
Proceedings of the Student Research Workshop associated with RANLP 2013, pages 86–92,
Hissar, Bulgaria, 9-11 September 2013.

Improving Language Model Adaptation using Automatic Data Selec-

tion and Neural Network

Shahab Jalalvand

HLT research unit, FBK, 38123 Povo (TN), Italy

jalalvand@fbk.eu

Abstract

Since language model (LM) is very sensitive

to domain mismatch between training and test

data, using a group of techniques to adapt a

big LM to specific domains is quite helpful. In

this paper, we, benefit from salient perfor-

mance of recurrent neural network to improve

domain adapted LM. In this way, we first ap-

ply an automatic data selection procedure on a

limited amount of in-domain data in order to

enrich the training set. After that, we train a

domain specific N-gram LM and improve it by

using recurrent neural network language mod-

el trained on limited in-domain data. Experi-

ments in the framework of EUBRIDGE
1

project on weather forecast dataset show that

the automatic data selection procedure im-

proves the word error rate around 2% and

RNNLM makes additional improvement over

0.3%.

Keywords: Language model, automatic data se-

lection, neural network language model, speech

recognition

1 Introduction

Language models are widely used in different

applications such as automatic speech

recognition (ASR), machine translation; spell

checking, handwriting detection etc. Basically, a

language model tries to predict the next word in

a sentence by considering a history of previous

words. To provide this history, the language

model needs to be trained on a large set of texts.

1 This work has been partially founded by the European

project EUBRIDGE, under the contract FP7-287658

Generally, the larger train set the better language

model.

A main issue in language modeling arises

from data sparseness in training set. It means that

in a large training set, many of the n-grams2 are

very rare and, consequently, their probabilities

are very small. Katz (1987) tried to overcome

this problem by proposing back-off technique. In

it, the probabilities of rare n-grams are estimated

through linear interpolation of the probabilities

of the lower order n-grams.

Discounting methods such as Witten-Bell es-

timate (Witten and Bell, 1991), absolute dis-

counting (Ney and Essen, 1991), Kneser-Ney

method (Kneser and Ney, 1995) and modified

Kneser-Ney (Chen and Goodman, 1999) allow

estimating back-off coefficients.

Recently, using neural network language

model (NNLM) has been become of interest be-

cause it results more generalization in compari-

son to N-gram models. In NNLM, the words are

represented in a continuous space. The idea of

representing words in a continuous space for

language modeling was started by Bengio

(2003). It was followed by Schwenk (2007) who

applied neural network for language modeling in

large scale vocabulary speech recognition and

obtained a noticeable improvement in word error

rate. Mikolov (2010) pursued this way and used

recurrent neural network for language modeling

(RNNLM). The advantage of RNNLM on feed

forward neural network, which was used by

Bengio (2003) and Schwenk (2007) is that

RNNLM can consider an arbitrary number of

preceding words to estimate the probability of

2 Sequence of n words (usually 2, 3 or 4 words). By n-gram

(with small “n”) we refer to an n-word sequence and by

N-gram (with capital “N”) we refer to a language model

based on n-grams

86

next word, while, feed forward NNLM can only

see a fixed number of preceding words. Thanks

to positive performance of RNNLM toolbox de-

veloped by Mikolov (2011), we use this, in our

specific task which is weather forecast transcrip-

tion in the framework of EUBRIDGE project.

In addition to data sparseness, the performance

of language model is affected by mismatch be-

tween training and test data. This leads to reduc-

tion of language model accuracy. The problem is

that it is not always easy to collect sufficient

amount of related data in order to train a specif-

ic-domain LM. Therefore, research on LM do-

main adaptation, as well as automatic selection

of auxiliary text data is still of large interest.

