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Abstract

The performance of NLP classifiers
largely depends on the quality of the
features considered for prediction (feature
engineering). However, as the number of
features increases, the more likely overfit-
ting becomes and performance decreases.
Also, due to the very large number of
features, only slimple linear classifiers are
considered, thus disregarding potentially
predictive non-linear combinations of
features. Here we propose an automated
method for feature induction, which
selects and includes in the model features
and feature combinations which are likely
to be useful for the prediction.The result-
ing model relies on a smaller feature set,
is non-linear and is more accurate than
the baseline, which is the model trained
on the entire feature set. The method
uses a greedy filtering approach based
on various univariate measures of feature
relevance and it is very fast in practice.
Also, our feature induction method is
independent of the classifier used: we
applied it together with Naive Bayes and
Perceptron models.

1 Introduction

NLP classification tasks are characterized by a
very large number of features. When the num-
ber of available samples is smaller (for example
several orders of magnitude less samples), over-
fitting can occur, leading to poor performance. In
order to avoid overfitting, feature selection is com-
monly applied. In (Guyon and Elisseeff, 2003),
the main approaches to feature selection are sum-
marized: filter, wrapper and embedded methods.
Filters use some scoring measure to quantify the
predictivity of each feature independently. Then,
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features are ranked and only the top scoring ones
are kept in the final model. The most popular
measures for feature predictivity are Mutual In-
formation (Lewis, 1992; Taira and Haruno, 1999),
Information Gain (Uguz, 2011; Yang and Peder-
sen, 1997), Kullback-Leibler divergence (Lee and
Lee, 2006; Schneider, 2004; Lee et al., 2011),
Chi-squared statistics (Yang and Pedersen, 1997;
Mesleh, 2007), Fisher statistics, Pearson corre-
lation, etc. In (Yang and Pedersen, 1997) and
(Forman, 2003), comparisons of the most popular
methods are presented. Filter methods are com-
putationally fast, but the univariate scoring can
lead to the elimination of features that are use-
ful only in combinations (Guyon and Elisseeff,
2003). Wrapper methods (Kohavi and John, 1997)
can score subsets of features directly, by evalu-
ating the performance of the classifier on the re-
spective subset. A strategy of iteratively updat-
ing the subset of features is used, with the goal of
finding a (close to) optimal subset. Forward se-
lection, backward elimination, branch-and-bound
(Narendra and Fukunaga, 1977), simulated an-
nealing (Ekbal et al., 2011), genetic algorithms
(Yang and Honavar, 1998) are among the most
popular strategies. Wrapper methods tend to be
slow in practice, because a classifier needs to be
trained at each iteration. Embedded methods are
explicitly optimizing an objective function that in-
corporates feature selection. In general, the objec-
tive is an expression of the trade-off between the
goodness of fit and the number of variables that
participate in the model. For example, [; penal-
ties (Haffner et al., 2005) are combined with the
likelihood objective in maximum entropy models
in order to keep the number of predictors small.

For most NLP classification tasks, the num-
ber of features is very large. If no experts are
available for selecting the most promising features
for a specific task, the choice is really vast. In
(Kamolvilassatian, 2002), the authors systemati-
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Figure 1: Classifier models used for a) document classification and b) named entity recognition. Linear
models are represented with gray bars and non-linear models with black.

cally list of all features (with parameters), such
as for example n-grams (n is a parameter), con-
text of words, part of speech, lemmas, stems, etc.
Owing to the very large number of features, lin-
ear (or log-linear) classifiers are preferred, because
they are robust and can be trained fast. Simple
search in Google Scholar shows that most fre-
quently used models for document classification
are Naive Bayes, linear SVMs (Cortes and Vapnik,
1995), Perceptrons (Rosenblatt, 1957) and Max-
imum Entropy (Berger et al., 1996) (Figure 1a).
In contrast, non-linear models such as non-linear
SVMs and Random Forest (Breiman, 2001) and
Classification trees (Breiman et al., 1984) are sig-
nificantly under-represented. For Named Entity
Recognition, Maximum Entropy and CRFs (Laf-
ferty, 2001) are mostly used, but other linear mod-
els like Perceptron, Naive Bayes and linear SVMs
are employed (Figure 1b). Non-linear models are
significantly less frequent. Feature induction can
be used to efficiently introduce non-linearity in
large models, in the form of feature conjunctions.
As the space of all conjunctions of arbitrary length
is very large (2#featuresy o oreedy search ap-
proach is applied for selecting the most promis-
ing conjunctions with reasonable computational
cost. In (McCallum, 2003), a method for induc-
ing features and conjunctions especially tailored
to CRF models is proposed. Iteratively, the most
promising feature or conjunction to be added to
the model is identified. To this end, a gain func-
tion is defined, for evaluating the improvement of
the likelihood target upon the addition of the fea-
ture. Conjunctions are considered only among the
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top scoring feature candidates and the features al-
ready included in the model. In (Vens and Costa,
2011), the authors use random forests to form fea-
ture conjunctions, by traversing the trees from the
root to the leaves.

