
Proceedings of the Student Research Workshop associated with RANLP 2013, pages 79–85,
Hissar, Bulgaria, 9-11 September 2013.

Random Projection and Geometrization of String Distance Metrics

Daniel Devatman Hromada
Université Paris 8 – Laboratoire Cognition Humaine et Artificielle

Slovak University of Technology – Faculty of Electrical Engineering and 
Information Technology
hromi@giver.eu

Abstract

Edit  distance  is  not  the  only  approach  how 
distance between two character sequences can 
be calculated. Strings can be also compared in 
somewhat  subtler  geometric  ways.  A 
procedure  inspired  by Random Indexing  can 
attribute  an  D-dimensional  geometric 
coordinate to any character N-gram present in 
the corpus and can subsequently represent the 
word as a sum of N-gram fragments which the 
string  contains.  Thus,  any  word  can  be 
described as a point in a dense N-dimensional 
space and the calculation of their distance can 
be realized by applying traditional  Euclidean 
measures. Strong correlation exists, within the 
Keats  Hyperion corpus,  between such cosine 
measure  and  Levenshtein  distance.  Overlaps 
between the centroid of Levenshtein distance 
matrix space and centroids  of vectors  spaces 
generated  by  Random  Projection  were  also 
observed.  Contrary  to   standard  non-random 
“sparse”  method  of  measuring  cosine 
distances  between  two  strings,  the  method 
based on Random Projection tends to naturally 
promote  not  the  shortest  but  rather  longer 
strings.  The  geometric  approach  yields  finer 
output range than Levenshtein distance and the 
retrieval  of  the  nearest  neighbor  of  text’s 
centroid  could  have,  due  to  limited 
dimensionality of Randomly Projected space, 
smaller complexity than other vector methods. 

Mèδεις ageôμετρèτος eisitô μου tèή stegèή

1 Introduction

Transformation  of  qualities  into  still  finer  and 
finer  quantities  belongs  among  principal 
hallmarks of the scientific method. In the world 
where  even  “deep”  entities  like  “word-
meanings”  are  quantified and co-measured by 
ever-growing  number  of  researchers  in 
computational linguistics (Kanerva et al.,  2000; 

Sahlgren,  2005)  and  cognitive  sciences 
(Gärdenfors,  2004),  it  is  of  no  surprise  that 
“surface” entities like “character strings” can be 
also  compared  one  with  another  according  to 
certain metric. 
    Traditionally, the distance between two strings 
is most often evaluated in terms of edit distance 
(ED) which is defined as the minimum number 
of  operations  like  insertion,  deletion  or 
substitution required to change one string-word 
into the other. A prototypical example of such an 
edit distance approach is a so-called Levenshtein 
distance  (Levenshtein,  1966). While  many 
variants  of  Levenshtein  distance  (LD)  exist, 
some extended with other operations like that of 
“metathese”  (Damerau,  1964), some  exploiting 
probabilist  weights  (Jaro,  1995), some 
introducing  dynamic  programming  (Wagner  & 
Fischer, 1974), all  these ED algorithms take as 
granted that notions of insertion, deletion etc. are 
crucial  in  order  to  operationalize  similarity 
between two strings.
    Within this article we shall argue that one can 
successfully  calculate  similarity  between  two 
strings  without  taking  recourse  to  any  edit 
operation  whatsoever.  Instead  of  discrete 
insert&delete  operations,  we  shall  focus  the 
attention  of  the  reader  upon  a  purely  positive 
notion,  that  of  “occurence of  a  part  within the 
whole”  (Harte,  2002).   Any  string-to-be-
compared shall  be understood as such a whole 
and any continuous N-gram fragment  observable 
within it shall be interpreted as its part.

