of this model, it is 

quite hard to use it for huge text corpora. This is 

why, researchers usually use this model on small 

training sets or sometimes they partition a huge 

training set into several small sets and build an 

RNNLM on each partition and make an interpo-

lation between them.  

 In the next experiments we train an RNNLM 

on the small in-domain data and use it to re-score 

the output of the speech decoder. We show that 

this approach improves the WER of the decoder 

up to 0.3%. 

4 Experiments 

As previously mentioned, we are given a quite 

small set of in-domain data, consisting of weath-

er forecast texts (around 1 Million words) and a 

large, out-domain corpus, called GoogleNews 

that includes around 1.6G words. There are two 

major challenges: 
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 First, training a language model on a 

large domain-independent set is very 

costly in time and computation and also 

the resulted model cannot be very effi-

cient in our specific task which is weath-

er forecast transcription.  

 Second, the available domain-specific 

data is to some extent small and the 

model which is trained on it is not gener-

al enough. 

 Two possible solutions are: 

 We can use the available in-domain set 

to select similar sentences from the huge 

out-domain set in order to enrich our in-

domain training set.  

 Or, we can cluster the domain-

independent set using word similarity 

measures. It is expected that the 

sentences from the same cluster belong 

to the same domain. Then, we can train a 

specific language model for each cluster. 

We focus on the first solution and utilize it in 

our experiments. This idea is already proposed 

by Maskey (2009) for re-sampling an auxiliary 

data set for language model adaptation in a 

machine translation task. We use a similar 

approach to collect in-domain sentences from 

GoogleNews. 

4.1 Text Corpora and Language Models 

The source used for generating the documents 

for training a domain-independent LM is 

Google-news. Google-news is an aggregator of 

news provided and operated by Google, that 

collects news from many different sources, in 

different languages, and each group of articles 

consists of similar contents. We download daily 

news from this site, filter-out useless tags and 

collect texts. Google-news data is grouped into 7 

broad domains (such as economy, sports, 

science, technology, etc). After cleaning, 

removing double lines and application of a text 

normalization procedure, the corpus results into 

about 5.7M of documents, or a total of about 

1.6G of words. The average number of words per 

document is 272 (refer to (Girardi, 2007) for 

details about the web document retrieval process 

applied in this work). 

On this data we trained a 4-gram back-off LM 

using the modified shift beta smoothing method 

as supplied by the IRSTLM toolkit (Federico, 

2008). The LM results into about 1.6M 

unigrams, 73M bigrams, 120M 3-grams and 

195M 4-grams. The LM is used to compile a 

static Finite State Network (FSN) which includes 

LM probabilities and lexicon for two ASR 

decoding passes. In the following we will refer to 

this LM as GN4gr-ALL. 

Within the EUBRIDGE project we were also 

given a set of in-domain text data, specifically 

around 1M words related to weather reports 

published on the BBC web site, that was first 

used to train a corresponding 4-gram LM (in the 

following we will call it IN4gr-1MW).Then, with 

the latter LM we automatically select, using 

perplexity as similarity measure, from the whole 

Google-news database an auxiliary corpus of 

about 100M words. On this corpus we trained a 

corresponding 4-gram LM and we adapted it to 

the weather domain using the 1MW in-domain 

corpus (as adaptation data) and LM-mixture (as 

adaptation method). The resulting adapted LM 

contains about 278K unigrams, 9.4M bigrams, 

7.9M 3-grams and 9.5M 4-grams. In the 

following we will refer to it as IN4gr-100MW. 

Using the last language model (IN4gr-

100MW) and a pre-trained acoustic model which 

is described in the next subsection we extract the 

1000-best list from the decoder and re-score this 

list using a recurrent neural network language 

model (RNNLM).  

Before that, we need to investigate different 

types of RNNLM with different configuration in 

order to find the best one for our specific task. In 

this way, we trained RNNLMs with 250, 300, 

350, 400, 450, 500 hidden neurons and 200, 300, 

500, 600, 1000 and 8000 classes on the 1MW in-

domain data. Figure 4 compares the perplexity of 

these models on a development set consisting of 

12K words which is completely isolated from the 

test set. 

 

 
 

Figure 3. Perplexity of different RNNLMs on devel-

opment data 

 

As it can be seen from Figure 4, by increasing 

the number of classes the performance of 

RNNLM improves. For example, the best three 

RNNLMs are the ones with: H350C8000, 
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H450C1000 and H300C1000 (exp.  

rnnlmH300C1000 is an RNNLM with 300 hid-

den neurons and 1000 classes). 

In accordance with Mikolov (2011), RNNLM 

works better when it is interpolated with an N-

gram. Thus, we train a 4-gram language model 

based on Kneser-Ney smoothing method using 

SRI toolkit (Stolcke, 2002) and interpolate it 

with the best RNNLMs by different weights 

(lambda). Figure 5 shows the result of these in-

terpolations. 