There are methods which try to adapt a big

language model to a limited amount of in-

domain data such as Latent Semantic Analysis

(Bellegarda, 1988), Mixture (Foster, 2007),

Minimum Discrimination information (Federico,

1999) and Lazy MDI (Ruiz, 2012). Another

group of methods try to automatically retrieve

auxiliary documents from text resources such as

Internet. Among them, we are interested in the

ones reported in (Maskey, 2009) and (Falavigna,

2012) which are based on information retrieval

measures such as LM perplexity and Term

Frequency Inverse Document Frequency (TF-

IDF).

This paper aims at transcribing a weather fore-

cast speech corpus consisting of audio recordings

that are divided into development and test sets.

In addition, a small text corpus of weather fore-

cast has been given within EUBRIDGE project.

We use this corpus as in-domain data. In this

way, we first utilize an automatic data selection

procedure to collect more an auxiliary data set.

Then, we train an N-gram language model on the

selected data and decode the test audio recording.

For each audio, an n-best list is produced which

is then processed and re-ranked by means of a

neural network language model. We show the N-

gram which is trained on the automatically se-

lected data is around 2% (in terms of word error

rate) better than the original one and neural net-

work language model improves it up to 0.3%.

In Section 2 and 3, we briefly describe Neural

Network Language Model (NNLM) and Recur-

rent NNLM, respectively. Then, in section 4 we

describe the process of preparing data and also

the experiments which are confirmed by perplex-

ity and WER results. Finally, Section 5 con-

cludes the paper.

2 Neural Network Language Model

(NNLM)

In NNLM, a word is represented by a |V|-

dimensional vector of 0s and 1s. |V| is the size of

vocabulary. In vectorwi that represents i
th
 word in

the vocabulary, all the elements are zero except

i
th
 element which is 1 (see Figure 1). For a 4-

gram NNLM, three vectors are concatenated and

given to the input layer. Thus, the input vector

would be 3x|V|-dimensional and the input layer

has the same number of neurons.

Usually there is a projection layer with linear

activation function which reduces the dimension

of input vectors and maps them into a continuous

space. The output of the projection layer is given

to a hidden layer with nonlinear activation func-

tion (sigmoid, hyperbolic tangent etc). The out-

put of hidden layer is then given to the output

layer which has |V| neurons for |V| candidate

words. j
th
 neuron in this layer computes the prob-

ability of observing j
th
 word after three previous

words (in 4-gram NNLM). The activation func-

tion that is used in this layer is a softmax func-

tion which guarantees that the sum of all proba-

bilities is 1 and each probability is between zero

and 1 (Schwenk, 2007).

.

.

.

.

.

.

.

.

Projection layer
(linear activation function)

Hidden layer
(non-linear activation function)

Output layer
(softmax finction)

Input layer

1njw

2njw

1jw

)|1(jj hwP 

)|(jj hiwP 

)|(jj hVwP 

0
.
.
0
1
0
.
0

0
.
0
1
0
.
.
0

0
.
.
.
0
1
0
.
0

H

P

P

P

U V

Figure 1: Neural network LM

The computations that are needed for each

layer are as follows:

,,...,1.tanh HjbUcd
l

jjllj 







  (1)

,,...,1. NikVdo
j

iijji  (2)

,,...,1

1

Ni
e

e
p

N

l

o

o

i
i

i



 

 (3)

dj is the output of j
th
 neuron in projection

layer. U and V are the weight matrices from pro-

87

jection to hidden and from hidden to output lay-

ers, respectively. b and k are the bias vectors of

hidden and output layers, respectively. oi shows

the output of i
th
 output neuron. The training pro-

cedure is done using a back-propagation algo-

rithm (Schwenk, 2007).

3 Recurrent Neural Network Language

Model (RNNLM)

Instead of projection layer, in RNNLM, there are

recursive arcs in hidden layer which connect the

outputs of hidden neurons to their input and work

as a cache memory for neural network.