2 Advantages of Random Projection 

Random  Projection  is  a  method  for  projecting 
high-dimensional  data into representations with 
less  dimensions.  In  theoretical  terms,  it   is 
founded on a Johnson-Lindenstrauss (Johnson & 
Lindenstrauss, 1984)  lemma  stating that a small  
set of points in a high-dimensional space can be  
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embedded into a space of much lower dimension  
in such a way that distances between the points  
are  nearly  preserved.  In  practical  terms, 
solutions  based  on  Random  Projection,  or  a 
closely related Random Indexing,  tend to yield 
high performance when confronted with diverse 
NLP problems like synonym-finding  (Sahlgren 
& Karlgren, 2002), text categorization (Sahlgren 
& Cöster, 2004), unsupervised bilingual lexicon 
extraction  (Sahlgren  &  Karlgren,  2005), 
discovery  of  implicit  inferential  connections 
(Cohen  et  al.,  2010)  or  automatic  keyword 
attribution to scientific articles (El Ghali et  al., 
2012).  RP distinguishes  itself  from other  word 
space models in at least one of these aspects:

1. Incremental: RP allows to inject on-the-
fly  new  data-points  (words)  or  their 
ensembles  (texts,  corpora)  into  already 
constructed  vector  space.  One  is  not 
obliged  to  execute  heavy  computations 
(like  Singular  Value  Decomposition  in 
case of Latent Semantic Analysis) every 
time new data is  encountered.

2. Multifunctional:  As  other  vector-space 
models, RP can be used in many diverse 
scenarios. In RI, for example, words are 
often  considered  to  be  the  terms  and 
sentences are understood as documents. 
In this article, words (or verses) shall be 
considered  as  documents  and  N-gram 
fragments which occur in them shall be 
treated like terms. 

3. Generalizable: RP can be applied in any 
scenario where one needs to encode into 
vectorial  form  the  set  of  relations 
between discrete  entities  observables at 
diverse  levels  of  abstraction  (words  / 
documents,  parts  /  wholes,  features  / 
objects,  pixels/images etc.).  

4. Absolute: N-grams and terms, words and 
sentences, sentences and documents – in 
RP all these entities are encoded in the 
same randomly constructed yet absolute  
space . Similarity measurements can be 
therefore  realized  even  among  entities 
which  would  be  considered  as 
incommensurable  in  more  traditional 
approaches1. 

There is, of course, a price which is being paid 
for  these  advantages:  Primo,  RP  involves 

1 In traditional word space models, words are considered 
to  be  represented  by  the  rows  (vectors/points)  of  the 
word-document matrix and documents to be its columns 
(axes).   In  RP,  both  words  (or  word-fragments)  and 
documents are represented by rows.

stochastic  aspects and its  application thus  does 
not guarantee replicability of results. Secundo, it 
involves two parameters D and S and choice of 
such  parameters  can  significantly  modify 
model’s performance (in relation to corpus upon 
which it is applied). Tertio: since even the most 
minute  “features”  are  initially  encoded  in  the 
same way as more macroscopic units like words, 
documents or text,  i.e. by a vector of length D 
“seeded” with D-S non-zero values, RP can be 
susceptible to certain limitations if ever applied 
on  data  discretisable  into  millions  of  distinct 
observable features. 

3 Method

The  method  of  geometrization  of  strings  by 
means  of  Random  Projection  (RP)  consists  of 
four  principal  steps.  Firstly,  strings  contained 
within  corpus  are  “exploded”  into  fragments. 
Secondly, a random vector is assigned to every 
fragment according to RP’s principles.  Thirdly, 
the  geometric  representation  of  the  string  is 
obtained as a sum of fragment-vectors. Finally, 
the distance between two strings can be obtained 
by  calculating  the  cosine  of  an  angle  between 
their respective  geometric representations.

3.1 String Fragmentation

We define the fragment F of a word W having 
the length of N as any continuous2 1-, 2-, 3-...N-
gram contained within W. Thus, a word of length 
1 contains 1 fragment (the fragment is the word 
itself),  words  of  length  2  contain  3  fragments, 
and,  more  generally,  there  exist  N(N+1)/2 
fragments for a word of length N.  Pseudo-code 
of the fragmentation algorithm is as follows:

function fragmentator;
for  frag_length (1..word_length) { 
    for offset (0..(word_length - frag_length)) { 

          frags[]=substr (word,offset,frag_length);
        }
     }

where substr()  is  a function returning from the 
string  word a  fragment  of  length  frag_length 
starting at specified offset. 

2 Note that in this introductory article  we exploit  only 
continuous N-gram fragments.  Interaction  of  RP with 
possibly other relevant patterns observable in the word – 
like  N-grams with  gaps  or  sequences  of  members  of 
diverse equivalence classes [e.g.  consonants/vowels] – 
shall be, we hope, addressed in our doctoral Thesis or 
other publications.
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3.2 Stochastic fragment-vector generation

Once fragments are obtained, we transform them 
into  geometric  entities  by  following  the 
fundamental precept of Random Projection:

To every fragment-feature F present in the 
corpus, let’s assign a random vector of length 
containing  D-S  elements  having  zero  values 
and S elements whose value is either -1 or 1.

