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Abstract

Definition Extraction (DE) and terminol-
ogy are contributing to help structuring
the overwhelming amount of information
available. This article presents KESSI
(Knowledge Extraction System for Scien-
tific Interviews), a multilingual domain-
independent machine-learning approach
to the extraction of definitional knowl-
edge, specifically oriented to scientific in-
terviews. The DE task was approached as
both a classification and a sequential la-
belling task. In the latter, figures of Pre-
cision, Recall and F-Measure were simi-
lar to human annotation, and suggest that
combining structural, statistical and lin-
guistic features with Conditional Random
Fields can contribute significantly to the
development of DE systems.

1 Introduction

We present and discuss the process of building
and evaluating a DE system for educational pur-
poses. Aimed at exploiting the genre of scientific
interviews, and envisaged as a time-saving tool
for semi-automatically creating listening compre-
hension exercises, we present a Knowledge Ex-
traction System for Scientific Interviews (KESSI).
It is based on the theoretical and methodologi-
cal foundations of DE, the task to automatically
identify definitional sentences within texts (Nav-
igli and Velardi, 2010).

KESSI is a DE system that relies solely on
machine-learning techniques, which has the ad-
vantage of overcoming the domain-specificity
and language dependence of rule-based methods
(Del Gaudio et al., 2013). In order to train and test
our model, the SMPoT (Science Magazine Pod-
cast Transcripts) corpus was compiled and anno-
tated with linguistic, terminologic and definitional
information.
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Two main contributions emerge from the work
here presented. Firstly, it provides an analysis and
discussion of the genre of scientific interviews,
and examines its potential for NLP applications.
We hypothesize that these interviews constitute a
valuable source of information, as many scientific
disciplines are covered, but dealt with in a standard
register rather than the highly formal and struc-
tured register of technical manuals or scientific pa-
pers or books. Scientific interviews also present
the audience with turntaking, courtesy and prag-
matic elements that can prove useful for linguis-
tic research as well as the development of Natu-
ral Language Processing tools. Secondly, promis-
ing results that border or go beyond 90% in Preci-
sion and Recall demonstrate that using CRF for
DE is a viable option. These results also seem
to suggest that combining linguistic information
(surface forms, Part-of-Speech and syntactic func-
tions), statistical information (word counts or tf-
idf) and structural information (position of the to-
ken within the document, or whether it is the in-
terviewer or the interviewee who speaks) can con-
tribute to the design of DE systems.

2 Related Work

It can be argued that in general, most ap-
proaches to automatic DE rely on rule-based meth-
ods. These have ranged from verb-matching
(Rebeyrolle and Tanguy, 2000; Saggion and
Gaizauskas, 2004; Sarmento et al., 2006; Stor-
rer and Wellinghoff, 2006) to punctuation (Mure-
san and Klavans, 2002; Malaisé et al., 2004;
Séanchez and Marquez, 2005; Przepiorkowski et
al., 2007; Monachesi and Westerhout, 2008) or
layout features (Westerhout, 2009). It seems rea-
sonable to argue that there are three main prob-
lems when approaching DE as a pattern-matching
task (Del Gaudio et al., 2013): Firstly, it is nec-
essary to start almost from scratch, as it is nec-
essary to look for specific patterns which appear
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Feature

Description

Pairs word-lemma

Pairs lemma + POS

Who speaks

Tf-1df + surface form + lemma

In a two-word window, we look at combinations surface form +
lemma. In our example, this would be [it + ,], [it + lasts], [it +
last], [last + essentially], and so on.

In a two-word window, we would retrieve features like [it +
V_PRES_SG3], [V_PRES_SG3 + essentially] or [essentially +
ADV].

We focus on who mentions the current token. In our example, the
interviewee.

In a two-word window, we would retrieve features like [3.32 +
lasts + essentially] or [3.64 + essentially + forever]. Note that it
it is possible to retrieve features from instances that are after the
current token.

Table 1: Some of the features used for training the CRF model.

repeatedly in definitions. Secondly, these rules
are language-dependent. Thirdly, they are also
domain-dependent, making it difficult to extend
them beyond the domain of application to which
they were initially intended.

In order to overcome these problems, machine-
learning techniques can be incorporated to the
process. The most widely used algorithms have
been Naive Bayes, Maximum Entropy or Sup-
port Vector Machines, in the case of Fahmi
and Bouma (2006), Naive Bayes and Maximum
Entropy (Rodriguez, 2004), genetic algorithms
(Borg, 2009) or balanced random forests, in
Degérski et al. (2008a; 2008b) and Westerhout
(2010). Concerning unsupervised approaches,
Zhang (2009) used a bootstrapping algorithm for
the extraction of definitions in Chinese.