H
I

O

H1

][OHV 

HH 

][HIU 

C

][CHW 

Activation function

Input layer

Hidden
layer

Output layer

w(t)

s(t)

y(t)

c(t)

Figure 2: Recurrent Neural Network LM

For a training set with I unique words, an in-

put layer with I neurons is needed. If the size of

hidden layer is |H|, then the weight matrix be-

tween input and hidden layers (U) will be I×|H|-

dimensional. Since the hidden neurons are fully

connected by the recursive arcs, there are

|H|×|H| additional weighted connections. Fur-

thermore, we need a 1×|H|-dimensional vector to

store the activation function of each hidden neu-

ron.

In a class based language model, there are two

types of output: probability of classes and proba-

bility of words. To implement a class-based

RNNLM, two sets of neurons in the output layer

are needed: one for computing the probabilities

of words and the other for the probabilities of

classes. From hidden neurons to word output

neurons there are |H|×|O| connections, which are

shown in matrix V and from hidden neurons to

class output neurons there are |H|×|C| connec-

tions which are shown in matrix W (the number

of classes is equal to |C|).

Considering this architecture for neural net-

work language model, the formulation of each

layer should be changed as follows:

 TTT tstwtx)1()()( (4)

x(t), that is the input vector of hidden layer is a

|V|+|H|-dimensional vector; w(t) is the vector of

observed word at time t; s(t-1) is the output of

hidden layer at time t-1 (s(0) can be initialized by

0.1). The output of the hidden layer is computed

by:

HjUtxts
i

jiij ,...,1).(tanh)(







  (5)

In which, sj(t) is the output of j
th
 hidden neu-

ron. xi(t) is i
th
 element of input vector and Uji in-

dicates the weight of the connection between

neuron i and neuron j from input to hidden layer,

respectively. The probability over the classes is

computed by:














  lj

j

jl WtsSOFTMAXtc .)()(

 (7)

In which cl(t) is the output of l
th
 output neuron

which shows the probability of class l for the

word which has been observed at time t. wlj is the

weight of the connection between j
th
 neuron of

hidden layer and l
th
 neuron of output layer. Using

a similar equation just by replacing matrix W by

matrix V, we can compute the probability of each

word over the classes.














  cj

j

jc VtsSOFTMAXty .)()((8)

Therefore, the overall probability of a word is

computed by:

))(,|())(|()|(tscwPtscphistorywp iiii  (9)

where i varies from 1 to the number of voca-

bulary size. ci is the class that wi belongs to that.

 Because of the complexity of this model, it is

quite hard to use it for huge text corpora. This is

why, researchers usually use this model on small

training sets or sometimes they partition a huge

training set into several small sets and build an

RNNLM on each partition and make an interpo-

lation between them.

 In the next experiments we train an RNNLM

on the small in-domain data and use it to re-score

the output of the speech decoder. We show that

this approach improves the WER of the decoder

up to 0.3%.

4 Experiments

As previously mentioned, we are given a quite

small set of in-domain data, consisting of weath-

er forecast texts (around 1 Million words) and a

large, out-domain corpus, called GoogleNews

that includes around 1.6G words. There are two

major challenges:

88

 First, training a language model on a

large domain-independent set is very

costly in time and computation and also

the resulted model cannot be very effi-

cient in our specific task which is weath-

er forecast transcription.

 Second, the available domain-specific

data is to some extent small and the

model which is trained on it is not gener-

al enough.

 Two possible solutions are:

 We can use the available in-domain set

to select similar sentences from the huge

out-domain set in order to enrich our in-

domain training set.

 Or, we can cluster the domain-

independent set using word similarity

measures. It is expected that the

sentences from the same cluster belong

to the same domain. Then, we can train a

specific language model for each cluster.

We focus on the first solution and utilize it in

our experiments. This idea is already proposed

by Maskey (2009) for re-sampling an auxiliary

data set for language model adaptation in a

machine translation task. We use a similar

approach to collect in-domain sentences from

GoogleNews.