The number of dimensions (D) and the seed 
(S)  are  the  parameters  of  the  model.  It  is 
recommended that S<<D. Table 1 illustrates how 
all  fragments  of  the  corpus  containing  only  a 
word3 “DOG”  could  be,  given  that  S=2, 
randomly projected in a 5-dimensional space.

Fragment Vector
D 0, 1, 0, 0, -1
O 1, 1, 0, 0, 0
G 0, 0, -1, 0, -1

DO -1, 0, -1, 0, 0
OG 0, 1, 0, 1, 0

DOG 0, 0, 0, -1, -1

Table 1: Vectors possibly assigned to the 
fragments of the word “dog” by RP5,2

3.3 String geometrization

Once random “init” vectors have been assigned 
to  all  word-fragments  contained  within  the 
corpus, the geometrization of all word-strings is 
relatively  straightforward  by  applying  the 
following principle:

The vector representation of a word X can 
be calculated as a sum of vectors associated to 
fragments contained in the word X.

Thus,  the  vector  representation  of  a  word 
“dog” would be [0, 3, -2, 0, -3]. Note also that 
this vector for the word “dog” is different from 
randomly initialized fragment-vector referring to 
the fragment “dog”. This is due to the fact that 
the vector space of “fragments” and “words” are 
two  different  spaces.  One  possible  way  how 
could one can collapse the fragment space with 
the  string  space  is  to  convolute  them  by 
Reflected Random Indexing (Cohen et al., 2010) 
–  such  an  approach,  however,  shall  not  be 
applied in a limited scope of this article.

3.4 String distance calculation

The string geometrization procedure calculates a 
vector  for  every  string  present  in  the  corpus. 
Subsequently, the vectors can be compared with 

3 The role of fragment is analogical to the role of a “term” 
in  Random Indexing.  And  the  role  of  the  “word”  is 
identical to the role that “context” plays  in RI. 

each  other.  While  other  measures  like  Jaccard 
index are sometimes also applied in relation to 
RI, the distance between words X and Y shall be 
calculated, in the following experiment,  in the 
most  traditional  way.  Id est,  as  a  cosine of  an 
angle between vectors VX and VY.

4 Experiment(s)

Two sets of simulations were conducted to test 
our hypothesis. The first experiment looked for 
both correlations as well as divergences between 
three  different  word-couple  similarity  data-sets 
obtained  by  applying  three  different  measures 
upon  the  content  of  the  corpus.   The  second 
experiment focused more closely upon overlaps 
among  the  centroids  of  three  diverse  metric 
spaces under study.

4.1 Corpus and word extraction

ASCII-encoded version of the poem “The Fall of 
Hyperion”  (Keats, 1819) was used as a corpus 
from which the list of words was extracted by

1. Splitting the poem into lines (verses).
2. Splitting  every  verse  into  words, 

considering  the  characters  [  :;,.?!()]  as 
word separator tokens.

3. In  order  to  mark  the  word  boundaries, 
every word was prefixed with ^ sign and 
post-fixed with $ sign.

4. All  words  were  transformed  into 
lowercase.

  Corpus  has  size  of  22812 bytes  representing 
529  lines  which  contain  the  total  number  of 
Nw=1545  distinct  word  types  exploded  into 
NF=22340 distinct fragments. 

4.2 “Word couple” experiment

Three  datasets  were  created,  all  containing  the 
list of all possible (i.e. Nw * Nw = (1545 * 1545) /
2  =1193512)  distinct  word-couples.  For  every 
dataset, a string distance was calculated for every 
word  couple.  Within  the  first  dataset,  the 
distance was determined according to traditional 
Levenshtein distance metrics. For second dataset, 
an  RPD  distance  has  been  calculated  by 
measuring word couple‘s cosine distance within 
the  vector  space  constructed  by  Random 
Projection  of  words  fragments  set  up  with 
parameters  D=1000,S=5.  The  third  dataset 
contains values obtained by measuring the cosine 
measure between two sparse non-random vector 
representations of two different words , whereby 
the features were obtained by means of the same 
fragmentation algorithm as in the case of RPD, 
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but without Random Projection. In order to keep 
this  scenario  as  pure  as  possible,  no  other 
processing (e.g. tf-idf etc.) was applied and the 
values  which  we  shall  label  as  „geometric 
distance“  (GD)   denote  simply  the  cosine 
between  two  vectors  of  a  non-stochastically 
generated sparse fragment-word count matrix.