3 The SMPoT Corpus: Compilation and
Annotation

We design a corpus following the criteria elicited
by McEnery and Wilson (2001). The corpus con-
sists of 50 fully annotated interview transcripts.
Table 2 summarizes the size of the corpus in terms
of words, sentences, terms and definitions.

Unit type | Count

Words 389293
Sentences 15315
Terms 26194
Definitions | 570

Table 2: Raw counts for the SMPoT corpus
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3.1 Preprocessing

After manually downloading and converting the
pdf files from the Science Magazine Website',
these were parsed using the dependency parser
Machinese Syntax (Tapanainen and Jérvinen,
1997). In this way, linguistic information such
as lemma, Part-of-Speech, syntactic functions or a
word’s position in a dependency tree is provided.

Once the documents were collected, converted,
pre-processed and automatically parsed, the next
step was to semi-automatically annotate the termi-
nology. For this, we benefited from an API for
Python of the Yahoo! Term Extractor (also known
as Yahoo! Content Analysis 2). Terms were iden-
tified, and <Term></Term> tags were inserted
to the xml document. Since terms can span mul-
tiple words, the <Term></Term> tags were in-
troduced as parent nodes of the <token> tags.
When queried, the Term Extractor API yields a list
of terms, but its results depend on the size of the
input text. This means that each document of the
corpus had first to be split in sentences, and then
each sentence was queried in order to preserve a
high recall.

3.2 Annotating Definitions

This annotation schema builds up on previous
work by Sierra et al. (2006) and Westerhout and
Monachesi (2007). It is argued that in a textual
genre like scientific interviews, where a certain de-
gree of specificity and technical jargon is present,

"http://www.sciencemag.org/site/
multimedia/podcast/

http://developer.yahoo.com/
contentanalysis
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Figure 1: Summary of the steps involved in the compilation and annotation of the corpus.

a classification that looks at the patterns of the def-
initions alone, or at their information alone, might
prove insufficient to capture the complexity of the
way information is presented. Table 3 shows the 5
most frequent types of this two-dimensional clas-
sification, as well as their count and an example of
each.

So far, the annotation process (summarized in
Figure 1) has been examined, which consisted in
automatic linguistic markup, semi-automatic ter-
minology identification, and manual definition la-
belling and classification.

4 The Development of KESSI

Once the dataset is compiled and enriched, and can
be used for training and testing purposes, we ap-
proach the DE task as (1) a binary classification
task, where each sentence is labeled as has_def or
no_def, and (2) a sequential labeling task, where
each token is tagged according to whether it is In-
side, Outsideor at the Beginning of a definitional
clause.

4.1 Binary Classification

Using the Weka workbench (Witten and Frank,
2005), we train a set of machine-learning algo-
rithms in order to classify unseen sentences as
containing or not containing a definition. How-
ever, a previous step seems necessary in order
to handle properly the imbalanced dataset is-
sue. According to Del Gaudio et al. (2013),
few works have specifically addressed this issue
through some kind of sampling. We take an ap-
proach similar to Degdrski et al. (2008b), where
a number of subsampled training datasets are used
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to increase the ratio of positive instances, specif-
ically 1:1, 2:1 and 5:1. Moreover, simple lin-
guistically motivated features were used. We ex-
tracted the 500 most frequent ngrams (n = 1,
2, 3), and used the linguistic information pro-
vided by the parser. This resulted in 1-3grams for
surface forms, Part-Of-Speech and syntactic func-
tions. In addition, we also added pattern-based
features, like the presence or absence of the se-
quence “which is” or having a term followed by
the verb “to be”. Finally, the algorithms selected
were Naive Bayes, Decision Trees, SVM, Logistic
Regression and Random Forests.

4.2 Sequential Labelling

Building up on the premise that both linguis-
tic and structural features can be exploited for
automatic DE, we propose a method to label
each token in a sequence with B_.DefClause,
I DefClause or O.DefClause tags (which
correspond to whether a token is a the begin-
ning, inside or outside a definition). For each sen-
tence, each token has been manually annotated
with these tags. Whenever a sequence of words
that form a definition is found (what we refer as
Definitional Clause), the tokens that are part of it
are additionally labelled as Beginning, Inside or
Outside for three more categories: Term, Defini-
tional Verb and Definition. See Figure 2 for an
illustrative example of this two-layered annotation
schema.

4.2.1 Conditional Random Fields

Conditional Random Fields (Lafferty and McCal-
Ium, 2001) have been used extensively in NLP, e.g.



