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Abstract

We describe in this paper how different
learning strategies can be applied on the
same NLP task, namely chunking. The
reference corpus is extracted from the
French Treebank, the symbolic learning
strategy used is grammatical inference and
the statistical one is CRFs (Conditional
Random Fields). As expected, the sym-
bolic approach allows readability but is
less effective than the statistical one. We
then propose two distinct ways to combine
both approaches and show that in both
cases they benefit from one another.

1 Introduction

Supervised machine learning approaches, espe-
cially when they have access to huge amounts of
data, have now extensively proved their effective-
ness for a lot of text mining tasks like text classi-
fication, sentence annotation and information ex-
traction. Most effective learning approaches rely
on a theoretical background which is either opti-
mization (SVM), statistics (Naive Bayes) or both
(HMMs, MaxEnt models, CRFs). But, however
effective they may be, the main drawback of these
techniques is that they usually do not provide any
human-readable model.

There also exists other branches of Machine
Learning, referred to as symbolic, whose partic-
ularity is to provide a more human-readable out-
put. This is the case of decision trees, Inductive
Logic Programming (ILP) or Grammatical Infer-
ence (GI in the following). The latter is our main
interest here. It can be defined as the study of
how it is possible to automatically learn a formal
grammar or any other device able to represent a
language (such as an automaton, a regular expres-
sion...) from a sample of (possibly enriched) se-
quences known to belong (or not) to this language
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(de la Higuera, 2010). This domain is often not
very well known due to its roots in theoretical
computer science and formal language theory. GI
algorithms’ known drawback is their lack of ef-
ficiency on real data: they are often time consum-
ing, sensitive to errors and do not behave well with
large alphabets (for example alphabets containing
every word of a natural language).

In this article, we want to give some GI algo-
rithms a chance to compete with the state of the
art of statistical machine learning approaches. The
task we deal with for this purpose is chunking (Ab-
ney, 1991) for French, which can be done with
hand-made automata (Antoine et al., 2008; Blanc
et al., 2010). To our knowledge, trying to auto-
matically learn these automata instead of writing
them by hand has never been tested for any lan-
guage before. On the other hand, chunking can
also be treated as an annotation task (cf. shared
task of CoNLL2000) and thus been efficiently pro-
cessed by a statistical machine learning approach .
The state of the art in this domain are CRFs (Laf-
ferty et al., 2001; Sha and Pereira, 2003). Chunk-
ing thus seems to be the ideal playground on which
both approaches can be fairly compared.

But this comparison is not our only purpose.
Our intuition is that both approaches are comple-
mentary, as they focus on very distinct properties
of the dataset. We also provide in this article two
distinct ways to combine them according to dif-
ferent purposes. The first one is effectiveness-
oriented: it consists in enriching the CRF by
automata-based features to improve again its ef-
fectiveness. The second strategy is readability-
oriented: it consists in analyzing the behavior of
an automaton produced by GI thanks to CRF-
computed weights which are interpretable with re-
spect to this automaton.

The paper is organized as follows. In the first
section, we introduce the task of chunking and de-
scribe the dataset we have used in all our experi-
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ments. The second section is dedicated to gram-
matical inference. After a brief review, we focus
on the k-RI-algorithms (Angluin, 1982) and pro-
vide the best experimental results we could reach
with them on the task. In the next section, we
apply CRFs (Lafferty et al., 2001) to the same
task. As expected, CRFs give far better results
than those obtained by GI, at the price of less read-
ability. In the last section, we describe and evalu-
ate two ways to combine automata and CRFs. The
results of both combinations are promising and
suggest original trails to associate symbolic and
statistical learning.

2  Chunking: the Task and the Data

In this section, we describe the task of chunking as
a labeling one and introduce the dataset we used
for our experiments. As our purpose is to build a
chunker for French, our starting point is the French
Treebank (Abeillé et al., 2003).

2.1 The Task

The task of chunking, also called shallow parsing
consists in identifying elementary (i.e. non recur-
sive) syntactic phrases. Chunks are “contiguous
and non-recursive lexical units sequences bound
to an unique head” (Abney, 1991). Each chunk is
characterized by the type (or syntactic category)
of its unique head. So, there are as many dif-
ferent types of chunks as there are of considered
heads. The chunks are thus intimately linked with
the part-of-speech (POS in the following) tags as-
sociated with the lexical units of the sentences.