4.1 Text Corpora and Language Models

The source used for generating the documents

for training a domain-independent LM is

Google-news. Google-news is an aggregator of

news provided and operated by Google, that

collects news from many different sources, in

different languages, and each group of articles

consists of similar contents. We download daily

news from this site, filter-out useless tags and

collect texts. Google-news data is grouped into 7

broad domains (such as economy, sports,

science, technology, etc). After cleaning,

removing double lines and application of a text

normalization procedure, the corpus results into

about 5.7M of documents, or a total of about

1.6G of words. The average number of words per

document is 272 (refer to (Girardi, 2007) for

details about the web document retrieval process

applied in this work).

On this data we trained a 4-gram back-off LM

using the modified shift beta smoothing method

as supplied by the IRSTLM toolkit (Federico,

2008). The LM results into about 1.6M

unigrams, 73M bigrams, 120M 3-grams and

195M 4-grams. The LM is used to compile a

static Finite State Network (FSN) which includes

LM probabilities and lexicon for two ASR

decoding passes. In the following we will refer to

this LM as GN4gr-ALL.

Within the EUBRIDGE project we were also

given a set of in-domain text data, specifically

around 1M words related to weather reports

published on the BBC web site, that was first

used to train a corresponding 4-gram LM (in the

following we will call it IN4gr-1MW).Then, with

the latter LM we automatically select, using

perplexity as similarity measure, from the whole

Google-news database an auxiliary corpus of

about 100M words. On this corpus we trained a

corresponding 4-gram LM and we adapted it to

the weather domain using the 1MW in-domain

corpus (as adaptation data) and LM-mixture (as

adaptation method). The resulting adapted LM

contains about 278K unigrams, 9.4M bigrams,

7.9M 3-grams and 9.5M 4-grams. In the

following we will refer to it as IN4gr-100MW.

Using the last language model (IN4gr-

100MW) and a pre-trained acoustic model which

is described in the next subsection we extract the

1000-best list from the decoder and re-score this

list using a recurrent neural network language

model (RNNLM).

Before that, we need to investigate different

types of RNNLM with different configuration in

order to find the best one for our specific task. In

this way, we trained RNNLMs with 250, 300,

350, 400, 450, 500 hidden neurons and 200, 300,

500, 600, 1000 and 8000 classes on the 1MW in-

domain data. Figure 4 compares the perplexity of

these models on a development set consisting of

12K words which is completely isolated from the

test set.

Figure 3. Perplexity of different RNNLMs on devel-

opment data

As it can be seen from Figure 4, by increasing

the number of classes the performance of

RNNLM improves. For example, the best three

RNNLMs are the ones with: H350C8000,

89

H450C1000 and H300C1000 (exp.

rnnlmH300C1000 is an RNNLM with 300 hid-

den neurons and 1000 classes).

In accordance with Mikolov (2011), RNNLM

works better when it is interpolated with an N-

gram. Thus, we train a 4-gram language model

based on Kneser-Ney smoothing method using

SRI toolkit (Stolcke, 2002) and interpolate it

with the best RNNLMs by different weights

(lambda). Figure 5 shows the result of these in-

terpolations.

Figure 4. Interpolation of RNNLM scores and 4-gram

scores

When lambda is zero, just N-gram score has

been considered and when lambda is 1, just the

score of RNNLM is used. It is seen that

interpolation of N-gram and RNNLM improves

the performance of the system. Correspondingly,

we see that rnnlmH350C8000 and

rnnlmH450C1000 show the highest performance

in interpolation with IN4grKN-1MW. In

following, we will use the latter to re-score the n-

best list obtained from decoder.

4.2 Generation of N-best Lists

As previously mentioned we used the RNNLM,

trained on 1MW in-domain set of data, to re-

score n-best lists produced during ASR

decoding. Details on both acoustic model

training and ASR decoding process can be found

in (Falavigna, 2012). In short for this work,

speech segments to transcribe have been

manually detected and labeled in terms of

speaker names (i.e. no automatic speech

segmentation and speaker diarization procedures

have been applied).