In this article we present a method for feature
selection and feature induction. The strengths of
our method are fast running time and generality,
in the sense that it can be used as preprocessing
step to any classifier the user may choose.

2 Methods

Given are N pairs of observations and labels
(Xl, Yl), (XQ, Yg), ooy (AXN7 YN) The observa-
tions X; are over a set of p binary predicates (or
terms) T4, ..., 1), which we call atomic features.
For example, an atomic feature is an indicator of
presence or absence of a particular word in a doc-
ument. The class label can take the values from
the set {c1,c2,...,cx}. In this article. we use
the notion of ‘features’ to denote predicates, and
not the classical feature functions f(X;,¢;) com-
monly used in NLP tasks. The reason is that
we wish to be consistent with the established no-
tions of ‘feature selection’ and ‘feature induction’,
which otherwise would have to be called ‘predi-
cate selection’ and ‘predicate induction’.

The purpose of our method is to find a set of fea-
tures consisting of atomic features or conjunctions
of atomic features which can predict the class vari-
able with high accuracy. The classification model
is the user’s choice.

Our algorithm is entitled Fast ITerative Selec-
tion and Induction (FITSI) and is a greedy heuris-



tic search through the space of the atomic features
and conjunctions. The main steps are described
in Algorithm 1. A feature selection step and a fea-
ture induction step alternate in an iterative process.
At each iteration, we rank the features according
to some score o that measures the univariate rel-
evance of each feature w.r.t. the class variable.
The choices for ¢ are described in Section 2.1. We
keep only the top k features, where k is a generic
parameter which can be either a percentage of the
total number of features, or the number of features
with scores larger than a threshold. Then, we add
to the features set conjunctions between atomic
features larger than a certain rank / and features
or conjunctions from the entire list. The algorithm
runs for m iterations, allowing for conjunctions of
length up to m to be generated. Below we discuss
in detail the two key ingredients of our algorithm:
measures of feature relevance and the algorithm
for generation of conjunctions.

2.1 Feature ranking and filtering

For ranking and filtering features (o parameter
in Algorithm 1), we implemented several mea-
sures: mutual information (MI), information gain
(IG), symmetrical uncertainty (SU) and Fisher
tests (FT). Each measure returns a score, which is
an estimate of the predictive power of each feature
w.r.t. the class variable. In a multi-class setting,
there are several ways to compute scores: either
globally, trying to capture the overall association
of the feature with the class variable, or separately,
computing a relevance score w.r.t. each class and
then summing the scores. We prefer the later ap-
proach because it is equally fair to small and large
classes. We summarize the class-specific scores
by taking either the sum or their maximum value.

In what follows, we denote with Y; the indicator

Algorithm 1 Fast Iterative Selection and Induction

Require: {T1,...,T,},0,k I,m
1: Initialize feature list ® «— [T7, ...
2: forie {1,...,m—1} do

) TP]

3: Feature selection:
4: ® «— sort(P, o) > Sort the list according to o scores
5: D — P[1..K] > Keep only the top k features
6: Feature induction:
7: I' «— generateConjunctions(®, [)
8: if ® == @ JT then > No new conjunctions
9: break
10: else
11: d—oYyr > Append T to &
12: end if
13: end for
14: return ¢
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Algorithm 2 generateConjunctions(®, )

LT —0
2: fori e {1,...,1} do

> Initialize with empty list

3: if ®[4] is atomic then

4: for j € {i+1,...,length(®)} do

5: I — T U{®[i]&®[j]} > Add conjunction
6: end for

7 end if

8: end for

9: return I’

variable of class ¢;: Yj[k] = 1, if Y[k] = ¢; and O,
otherwise.