Chunking has been the target of the CoNLL
shared task in 2000', in which the training set
was composed of about 9 000 English sentences
taken from the Penn Treebank with two levels of
labels: a POS level provided by the Brill tagger
and a chunk level. The winners used SVM and
“Weighted Probability Distribution Voting”. The
same corpus was used to show the effectiveness of
CRFs (Sha and Pereira, 2003).

2.2 The Data

The French Treebank (FT in the following) has
been built from a collection of sentences ex-
tracted from articles of the French newspaper
“Le Monde”, published between 1989 and 1993
(Abeill€é et al., 2003). The sentences are tokenized

"http://www.cnts.ua.be/conl12000/chunking

(with respect to some multi-word units), lemma-
tized, tagged and parsed. There exists multiple
versions of the FT, the one we have used is made
of about 8 600 XML trees, enriched by syntactic
functions which were necessary to identify some
chunks. For POS tags, we used the set of 30
morpho-syntactic tags defined by Crabbé and Can-
dito (2008).

We consider 7 distinct types of chunks: AP (ad-
jectival phrases), AdP (Adverbial phrases), CONJ,
NP (noun phrases), PP (prepositional phrase), VP
(verbal phrases) and UNKNOWN chunks (usually
for those containing foreign words). Punctuation
marks between chunks are considered as "out".
Unlike Tellier et al. (2012), our CONJ chunk only
contains the conjunction token(s) and, as opposed
to Paroubek et al. (2006), the epithetic adjectives
are always part of the NP containing the noun they
qualify, whether they appear before or after this
noun. Our AP chunk is thus relatively rare, as
it only concerns detached or attribute adjectives
(syntactic functions available in the XML trees are
needed to identify some of them).

An example chunked sentence in our sense is
shown in the following (it means "the depreciation
against the dollar has been limited to 2.5%")%:
(la/DET dépréciation/NC)yp (par_rapport_au/P
dollar/NC)pp (a/V ét¢/VPP limitée/VPP)y p (a/P
2,5/DET %/NC)pp

We extracted from the FT two distinct corpora:

e a corpus where every distinct chunk is ex-
tracted and labeled with the BIO (Begin/In/Out)
convention. Chunks are distributed according
to the following proportions: PP: 33,86%, AdP:
7,23%, VP: 17,11%, AP: 2,21%, NP: 32,95%,
CONI: 6,61%, UNKNOWN: 0,03%.

e a corpus where only NPs are labeled, ev-
ery other token being considered as out (label O).
Recognizing NPs only can be useful for the identi-
fication of co-reference chains. This corpus is not
a subpart of the previous one, as many PPs include
an NP. These "hidden NPs" become visible in the
second corpus only, as in the previous example:
(la/DET dépréciation/NC)yp par_rapport_au/P
(dollat/NC)yp a/V été/VPP limitée/VPP a/P
(2,5/DET %/NC)np

?In this example, NC is the French acronym for CN (com-
mon nouns) and VPP is for past participle verbs

A Web page with every detail about the POS and chunk
labels (illustrated by many examples) is available but we omit
its address here to keep authors anonymous
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3 Grammatical inference

Grammatical Inference (GI) is a domain of re-
search which emerged in the 60s and thus has a
long history which cannot be easily summed-up.
We focus in this section on GI of automata from
positive examples. After a brief review, we de-
scribe the k-RI algorithms (Angluin, 1982) that we
used in our experiments and the results we could
reach with them.

3.1 Brief state of the art

GI is the study of how it is possible to automat-
ically learn a symbolic device able to represent
a language (a formal grammar, an automaton...)
from a sample of (possibly enriched) sequences
known to belong (or not) to this language (de la
Higuera, 2010). When only sequences belong-
ing to the language are available, the problem is
known as GI from positive examples. This is the
case in our context, where no counter-example
of any kind is available. This problem is much
harder than when negative examples are avail-
able, because it is very difficult to avoid over-
generalization. Ultimately, if a learning program
hypothesizes that the language to be learned is the
universal one (X*, where ¥ is the alphabet of the
language), no positive example can disprove it,
even if it over-generalizes.