In both first and second decoding passes the

system uses continuous density Hidden Markov

Models (HMMs) and a static network embedding

the probabilities of the baseline LM. A frame

synchronous Viterbi beam-search is used to find

the most likely word sequence corresponding to

each speech segment. In addition, in the second

decoding pass the system generates a word graph

for each speech segment. To do this, all of the

word hypotheses that survive inside the trellis

during Viterbi beam search are saved in a word

lattice containing the following information:

initial word state in the trellis, final word state in

the trellis, related time instants and word log-

likelihood. From this data structure and given the

LM used in the recognition steps, WGs are built

with separate acoustic likelihood and LM

probabilities associated to word transitions. To

increase the recombination of paths inside the

trellis and consequently the densities of the WGs,

the so called word pair approximation is applied.

In this way the resulting graph error rate was

estimated to be around 1/3 of the corresponding

WER.

The best word sequences generated in the

second decoding pass are used to evaluate the

baseline performance. Instead, the corresponding

word graphs are used to generate lists of 1000

sentences each. To do this a stack decoding

algorithm is employed (Hart, 1972), where the

score of each partial theory is given by summing

the forward score of the theory itself with the

total backward score in the final state of the same

theory (i.e. the look-ahead function used in the

algorithm is the total backward probability

associated to the final state of the given theory).

Finally, each 1000-best list is re-scored using the

RNNLM trained on 1MW in-domain text data

set. Note that in this latter decoding step,

acoustic probabilities remain unchanged, i.e. the

latter decoding step implements a pure linguistic

rescoring.

4.3 Speech Recognition Results

An overview of the experiments has been given

in Figure 5. The first set of results is obtained by

using GN4gr-ALL language model which is

trained on whole Google-news data. Then, a

small N-gram (IN4gr-100MW) is trained on the

in-domain data that is used in the procedure of

automatic data selection (see section 4.1).

Utilizing the resulted data set, a bigger model

(IN4gr-100MW) is trained and adapted to the in-

domain data.

Thus, the second and third set of results is

obtained by using IN4gr-1MW and IN4gr-

100MW along with the decoder. In order to

improve the final results, we use

rnnlmH450C1000 which is trained on in-domain

data to re-score the 1000-best list extracted from

previous decoding phase.

90

Table 1. compares the WER resulted from us-

ing these language models in the decoding phase.

It can be seen that the in-domain language model

which is trained on the small set of in-domain

text is dramatically better than the huge out-

domain model. By applying automatic data se-

lection approach and collecting the most useful

texts from Google-news we obtained 0.3% im-

provement and by utilizing RNNLM for re-

scoring the n-best lists we reach another 0.3%

improvement in word error rate.

Table 1. %WER with different language models

(Oracle Error Rate is 9.7%)

Language model Development set Test set

GN4gr-ALL 16.2 15.1

IN4gr-1MW 14.3 12.8

IN4gr-100MW 14.0 12.6

0.5*IN4gr-100MW +

0.5*rnnlmH450C1000
13.7 12.3

Although it’s not a salient improvement from

the third to fourth row of the table, we should

notice that the RNNLM model has re-scored an

N-best list, which in the best conditions, it gives

9.7% WER. That is, if we ideally select the best

sentences from these n-best lists we cannot reach

better result than 9.7%.

5 Conclusion

Given a small set of in-domain data and a huge

out-domain corpus, we proposed a thorough sys-

tem which applies an automatic data selection

approach to train a general in-domain language

model. In addition, we used a continuous space

language model to improve the generality of the

model and consequently to improve the accuracy

of ASR.

In future, we will benefit from RNNLM in the

procedure of data selection. That is, instead of

evaluation of candidate sentences using N-gram,

we will rank them using RNNLM.

Moreover, it would be worthwhile to explore

the performance of a group of small RNNLM on

the selected data rather than a single N-gram

LM.