Mutual information

Mutual information (Hamming, 1986) between a
feature T and an indicator variable Y; of class ¢;
is a quantity MI(7',Y;) that measures the depen-
dence between the two variables. It is calculated

as:
MIT,Y;)= > > Pr(ty)log ( )
t€{0,1} y€{0,1}
where the joint probability Pr(¢,y) and the
marginals Pr(¢) and Pr(y) are estimated using rel-
ative frequencies. MI(7',Y;) is a positive quantity,
with a value of zero if 7" and Y; are independent. A

large MI(T, Y;) score indicates that T is predictive
for class ¢;.

Pr(t, y)

Pr(t) Pr(y)

Information gain

The information gain of feature 7" with respect to
Y; measures the decrease in entropy when the fea-
ture 7" is present versus absent from the set of fea-
tures. We evaluate the information gain of feature
T with respect to class ¢; as in (Yang and Peder-
sen, 1997):

IG(T,Y;) = — Pr(Y; = 1) log(Pr(Y; = 1))
+ Pr(T) Pr(Y; = 1|T) log(Pr(Y: = 1|T))
+ Pr(T) Pr(Y; = 1|T) log(Pr(Y; = 1|T))

Symmetric uncertainty

Symmetric uncertainty between term 7" and class
indicator variable Y; is a normalized mutual infor-
mation score, computed as follows:

2MI(T, Y3)

S = ey A

where by H(X) we denote the entropy of vari-
able X, computed in practice as H(X)

> —Pr(x)log(Pr(x)).

rzeX



Fisher test

Fisher’s exact test (Fisher, 1928) is used to exam-
ine the significance of association between two bi-
nary variables. We apply it to the contingency ta-
ble between feature 71" and class indicator Y; and
retrieve the significance p-value, which expresses
the probability of the observed values of the table
under the assumption of independence between
the variables. If the probability is very small (i.e.
p-value is small), then the independence assump-
tion is rejected. We define the Fisher test score
for feature selection as: FT(7,Y;) = 1 — p-value.
FT(T,Y;) always has values between 0 and 1. A
typical threshold for significance is p-value < 0.05
or, more conservatively, p-value < 0.01.

2.2 Induction (generating conjunctions)

We include in the model feature conjunctions of
maximum length m, which is a parameter of our
method. At each iteration, the conjunctions are
formed between atomic features that exceed some
relevance threshold and any other feature or con-
junction still present in the list of features.

Before adding a conjunction T;&7Tj to the the
set @, we check if it has not been introduced al-
ready, for example as T;&7T;. If at a certain step
all conjunctions that are generated are already in
®, the algorithm stops (see step 8, Algorithm 1).

In typical applications, it is unlikely that very
long conjunctions have a great impact on the clas-
sification performance. Therefore we suggest that
m is kept small in practice, a value up to 3 should
be sufficient for most applications.

2.3 Complexity of the algorithm

As we already argued in the introduction, com-
putational complexity is one important bottleneck
of feature selection and induction algorithms. De-
spite this, our method is fast. We run once through
all samples in order to build the necessary data
structures for evaluation of MI, IG, SU and FT
scores, which takes O(pKN) time. The data
structures esentially store the counts of samples
in each class, for each feature. Thereafter, the
complexity of scoring the set of p features and the
sorting take place in O(pK) time, which is run m
times. The overall time is thus O(pKm + pK N ),
which is O(pK N), in most applications. In prac-
tice the algorithm can become even faster by using
sparse vectors to represent features.
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2.4 Model training and evaluation

We use the FITSI Algorithm for generating a set
of atomic features and conjunctions of length up to
m = 2. We use these features to represent the data
and train a model M, which in our experiments
can be a Perceptron or a Naive Bayes model. The
performance of the algorithm clearly depends on
the parameters used for the feature induction and
selection: o, k and [.