4.2.1 Results

Figure 1 shows relations between LD and RPD 
distances  of  all   possible  couples  of  all  words 
contained in the Hyperion corpus. Both datasets 
seem to be strongly significantly corellated both 
according to Spearman‘s rho measure (p < 2.2e-
16)  as  well  as  according to Pearson‘s  product-
moment  correlation  (p  <  2.2e-16,  cor  = 
-0.2668235).  While  fifteen  different  LDs  from 
the  range  of  integers  <0,  15>  were  observed 
among  words  of  corpus,  one  could  distinguish 
252229  diverse  real-numbered  RPD  values 
limited to interval <0, 1>.

Figure 1: Scatter plot displaying relations between 
Levenshtein distances and cosine distances measured 

in the vector space constructed by RI1000,5

  
String  distance  measured  in  the  space 
constructed by  RP1000,5   also strongly correlates 
(Pearson  correlation  coefficient  =  0.992; 
Spearman rho = 0.679; minimal p < 2.2e-16 for 
both tests) with a  GD cosine measure exploiting 
a non-deformed fragment-word matrix.
 An important difference was observed, however, 
during a more „local“ & qualitative analysis of 
results  produced by the two vectorial  methods. 
More  concretely:  while  non-stochastic  „sparse“ 
cosine GD distance tends to promote as „closest“ 
the  couples  of  short strings,  RPD  yields  the  
highest score for couples of  long words. This is 
indicated  by  the  list  of  most  similar  word-

couples  generated  by  three  methods  present  in 
Table 2.

GD RPD
a
’

 vessels  
vessel

it
i    

comfort 
comforts

i
’    

sorrows
sorrow

at
a    

’benign 
benign   

o
so    

temples 
temple

o
of    

changing 
unchanging

as
a     

stream
   streams   

o
or   

immortal’s
immortal   

’i
i   

breathe
breath

an
a   

trance
tranced

Table 2: Ten most similar world couples according to 
non-random “sparse” geometric distance (GD) and 

Randomly Projected Distance

4.3 The “centroid” experiment

Three  types  of  concrete  word-centroids  were 
extracted from the corpus.  A string having the 
smallest  overall  LD to  all  other  strings  in  the 
corpus  shall  be  labeled  as  the  “Levenshtein 
centroid” (LC). A string having the maximal sum 
of  cosines  in  relation  to  other  words  shall  be 
labeled as the “Cosinal centroid” (CC). Contrary 
to LC and CC, for calculation of which one has 
to calculate distances with regard to all words in 
the corpus, the “Geometric Centroid” (GC) was 
determined  as  a  word  whose  vector  has  the 
biggest  cosine  in  regard  to  “Theoretical 
Centroid” (GC) obtained in a purely geometric 
way  as  a  sum  of  all  word-vectors.  Stochastic 
CCRP and  GCRP calculation  simulations  were 
repeated in 100 runs with D=1000, S=5.

4.3.1 Results

The word “are” was determined to be the LC of 
Hyperion corpus with average LDARE,X = 4.764 to 
all words of the corpus. The same word are was 
ranked,  by a  non-stochastic  “sparse” geometric 
distance algorithm, as 3rd most central CC and 
36th most closest  term to GC . Table 3 shows 
ten terms with least overall LD to all other words 
of the corpus (LC), ten terms with biggest cosine 
in relation to all other terms of the corpus (CCGD) 
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and ten terms with biggest  cosine in  regard to 
hypothetical  Theoretical  Centroid  (GCGD)  of  a 
sparse  non-projected  space  obtained  from  the 
Hyperion corpus.