The first concern of GI was to provide a precise
definition of what it means for a program to be able
to “learn a language”. The criterion is theoretical
and formal, not empirical. A parallel can be drawn
with children’s language acquisiton. A child is
not “programmed” to learn any specific language,
(s)he is able to learn whatever language is spoken
in his(her) environment. Similarly, GI programs
are required to learn classes of languages, that is to
be able to characterize any member of such a class,
when they are provided with examples known to
be generated (or not) by this member. The main
important “learnability criteria” (also called learn-
ing models) are known as “identification in the
limit” (Gold, 1967) and “PAC learning” (Valiant,
1984). but we cannot describe them here.

Unfortunately, even for regular languages, the
simplest class of the Chomsky hierarchy, those
criteria are impossible to fulfill with positive ex-
amples only: there is no algorithm able to learn
from positive examples the whole class of regu-
lar languages satisfying these criteria (Gold, 1967;
Kearns and Vazirani, 1994). Researchers have
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thus tried to identify learnable smaller or trans-
verse classes in Chomsky’s hierarchy (Angluin,
1980). k-reversible languages (Angluin, 1982) are
such classes, and were the starting point of our ex-
periments. Many other learnable subclasses have
been described and studied, for example in Gar-
cia and Vidal (1990; Denis et al. (2002; Kanazawa
(1998; Koshiba et al. (2000; Yokomori (2003).

Other advances in the domain concern the learn-
ability of devices integrating probabilities, such as
probabilistic automata and their links with HMMs
(Thollard et al., 2000; Dupont et al., 2005). In par-
allel, challenges* allowed to test the effectiveness
of the proposed algorithms when confronted with
real data.

3.2 k-RI Algorithm

In this section, we describe the GI algorithms used
for our experiments. They were applied to try and
learn a chunk-specific automaton from the positive
sequences of POS tags extracted from the train-
ing part of the dataset. GI algorithms from pos-
itive examples seem adapted to this problem, as
the considered alphabet is limited (30 distinct tags
at most) and each distinct kind of chunk can be de-
scribed by a relatively limited number of syntactic
constructions.

k-Reversible Inference (k-RI) algorithm (An-
gluin, 1982) has the property of identifying in the
limit any k-reversible language, for any fixed k €
N. The class of k-reversible languages is a sub-
class of regular languages, and its members can
thus be represented by Deterministic Finite State
Automata (DFA). An automaton is k-reversible if
it is deterministic and its mirror > is determinis-
tic with a look-ahead of k. When k = 0, a 0-
reversible language can be represented by a DFA
whose mirror is also deterministic, the algorithm
being called Zero Reversible (ZR). If k1 < ko, the
class of kj-reversible languages is stricty included
in the one of ky-reversible lanugages.

Given a set of positive sequences S, the first step
of k-RI is to build PTA(S), the Prefix Tree Ac-
ceptor of S. PTA(S) is a tree-shaped DFA, and it
has the property of being the smallest tree-shaped
DFA recognizing exactly the language defined by
S. The root of PTA(S) is its initial state. The search

“The most recent ones were Stamina
(http://stamina.chefbe.net) and Zulu (http://labh-curien.univ-
st-etienne.fr/zulu)

>The mirror automaton is obtained by switching initial
and final states and by reversing every transition
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Figure 1: Step by step demo of ZR

space of a GI algorithm for a given training set S
of positive examples is a lattice whose bottom el-
ement is PTA(S) and top element is the universal
language built from the alphabet of the examples
(Dupont et al., 1994). Most GI algorithms start
by building the PTA of the set of available pos-
itive examples, then try to generalize the recog-
nized language by merging some of the states of
this automaton. k-RI, detailled below, works ac-
cordingly. The merging operation here is deter-
ministic, as it propagates recursively through the
automaton to preserve determinism.

Algorithm %-RI
In: S:asetof (positive) sequences, k : natural;
Out : A : a k-reversible automaton;
begin
A :=PTA(S);
while not(A k-reversible) do
//let N1 and N2 be two nodes
// violating k-reversibility of A.
Deterministic_Merge(A, N1, N2);
end while;
return A;
end k-RI;

In Figure 1, we illustrate how ZR be-
haves with the following set of positive ex-
amples of sequences of POS tags: S =
{DET NC, DET ADJ NC}. On this
example, we see that ZR already generalizes
PTA(S) to output an automaton recognizing
the language defined by the regular expression:
DET ADJ* NC. This generalization is lin-
guistically relevant. But if we add to the previ-
ous positive sample the sequence made of NC
alone, ZR will output an automaton recognizing
the language { DET|ADJ}*NC, which is a more
doubtful generalization.
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3.3 GI Experience Results on NP Chunking

We applied k-RI for different values of k (kK =
0,k =1,k = 2) on POS tags sequences matching
NP chunks in the corpus of NP chunks only. This
task is the one for which GI is the most appro-
priate. It is also possible to learn chunk-specific
automata on the other corpus, but the application
of multiple automata on new data pose a frontier
covering problem. Therefore, we only use them in
combination with a statistical model, in section 5.