Type of Definition Frequency Example

Pattern type = is def 135 Clicker’s an electronic response device that’s

Information type = intensional keyed to the instructors computer, so the in-
structor is getting an answer and can grade it.

Pattern type = verb def 111 Mice develop regulatory T- cells against non-

Information type = functional inherited maternal alloantigens as a result of
fetal exposure.

Pattern type = verb def 52 Nano-ear is made from a microscopic particle

Information type = extensional of gold that is trapped by a laser beam.

Pattern type = is def 44 Iridium is not very common on Earth, but it is

Information type = functional very common in asteroids.

Pattern type = punct def 32 (...) female determinant gene, S-ribonuclease

Information type = synonymic

gene.

Table 3: Most common types of definitions according to a Pattern/Information-based classification

Chinese Word Segmentation (Sun et al., 2013),
Named Entity Recognition (Fersini and Messina,
2013), Sentiment Analysis (Jakob and Gurevych,
2010) or TimeML event recognition (Llorens et
al., 2010). They are undirected graphical mod-
els where the dependencies among input variables
x do no need to be explicitly represented. This
allows to use richer and more global features of
the input data, e.g. features like Part-of-Speech or
ngram features of surrounding words.

4.2.2 Feature Selection

The definition of features is crucial for the archi-
tecture of the system (Llorens et al., 2010). We
hypothesize that combining linguistic, statistic and
structural information can contribute to the im-
provement of DE systems. For each token, these
are the features extracted:

Term Frequency: Raw count for the current
token within the document.

Tf-idf: Relative frequency score, which takes
into account not only the token count within
the current document, but its spread across
the collection.

Token index: The position of the token in the
document.

Is_term: Whether the token is a term or not.
Surface form: The surface form of the token.

Lemma: The token’s lemma. In the case of
extremely highly collocated multiword units,
Machinese Syntax groups them together in

66

one token. They are left as-is, regardless of
potential capitalization.

Part-of-Speech: Part-of-Speech of the token,
including subtypes and number.

Syntactic Function:
dency grammar.

Following a depen-

Who speaks: Whether it is the interviewer,
the interviewee, or a dangling token, in which
case it is tagged as narrator.

BIO_term: Regardless of the is_term la-
bel, we also investigate the token’s position
within a term BIO tagging scheme.

BIO_DefVerb: Labels the connecting verb
between a term and a definition.

BIO _Definition: Labels the chunk that con-
stitutes actual the definition.

Since CRF allow the encoding of long-distance
relations, these features are combined in order to
capture relevant combinations of features occur-
ring before and after the current token (see Table
4).

5 Evaluation

The performance of KESSI was evaluated from
two different perspectives. The reason for this be-
ing that it was necessary to account for the two ap-
proaches (binary classification and sequential la-
belling), on one hand, and the ultimate purpose of
the system, on the other. Firstly, figures of Preci-
sion, Recall and F-Measure are provided and dis-
cussed for the classification approach, consider-
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Figure 2: Visualization of the tagging schema.

Feature

Description

Pairs word-lemma

Pairs lemma + POS

Who speaks

Tf-1df + surface form + lemma

In a two-word window, we look at combinations surface form +
lemma. In our example, this would be [it + ,], [it + lasts], [it +
last], [last + essentially], and so on.

In a two-word window, we would retrieve features like [it +
V_PRES_SG3], [V_PRES_SG3 + essentially] or [essentially +
ADV].

We focus on who mentions the current token. In our example, the
interviewee.

In a two-word window, we would retrieve features like [3.32 +
lasts + essentially] or [3.64 + essentially + forever]. Note that it
it is possible to retrieve features from instances that are after the
current token.

Table 4: Some of the features used for training the CRF model.

ing different resampling setups as well as differ-
ent algorithms. Finally, Precision, Recall a nd F-
Measure are reported on a high-granularity basis,
in a hard evaluation, where only exact matching of
a token was considered a true positive.

5.1 Classification Approach

Firstly, we examine results obtained with a simple
ngram feature selection, where the 500 most fre-
quent surface form uni, bi and trigrams are used
as features for each sentence vector. Subsampling
was carried out because we were more interested
in correctly extracting positive instances, i.e. in-
creasing Recall in is_def sentences. The highest F
scores for positive instances were obtained under
the following configurations:

1. Naive Bayes - Original Dataset 10-fold
Cross validation
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2. Decision Trees - Subsample 2:1 - Test on
original dataset

In setup (I), 207 positive instances out of 570
were correctly extracted, which yields a Recall of
.36 for positive instances. However, by subsam-
pling the training set to a 1:1 ratio (i.e. randomly
removing negative instances until the remaining
set contains the same number of positive and neg-
ative instances), it is possible to increase the de-
sired results. As this approach cannot be tested by
cross-validation, a supplied test set from the origi-
nal dataset is used for testing. This test set did not
overlap with the training set.