Rank LC CCGD GCGD

1 are charm a
2 ore red o
3 ate arm I
4 ere a ‘
5 one me he
6 toes hard to
7 sole had at
8 ease reed an
9 lone domed me

   10 here are as

Table 3: Ten nearest neighbor words of three types of 
non-stochastic centroids

 
  Shortest  possible  strings  seem to  be  GCGD’s 
nearest neighbors. This seems to be analogous to 
data presented on Table 2.  In this sense does the 
GCGD   method  seem  to  differ  from  the  CCGD 

approach which tends to promote longer strings.
   Such a marked difference in behaviors between 
GC and CC approaches was not observed in case 
of  spaces  constructed  by  means  of  Random 
Projection.  In  100  runs,  both  GC  and  CC 
centered  approaches  seemed  to  promote  as 
central  the  strings  of  comparable  content  and 
length4. As is indicated by Table 4, the LC “are” 
turned out to be the closest (i.e.  Rank 1, when 
comparing with Table 3) to all other terms in 6% 
of  Random Projection runs.  In  6% of  runs the 
same term was labeled as the nearest neighbor to 
the geometrical centroid of the generated space. 
Other  overlaps  between  all  used  methods  are 
marked by bold writing in Tables 3 and 4. 

Word CCRPD GCRPD

see 20 28
he 11 8
are 6 6
ore 5 6
ere 4 5
set 6 5
she 5 4
sea 4 4
a 9 4

red 1 3

Table 4: Central terms of Randomly Projected spaces 
and their frequency of occurence in 100 runs

  Analogically to the observation described in the 
last paragraph of the section 4.2.1, it can be also 
observed  that  the  strings  characterized  as 

4 In fact only in 22 runs did  GCRPD  differ from CCRPD 

“closest”  to  the  Theoretical  Centroid  of  vector 
spaces generated by Random Projection tend to 
be longer than “minimal” string nearest to GCGD 

determined  in  the  traditional  non-stochastic 
feature-word vector space scenario.

5 Discussion

When it comes to  CCRP-calculation run lasted, 
in average, CCRPD-detection = 90 seconds, thus being 
almost  twice  as  fast  than  the  LC-calculation 
executed  on  the  very  same  computer  which 
lasted  twice  the  time  LCdetection=  157  s  for  the 
same  corpus,  indicating  that  the  computational 
complexity of our PDL  (Glazebrook et al., 1997) 
implementation of  CCRP-detection is lesser than 
the complexity of LC-detection based on PERL’s 
Text::Levenshtein implementation of LD. 

When  it  comes  to  the  computational 
complexity  of  the  GC-calculation,  it  is  evident 
that GC is determined faster and by less complex 
process than LCs or CCs . This is so because in 
order to determine the GCRP of N words there is 
no need to construct an N * N distance matrix. 
On the contrary,  since every word is  attributed 
coordinates  in  a  randomly-generated  yet 
absolute space,  the  detection  of  a  hypothetic 
Geometric  Centroid  of  all  words  is  a  very 
straightforward and cheap process, as well as the 
detection of GC’s nearest word neighbor.. 

And since in RP, the length of GC-denoting 
vector  is limited to a relatively reasonable low 
number of elements (i.e. D = 1000 in case of this 
paper), it is of no surprise that the string closest 
to GC shall be found more slowly by a traditional 
“sparse vector” scenario whenever the number of 
features  (columns)  >   D.  In  our  scenario  with 
NF=22340 of  distinct  features,  it  was almost  4 
times faster to construct the vector space + find a 
nearest word to GC of the Randomly Projected 
space han to use a “sparse” fragment-term matrix 
optimized  by  storing  only  non-zero  values 
(GCRPD-NN-detection ~ 6 sec ; GCGD-NN-detection ~ 22 sec).

Other  thing worthy of  interest  could be that 
contrary to  a  “sparse”  method which  seems to 
give  higher  score  to  shorter  strings,  somewhat 
longer  strings  seem to  behave  as  if  they  were 
naturally  “pushed  towards  the  centroid”  in  a 
dense space generated by RP.  If such is, verily, 
the  case,  then  we  believe  that  the  method 
presented hereby could be useful, for example, in 
domains  of  gene  sequence  analysis  or  other 
scenarios  where  pattern-to-be-discovered  is 
“spread out” rather than centralized. 
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In practical terms, if ever the querying in RP 
space  shall  turn  out  to  have  lesser  complexity 
than other vector models,  our method could be 
useful within a hybrid system as a fast stochastic 
way  to  pre-select  a  limited  set  of  “candidate” 
(possibly locally optimal) strings which could be 
subsequently confronted with more precise, yet 
costly, non-stochastic metrics ultimately leading 
to discovery of the global optimum.