7R is really sensitive to the available data. A
single incorrect sequence can force many states
to merge. It was often the case with our dataset,
where outliers or tagging errors are not absent. But
some erroneous examples can be easily detected:
for example, sequences of tags for a special kind
on chunk which do not even contain any possi-
ble head tag of this chunk can be removed. Other
cleaning strategies have been tried. Removing any
sequence that occurs less than a fixed proportion
was the most effective. Some information loss was
nevertheless inevitable as there are heads that were
rare (some clitics, for example).

Our experiments were made following a 5-fold
cross-validation protocol. A learnt automaton is
used as a regular expression on every new se-
quence of POS tags, looking for the smallest (resp.
longest) matches (sm resp. Im). The correctness of
a chunk is evaluated in a strict sense, i.e. it iS cor-
rect if and only if both frontiers are correct. The
precision, recall and F1-measure of NP-chunks are
computed without taking into account O labels.
Table 1 contains various F-measures that we man-
aged to obtain by GI only on NP chunking, with
a longest match strategy. Cleaned (c) versions are
obtained by deleting every POS sequence that ap-
peared strictly less than 0.01%. Values between
parentheses are the medium sizes (in numbers of
states) of the 5 automata sizes. PTA versions,
whose performances are sometimes good, can be
seen as “learning by heart” devices, as they are not
generalized. Automata of size 1 are those, proba-
bly overgeneralized, that recognize the universal
language of POS tags present at least once in NP
chunks. k£ > 2 is necessary to obtain an automaton
behaving better than the cleaned PTA.

4 Statistical learning for annotation

In this section, we focus on the best up-to-date
statistical approach to perform an annotation task:
Conditional Random Fields (or CRFs). We also



Xp pure PTA | cleaned PTA
F1-meas. 51.92 88.05
xp || ¢O-RI(1) | c 1-RI (19) | ¢ 2-RI (68.6)
F1 26.95 72.74 88.25

Table 1: GI results for NP chunking

recall how some HMMs can be "transformed" into
a CREF, as it will be useful further.

4.1 Conditional Random Fields and HMMs

CRFs have been introduced by Lafferty et al.
(2001). They belong to the family of graphical
models. When the graph is linear (which is most
often the case), the probability distribution that
the annotation sequence y is associated with the
input sequence x is expressed by:

K
plyla) = Z(l) TTexp (3 Mt )

k=1

Where Z(x) is a normalization factor depending
on z. This computation is based on K features f,
(usually binary functions), provided by the user.
The feature fy, is activated (i.e. fx(t, yt, yt—1,2) =
1) if a configuration occurring at the current po-
sition ¢ in the sequence, concerning v, y—1 (.
e. the values of the annotation at the positions ¢
and ¢ — 1) and z is observed. Each feature f
is associated with a weight A; which are the pa-
rameters of the model, to be estimated during the
learning step. To define large enough a set of fea-
tures, softwares implementing CRFs help users:
they usually only require to provide feature tem-
plates which are automatically instanciated into as
many features as there are positions in the training
data where they can apply. The most current ef-
ficient implementation of linear CRFs is Wapiti®,
which uses a L1 penalization allowing to select the
best features during the learning step (Lavergne et
al., 2010). It is the software we have used.

CRFs have been applied with great success to
various annotation tasks, among which POS label-
ing (Lafferty et al., 2001), named entity recogni-
tion (McCallum and Li, 2003), chunking (Sha and
Pereira, 2003) and even full parsing (Finkel et al.,
2008; Tsuruoka et al., 2009). Their main draw-
back is that they appear as "black boxes". A CRF
model is simply characterized by a list of weighted

Shttp://wapiti.limsi.fr/
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features but it is not unusual that it contains thou-
sands, even millions of such features. The result is
therefore not easy to interpret.