In (II), Recall increases to up to .6, as the sys-
tem correctly extracts 66 out of 110 positive in-
stances. Precision, however, remains low (P =
.16). By incorporating more features where POS
and syntactic functions are combined, we increase



Original S-1000

S-10000

All-S  P=0.97; R=0.89; F=0.93 P=0.03; R=0.98; F=0.07 P=0.08; R=0.48; F =0.15

1-S

P=0.97; R=0.90; F=0.93 P=0.03; R=0.99; F=0.06 P=0.47; R=0.95; F=0.63

Table 5: Results for the token-wise evaluation of KESSI

Recall in positive instances. For example, SVM
trained with a 1:1 subsample training set shows an
increase of up to .78. The effect this has on Preci-
sion is that it lowers it to .11. Finally, let us high-
light the setup that obtained the highest recall for
positive instances: Naive Bayes algorithm trained
with a subsampled 1:1 training set. Recall reaches
.89, with the consequent drop in precision to .07.

We can conclude that combining surface form,
Part-of-Speech and syntactic functions ngrams as
features in a subsampled training set of 1:1 serves
as the highest performing model. We consider a
good model the one that correctly classifies the
highest number of positive instances (i.e. those
sentences that contain a definition), with the mini-
mum loss with respect to negative instances.

5.2 CRF Evaluation

We propose a token-wise evaluation where each
word is matched against the gold standard. If its
BIO. DefClause tag does not match, it is con-
sidered incorrect. This has the advantage of know-
ing beforehand how many tokens we have, which
is crucial for being able to compute Precision, Re-
call and F-Measure. It could be argued, however,
that such approach is too restrictive, as it will con-
sider as incorrect a B_DefClause token even if
it is compared with an I_DefClause token, and
this might not be always as accurate. In Table 5,
the performance of KESSI is shown for three dif-
ferent sampling setups: Original train-set (Orig-
inal), subsample of negative sentences down to
1000 (S-1000), and subsample of negative sen-
tences down to 10000 (S-10000). For testing, a
cut-off of the same size as in the Classification ap-
proach is used. Our test sets contain 20% of the
overall positive instances, which in this case are
either B.DefClause or I_DefClause tokens.
This amounts to 111 definitions. Our test set con-
sisted in, first, a dataset where all sentences are
split according to their original format (All-S), and
second, a dataset where all the instances are put
together with no sentence boundary among them
(1-S).

These results reveal that a radical resampling
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(leaving only 1000 negative instances), when us-
ing Conditional Random Fields, does not have a
dramatic effect in performance. While Recall in-
creases almost a 10% (from 0.89 to 0.98), Preci-
sion suffers from a strong decrease, in this case
94% (from 0.97 to 0.03). With scores nearing or
above 90% in Precision, Recall and F-Measure, it
seems safe to assume that using linguistic, statis-
tic and structural features combined with CRF im-
prove dramatically a DE system. In compari-
son with previous work in this field, where most
datasets consisted in more structured text than in-
terview transcripts, it also seems reasonable to
claim that this method is better suited for more un-
structured language.

6 Conclusions

Different stages involved in the design and de-
velopment of a DE system have been presented.
Once the criteria for the taxonomy were clear, an
annotation task was carried out on 50 documents
from The Science Magazine Podcast, where lin-
guistic information, terminology and definitions
were identified and classified. Then, the DE task
was approached both as a classification problem
and as a sequential labelling problem, and Preci-
sion, Recall and F-Measure results indicate that
combining linguistic, structural and statistic fea-
tures with Conditional Random Fields can lead to
high performance. We propose the following di-
rections for future work: Firstly, expanding the
size and the dataset and incorporating additional
features to the definition classification. Secondly,
trying additional resampling techniques like the
SMOTE algorithm in order to oversample the mi-
nority class. This algorithm has been applied suc-
cessfully in this field (Del Gaudio et al., 2013).
Thirdly, ensuring a more reliable annotation by in-
corporating additional annotators and computing
some kind of agreement metric would seem advis-
able as in some cases a false positive might be due
to the fact that the annotator missed a good defini-
tion. And finally, providing sentence-wise evalua-
tion scores for the CRF approach, so that the two
methods showcased could be evenly compared.
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