Asides  above-mentioned  aspects,  we  believe 
that  there  exists  at  least  one  other  theoretical 
reason  for  which  the  RP-based  geometrization 
procedure could deem to be a worthy alternative 
to  LD-like  distance  measures.  That  is:  the 
cardinality  of  a  real-valued  <0,  1>  range  of  a 
cosine  function  is  much  higher  than  a  whole-
numbered  <0,  max(length(word))>  range 
possibly  offered  as  an  output  of  Levenshtein 
Distance.  In  other  terms,  outputs  of  string 
distance functions based on trigonometry of RP-
based vector spaces are more subtler, more fine-
grained, than those furnished by traditional LD. 
While  this  advantage  does  not  hold  for 
“weighted”  LD  measures  we  hope  that  this 
article  could  motivate  future  studies  aiming  to 
compare “weighted” LD and RPD metrics.

When  it  comes  to  the  feature  extracting 
“fragment  explosion”  approach,  it  could  be 
possibly  reproached  to  the  method  proposed 
hereby  that  1)  the  fragmentation  component 
which  permutes  blindly  through  all  N-grams 
presented  in  the  corpus  yields  too  many 
“features”; that 2) that taking into account all of 
them during the calculation of the word’s final 
vector is not necessary and could even turn to be 
computationally  counter-productive;  or  that  3) 
bi-grams and tri-grams alone give better results 
than larger N (Manning et al., 2008). A primary 
answer to such an ensemble of reproaches could 
be, that by the very act of projecting data upon 
limited set of same non-orthogonal dimensions, 
the  noise could simply cancel  itself  out5.  Other 
possible  answer  to  the  argument  could  be  that 
while  the  bi&tri-gram argument  holds  well  for 
natural language structures, the method we aim 
to propose here has ambitions to be used beyond 
NLP (e.g. bio-informatics) or pre-NLP (e.g. early 
stages  of  language  acquisition  where  the  very 
notion of N-gram does not make sense because 
the  very  criterion  of  sequence  segmentation  & 
discretization  was  not  yet  established).  At  last 

5 And this “noise canceling property” could be especially 
true for RP as defined in this paper where the rare non-
zero values in the random “init” vectors  can point  in 
opposite directions (i.e. either -1 or 1).

but not least we could counter-argue by  stating 
that often do the algorithms based on a sort of 
initial blind “computational explosion of number 
of features” perform better than those who do not 
perform such explosion, especially when coupled 
with  subsequent  feature   selection  algorithms. 
Such is  the  case,  for  example,  of  an approach 
proposed by Viola & Jones in (Viola & Jones, 
2001)  which  caused  the  revolution  in  the 
computer  vision  by  proposing  that  in  order  to 
detect  an  object,  one  should  look  for 
combinations of pixels instead of pixels.

In  this  paper,  such  combinations  of  “letter-
pixels”  were,  mutatis  mutandi,  called 
“fragments”.  Our  method departs  from an idea 
that  one  can,  and  should,  associate  random 
vectors to such fragments. But the idea can go 
further. Instead of looking for occurrence of part 
in  the  whole,  a  more  advanced   RI-based 
approach shall  replace the notion of  “fragment 
occuring in the word” by a more general notion 
of “pattern which matches the sequence”. Thus 
even the vector associated to pattern /d.g/ could 
be taken into account during the construction of a 
vector representing the word “dog”.

Reminding  that  RP-based  models  perform 
very well when it comes to offering solutions to 
quite  “deep”  signifiée-oriented  problems,  we 
find it difficult to understand why could not be 
the same  algorithmic machinery applied to the 
problems  dealing  with  “surface”,  signifiant-
oriented  problems,  notably  given  the  fact  that 
some  sort  of  dimensionality  reduction  has  to 
occur  whenever  the  mind  tries  to  map  >4D-
experiences  upon  neural  substrate  of  the  brain 
embedded in 3D physical space. 

Given  that  all  observed  correlations  and 
centroid overlaps indicate that the string distance 
calculation  based  on  Random Projection  could 
turn out to be a useful substitute for LD measure 
or even other more fine-grained methods.  And 
given  that  RP  would  not  be  possible  if  the 
Johnson-Lindenstrauss’s lemma  was not  valid, 
our results could be also interpreted as another 
empirical  demonstration  of  the  validity  of  the 
JL-lemma.
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