HMMs, which were the previous state of the art
for annotation tasks, have the merit to be more un-
derstandable. However, every discrete HMM can
be “transformed” into a CRF model defining ex-
actly the same probability distribution (Sutton and
McCallum, 2006; Tellier and Tommasi, 2011). To
do this, you have to define two families of features:

e features of the form f(y;,x;) associating
an individual label y; with an individual input x4:
they correspond to the states y; of the HMM where
T+ can be emitted;

o features of the form f(y;—1, y¢) correspond-
ing to the transitions of the HMM linking the states
Yr—1 and y;.

If @ is a probability of emission or of transi-
tion of the HMM, then choose A = log(0) as the
weight of the corresponding feature in the CRF.
The computation of p(y|x) then writes exactly the
same in both cases. Discrete HMMs can thus been
seen as a special case of CRFs. But CRFs are
more general because they allow features to be
more general than those used in this transforma-
tion. This transformation inspired us to use CRFs
to analyse a discrete automaton learned by GI.
This will be studied in section 5. Before, we pro-
vide the learning results obtained by using a CRF
on our data.

4.2 Experimental Results

Tables 2 shows the feature templates and results
obtained by using CRFs alone on both chunking
tasks. For these experiments, we also followed
a S5-fold cross-validation protocol and evaluated
the chunks in a strict sense. For the complete
chunking task, we computed both the micro-
average of F-measures (i.e. the average of the
F-measures of every kind of chunk weighted by
their frequencies) and their macro-average (i.e.
without any weight). As expected, CRFs provide
excellent results. It is to be noted that they use
words in their features along with POS tags, while
GI algorithms have only access to the latter.

5 Combinations

In the previous sections, we have applied either
pure symbolic learning or pure statistical learning.
As expected, symbolic learning provides readable



Feat Type Window

Word | Unigram | [-2..1]

POS Bigram [-2..1]
chunking Complete | NP only
micro 97.53 N/A
macro 90.49 N/A
F1-measure N/A 96.43

Table 2: Template and obtained results with CRFs
for each task

but not very effective programs, whereas it is the
contrary for statistical learning. In this section, we
want to combine both strategies. There are two
different possible viewpoints for this combination:

e if we stand from the viewpoint of effec-
tiveness, we will favor statistical leaning. But the
automata provided by our GI algorithms capture
long-distance relationships between POS tags that
could be useful for a CRF. So, in this case, our
combination strategy will consist in integrating the
output provided by the automata into the features
of the CRF as an external resource.

e if we stand from the viewpoint of read-
ability, we will favor the automata produced by
GI. As evoked in 4.1, it is possible to simulate a
HMM (and, similarly, an automaton) with CRF’s
features. We will show that it is also possible to
evaluate the states and transitions of an automa-
ton with CRF-computed weights associated to the
features that represent them in a CRF, suggesting
ways to improve it.

5.1 Enriching a CRF by automata-based
features

We attack here both types of chunking. The first
combination consists in considering the automata
as independent annotation tools, as in Constant
and Tellier (2012). In the case of complete chunk-
ing, we applied GI on each distinct type of chunk,
leading to as many automata as there are types of
chunks. Each chunk-specific automaton provides
an independent BIO tagging, as shown in Table
3. Therefore, there are as many new attributes as
there are types of chunks in our data.

First tables in Tables 4 and 5 give the templates
used to obtain the best results for the complete
chunking, and similarly for the first one of Table 6
for the NP-chunks only. The lines “Automaton”
take into account the output of each automaton
independently, whereas “POS+Automata” repre-

word POS NP VP PP correct label
la DET B O (0] B-NP
dépréciation NC I o (0] I-NP
par_rapport_au P (6] O B B-PP
dollar NC B o I I-PP
a v (0] B (6] B-VP
été VPP O I (6] I-VP
limitée VPP O I (0] I-VP
a P (6] o B B-PP
2,5 DET B o I I-PP
% NC I o I I-PP

Table 3: Dataset Enriched by the Output of the
chunk-specific Automata

sents the concatenation of POS columns along
with the output of every single automaton.