If we exclude the scoring measure o, which can
be chosen by the user based on some subjective
criteria, our algorithm has two numerical hyper
parameters that can be estimated from data, in a
way that the resulting model has optimal perfor-
mance. We use B-fold cross-validation for this
purpose. We first split the data into two subsets,
for parameter selection and for testing. The part
that is used for parameter selection is split into
B bins (5 in our experiments). For each combi-
nation of parameters, we use B — 1 bins for fea-
ture induction and model training and we evaluate
the performance of the classifier on the remain-
ing bin. In consequence, for each combination of
parameters, a set of B performance estimates are
obtained, which allows to compute mean and stan-
dard deviation. We identify the model with largest
mean performance and select the simplest model
(smallest k) that has the mean within one standard
deviation from the best model. This is known as
the one-standard-error rule, proposed by (Breiman
et al., 1984). The parameters of this model are
the optimal parameters k,y; and l,;. We test this
model on the excluded samples and report a test
performance.

We compare the performance of our model to
that of a baseline model. To this end, we repeat
the cross validation described above, but we do not
perform any feature induction.

For evaluating the performance of a classifier,
we use the F} measure, which is the harmonic
mean of precision and recall.

3 Data

PA data: The “PA” dataset was developed by
the Press Association! to enable the implemen-
tation of a system for recognition and seman-
tic disambiguation of named entities in press re-
leases. Given certain metadata for a number of
overlapping candidate entities, an array of fea-
tures derived from the textual context of their oc-

"http://www.pressassociation.com/



currence, and additional document-level metadata,
the model recognizes which (if any) of the candi-
date entities is the one referenced in the text.

The corpus is annotated with respect to peo-
ple, organization and location mentions; a special
“negative” label denotes the candidates that can be
considered irrelevant in the given context. In all
cases, at most one of the overlapping candidates
is annotated as positive. The dataset comprises a
total of 2539 manually curated documents, and a
total of 85602 concept mentions (this number rep-
resents the total of all candidate instances, includ-
ing those annotated as non-entities).

For this dataset, the domain of the press releases
is an important factor during classification, and
specific features that express the belonging of a
press release to a particular domain or category are
also available. The dataset comprises articles from
two domains: ”General News” and ”Olympics”.

We remove non-location entity candidates, thus
reducing the problem to the binary classification
task of discerning locations from non-entities. We
split the corpus into a training set (2369 docu-
ments) and a held-out test set (160 documents). As
a result of this preprocessing, we have 2 classes
(Location and Negative), 46273 instances, and a
target to irrelevant instance counts ratio of 0.17.

From the training document set, we extracted
50455 atomic features.

As performance measure we report the F1 score
of the positive class (i.e. ‘Location’).

4 Results

We performed feature induction using in turn all
the measures of feature relevance mentioned in
Section 2.1, followed by training Naive Bayes and
Perceptron classifiers. The parameters k£ and [
(I > k) of the feature induction step were itera-
tively selected from the set:

{0.1%, 0.25%, 0.5%, 0.75%, 1%, 2.5%, 5%, 7.5%, 10%, 25

of the total number of features p.

We used 5-fold cross-validation for selection
of the optimal parameters k., and [y, as ex-
plained in section 2.4. Figure 2 illustrates the
cross-validation search grid for the particular com-
bination of feature induction with MI score and a
Perceptron classifier. The intensity of the shade
of gray is proportional to the average F1 mea-
sure over the 5 folds. The standard deviation for
each combination of parameters is not shown in

%}
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Figure 2: Parameter grid search by cross-validation.
NB | Perc
MI 0.70 | 0.83
IG 0.70 | 0.83
SU 0.70 | 0.80
FT 0.75 | 0.83
Baseline | 0.54 | 0.79

Table 1: Performance on the test dataset of classification
models using various measures of feature relevance and com-
parison with the baseline.

the image. The largest average F1 is 0.825 and is
achieved for k& = 25% and | = 0.75% of p.The
standard deviation of this model is 0.009, esti-
mated based on the 5 cross-validation folds. A
simpler model, with & = 25% and [ = 0.1%
has average performance of 0.824, which is within
one standard deviation from the maximum perfor-
mance, hence there is no statistically significant
difference between the two models. We thus chose
the simpler model as optimal.