Acknowledgments

I would like to express my special thanks of gra-

titude to my supervisor, Daniele Falavigna, who

kindly helped me to do the experiments and write

this paper.

References

Andreas Stolcke. 2002. SRILM - An Extensible Lan-

guage Modeling Toolkit. In Proceedings of the In-

ternational Conference on Statistical Language

Processing, Denver, Colorado.

Christian Girardi. 2007. Htmcleaner: Extracting Rele-

vant Text from Web. 3rd Web as Corpus workshop

(WAC3), Presses Universitaires de Louvain, pp.

141-143.

Daniele Falavigna, Roberto Gretter, Fabio Brugnara,

and Diego Giuliani. 2012. Fbk @ iwslt 2012 - ASR

Track. in Proc. of the International Workshop on

Spoken Language Translation, Hong Kong, HK.

George Foster and Roland Kuhn. 2007. Mixture Mod-

el Adaptation for SMT. In Proceedings of the

Second Workshop on Statistical Machine Transla-

tion, StatMT ’07, pages 128–135, Stroudsburg, PA,

USA. association for Computational Linguistics.

Hermann Ney, Ute Essen. 1991. On Smoothing Tech-

niques for Bigram-based Natural Language Mod-

elling. Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal

Processing ’91, volume 2, pp. 825–829.

Figure 5. An overview of the speech recognition system

91

Holger Schwenk. 2007. Continuous Space Language

Models. in Computer Speech and Language, vo-

lume 21, pp. 492-518.

Ian H. Witten and Timothy C. Bell. 1991. The Zero-

frequency Problem: Estimating the Probabilities of

Novel Events in Adaptive Text Compression. IEEE

Transactions on Information Theory, 37, pp. 1085–

1094.

Jerome R. Bellegarda. 1998. A Multispan Language

Modeling Frame-work for Large Vocabulary

Speech Recognition. IEEE Transactions on Speech

and Audio Processing, vol. 6, no. 5, pp. 456–467.

Marcello Federico, Nicola Bertoldi, and Mauro Cetto-

lo. 2008. IRSTLM: an Open Source Toolkit for

Handling Large Scale Language Model. in Proc.

Of INTERSPEECH, Brisbane, Australia, pp.

1618–1621

Marcello Federico. 1999. Efficient Language Model

Adaptation Through MDI Estimation. In Proceed-

ings of the 6th European Conference on Speech

Communication and Technology, vol. 4, Budapest,

Hungary, pp. 1583–1586.

Nick Ruiz and Marcello Federico. 2012. MDI Adapta-

tion for the Lazy: Avoiding Normalization in LM

Adaptation for Lecture Translation. In Proceedings

of the International Workshop on Spoken Lan-

guage Translation, Hong Kong, China.

Peter E. Hart. Nils J. Nilsson. Bertram Raphael. 1972.

Correction to A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. SIGART

Newsletter 37: 28–29

Sameer Maskey, Abhinav Sethy. 2009. Resampling

Auxiliary Data for Language Model Adaptation in

Machine Translation for Speech. in ICASSP 2009,

Taiwan

Stanley F. Chen and Jushua Goodman. 1999. An Em-

pirical Study of Smoothing Techniques for Lan-

guage Modeling. Computer Science and Language,

4(13), pp. 359-393.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink,

Lukas Burget, Jan Cernocky. 2011. Empirical

Evaluation and Combination of Advanced Lan-

guage Modeling Techniques. In: Proceedings of the

12th Annual Conference of the International

Speech Communication Association (INTERS-

PEECH 2011). Florence, IT.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan

Honza Cernocky, Sanjeev Khudanpur. 2010. Re-

current Neural Network Based Language Model.

In Proc. INTERSPEECH2010. pp. 1045–1048

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,

and Christian Jauvin. 2003. A Neural Probabilistic

Language Model. In journal of machine learning

research 3, pp. 1137-1155.

92