 

 
 

Figure 4. Interpolation of RNNLM scores and 4-gram 

scores 

 

When lambda is zero, just N-gram score has 

been considered and when lambda is 1, just the 

score of RNNLM is used. It is seen that 

interpolation of N-gram and RNNLM improves 

the performance of the system. Correspondingly, 

we see that rnnlmH350C8000 and 

rnnlmH450C1000 show the highest performance 

in interpolation with IN4grKN-1MW. In 

following, we will use the latter to re-score the n-

best list obtained from decoder. 

4.2 Generation of N-best Lists 

As previously mentioned we used the RNNLM, 

trained on 1MW in-domain set of data, to re-

score n-best lists produced during ASR 

decoding. Details on both acoustic model 

training and ASR decoding process can be found 

in (Falavigna, 2012). In short for this work, 

speech segments to transcribe have been 

manually detected and labeled in terms of 

speaker names (i.e. no automatic speech 

segmentation and speaker diarization procedures 

have been applied). 

In both first and second decoding passes the 

system uses continuous density Hidden Markov 

Models (HMMs) and a static network embedding 

the probabilities of the baseline LM. A frame 

synchronous Viterbi beam-search is used to find 

the most likely word sequence corresponding to 

each speech segment. In addition, in the second 

decoding pass the system generates a word graph 

for each speech segment. To do this, all of the 

word hypotheses that survive inside the trellis 

during Viterbi beam search are saved in a word 

lattice containing the following information: 

initial word state in the trellis, final word state in 

the trellis, related time instants and word log-

likelihood. From this data structure and given the 

LM used in the recognition steps, WGs are built 

with separate acoustic likelihood and LM 

probabilities associated to word transitions. To 

increase the recombination of paths inside the 

trellis and consequently the densities of the WGs, 

the so called word pair approximation is applied. 

In this way the resulting graph error rate was 

estimated to be around 1/3 of the corresponding 

WER. 

The best word sequences generated in the 

second decoding pass are used to evaluate the 

baseline performance. Instead, the corresponding 

word graphs are used to generate lists of 1000 

sentences each. To do this a stack decoding 

algorithm is employed (Hart, 1972), where the 

score of each partial theory is given by summing 

the forward score of the theory itself with the 

total backward score in the final state of the same 

theory (i.e. the look-ahead function used in the 

algorithm is the total backward probability 

associated to the final state of the given theory). 

Finally, each 1000-best list is re-scored using the 

RNNLM trained on 1MW in-domain text data 

set. Note that in this latter decoding step, 

acoustic probabilities remain unchanged, i.e. the 

latter decoding step implements a pure linguistic 

rescoring. 

4.3 Speech Recognition Results 

An overview of the experiments has been given 

in Figure 5. The first set of results is obtained by 

using GN4gr-ALL language model which is 

trained on whole Google-news data. Then, a 

small N-gram (IN4gr-100MW) is trained on the 

in-domain data that is used in the procedure of 

automatic data selection (see section 4.1). 

Utilizing the resulted data set, a bigger model 

(IN4gr-100MW) is trained and adapted to the in-

domain data.  

Thus, the second and third set of results is 

obtained by using IN4gr-1MW and IN4gr-

100MW along with the decoder. In order to 

improve the final results, we use 

rnnlmH450C1000 which is trained on in-domain 

data to re-score the 1000-best list extracted from 

previous decoding phase. 
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Table 1. compares the WER resulted from us-

ing these language models in the decoding phase. 

It can be seen that the in-domain language model 

which is trained on the small set of in-domain 

text is dramatically better than the huge out-

domain model. By applying automatic data se-

lection approach and collecting the most useful 

texts from Google-news we obtained 0.3% im-

provement and by utilizing RNNLM for re-

scoring the n-best lists we reach another 0.3% 

improvement in word error rate. 

 
Table 1. %WER with different language models 

(Oracle Error Rate is 9.7%) 

 

Language model Development set Test set 

GN4gr-ALL 16.2 15.1 

IN4gr-1MW 14.3 12.8 

IN4gr-100MW 14.0 12.6 

0.5*IN4gr-100MW + 

0.5*rnnlmH450C1000 
13.7 12.3 

 

Although it’s not a salient improvement from 

the third to fourth row of the table, we should 

notice that the RNNLM model has re-scored an 

N-best list, which in the best conditions, it gives 

9.7% WER. That is, if we ideally select the best 

sentences from these n-best lists we cannot reach 

better result than 9.7%.   

5 Conclusion 

Given a small set of in-domain data and a huge 

out-domain corpus, we proposed a thorough sys-

tem which applies an automatic data selection 

approach to train a general in-domain language 

model. In addition, we used a continuous space 

language model to improve the generality of the 

model and consequently to improve the accuracy 

of ASR.  

In future, we will benefit from RNNLM in the 

procedure of data selection. That is, instead of 

evaluation of candidate sentences using N-gram, 

we will rank them using RNNLM.  

Moreover, it would be worthwhile to explore 

the performance of a group of small RNNLM on 

the selected data rather than a single N-gram 

LM. 
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