In Table 1, we show the performance of the
optimal models (determined by cross validation).
The models that we investigated are various com-
binations of feature scoring measures (as rows)
and classifiers (as columns). We compare to a
Baseline model (last row), which is either a Naive
Bayes or Perceptron, without any feature induc-
tion. Clearly, all our models outperform the Base-
line, by a large margin: up to 20% in the case of
Naive Bayes models and up to 4% for Perceptrons.
In general, Naive Bayes classifiers are worse than
the Perceptron. Fisher test ranking appears to
work best for Naive Bayes classifiers, whereas for
Perceptron models achieve similar performance
for most of the scoring measures (apart from Sym-
metrical Uncertainty).

Table 2 shows for each model the optimal pa-
rameters K,y and l,,; that were selected via cross



NB (kopt7 lopt) Perc (kopt7 lopt)
MI 25%,0.25% 25%,0.1%
1G 25%,0.25% 25%,0.1%
SU 25%,0.1% 10%, 0.1%
FT | 25%,0.1% 10%, 0.25%

Table 2: Parameters of the resulting models.

validation. In general many atomic features are
included in the model, indicated by the large val-
ues of k,pt, which are in general 25%. Only two
models select 10% features, namely the Percep-
tron with FT and SU. The most common values
for [y are 0.25% and 0.1%, which means that the
useful conjunctions are those that comprise at least
one high scoring atomic feature (from top 0.01%
or 0.25%). In contrast, a larger [,,; would mean
that the model benefits from conjunctions between
two low scoring atomic features, which is not the
case, according to our results.

S Analysis of conjunctions

The purpose of feature induction is to generate
useful combinations of features without the help of
an expert in the domain of the application. Below
we comment on interesting (types) of conjunctions
that rank high ccording to the Perceptron model
using the MI criterion for feature ranking, which
showed highest performance.
- http://www.geonames.org/ontology#P.PPLC

& ANNIES=location city

The Geonames ontology? indicates that the

candidate is a capital and Gate’s ANNIE?

suggests that the instance is a city. Therefore,

the conjunction reinforces the recommenda-

tion for a location. The conjunction is very

informative.

- PrevWord = ”in” & MOST'PROBABLE=true

If the word preceding the candidate is ‘in” and
Location is most probable label of the entity,
then there is a strong indication that the entity
is indeed a Location.

- PrevWord = ”in” & NoCandidates=1

The conjunction between previous word be-

ing ‘in’ and the absence of other candidates

at the specific location is a strong indicator

for Location. This is a linguistic pattern that

most experts would add to the model. Our al-

gorithm automatically generates this pattern.
2

WWW.geonames.org
3http://gate.ac.uk/
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- ANNIES=location country
& pacategory:Olympics

A very interesting domain-specific conjunc-
tion is formed by the indication of ANNIE
to a country and the category of the docu-
ment being Olympics. Even though ANNIE
points to a country, the fact that the document
belongs to the Olympics category makes the
Location less likely, because the candidate
is most probably referring to a team. Such
conjunctions are specific to domain adapta-
tion tasks and our algorithm generates it auto-
matically, without defining a domain adapta-
tion problem explicitly. Only adding atomic
domain features allows for generating of do-
main specific-conjunctions.

- multiple conjunctions including
the domain name

Our algorithm ranks high various conjunc-
tions that include the domain of the docu-
ment. As commented already above, our ap-
proach seems to implicitly perform domain
adaptation, by adding conjunctions between
features that play different roles in different
domains and the respective domain features
(very similar to the approach of (Daumé,
2009)).

6 Discussion

We introduced a greedy heuristic for feature se-
lection and induction. The method is applied as
a preprocessing step, prior to model fitting, there-
fore it is independent from the classifier chosen by
the user. It is very fast in practice, having all the
advantages of the filter-based methods over com-
plex wrappers and embedded methods.

We applied the method on a custom dataset
from Press Association, for named entity disam-
biguation. In particular, we recognized Locations
from negative entities. The results, presented in
the form of F1 measure corresponding to the Loca-
tion class, show great improvements over the base-
line.

We provided with a qualitative analysis of some
of the highest ranking conjunctions and they ap-
pear to be strong predictors for Location, that a
domain expert would also consider adding to the
model.
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