Matching results are given in the other tables.
They show that attributes taken from automata al-
low to significantly improve the results of CRFs.
It is even more obvious for the macro-average, the
one that gives equal importance to every chunk.
This means that the information brought by the
automata mostly improve the recognition of rare
chunks. In the experiment leading to the best
macro-average, the best improvements are the fol-
lowing: the Fl-measure of UNKNOWN goes
from 41.67 to 61.22, the one of AP from 96.78
to 97.44 and the one of AdP from 98.72 to 98.92.

Feature Type Window
Word Unigram | [-2..1]
POS Bigram [-2..1]
Automaton | Bigram [-2..1]
F-measure | pure 1-RI (Im)
micro 97.66
macro 92.22

Table 4: Best micro-aver. for complete chunking

Feature Type Window
Word Unigram | [-2..1]
POS Bigram [-2..1]
Automaton Unigram | [-1..1]
POS+Automata | Bigram [-1..1]
F-measure | pure 1-RI (sm)
micro 97.62
macro 93.52

Table 5: Best macro-aver. for complete chunking
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Feature Type Window
Word Unigram | [-2..1]
POS Bigram [-2..1]
Automaton Bigram [-1..1]
POS+Automata | Bigram [-1..1]
pure 2-RI LM
F-measure 96.75

Table 6: Best F-measure for NP chunking

—— pET ) C}ADJ[}3 |ne —(0)

Figure 2: Unitex-generated automaton

5.2 Evaluating an automaton by
CRF-computed weights

This time, we want to preserve the structure of the
automata output by our GI strategies, but we use
a CRF to evaluate some of their properties. We
could build weighted automata, the way it is pro-
posed by Roark and Saraclar (2004). Instead, we
just propose a CRF-based diagnosis of a purely
symbolic device. To illustrate our approach, we
consider the NP-only chunking task, because only
one automaton is to be considered. Our proposi-
tion is also easier to understand by representing
automata in the alternative way of Figure 2 (rep-
resenting the same automaton as the final one of
Figure 1). This representation, which is favored in
softwares like Unitex’, has the advantage of dis-
playing tags and transitions between tags as two
distinct objects. To build a CRF based on such an
automaton, we consider the BIO labeling effect of
this automaton, as in section 5.1

Now, inspired by the relationship between dis-
crete HMMs and CRFs (cf. section 4.1), we
choose features which can be interpretable rela-
tively to the automaton. We thus restrict ourselves
to only two feature-templates:

e the unary feature-template only takes into
account the current correct BIO NP-label together
with the current POS tag and the current BIO la-
bel predicted by the automaton at the same po-
sition. Each POS tag matches one (or multiple)
states of the automaton. If both BIO labels match
for a given POS tag, then the features generated
by this template express the correctness of the au-
tomaton at this position; if they are different they

"http://www-igm.univ-mlv.fr/ unitex/
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express its incorrectness

e the bigram feature-template only takes
into account the current correct couple of BIO
NP-labels together with the corresponding cou-
ple of consecutive POS tags as well as the corre-
sponding couple of BIO automaton-predicted la-
bels. The couples of consecutive POS tags char-
acterize transitions of the automata. If the corre-
sponding two couples of BIO labels coincide, it
means that the automaton has correctly treated this
transition, otherwise it has not.

Note that words, which do not appear in au-
tomata, are neither not taken into account in the
feature-templates. The generated features have a
constrained form to match the automaton struc-
ture. All of them are interpretable with respect to
this automaton, as we will see now.

Table 7 is a confusion matrix comparing
“automata-generated” BIO labels (AL) with the
corresponding correct BIO label (CL), for a given
POS tag. We can build as many such tables as
there are distinct POS tags in NP chunks (the DET
tag, in our example), each cell corresponding to
an unigram feature. The cells of 7 are filled with
the weights computed by the CRF for these fea-
tures, where the colors display how they can be
interpreted with respect to the initial automaton.
As expected, weights on the diagonal, meaning a
correct tagging, are positive and greater than those
outside it, meaning a tagging error.

AL\CL B I O
B 1.66 | -4.05 | -0.84
I -0.44 | 046 | -2.51
o -1.45 | -1.02 | -0.17

Table 7: Confusion matrix for DET tag (2-RI, Ta-
ble 1)

Where each cell can be interpreted as follows:

e no style : both outputs are identical.

e italic : premature chunk beginning.

e bold : missed chunk beginning.

e italic : untimely chunk continuation.

e bold : premature chunk ending.

Bigram features are a bit more complicated to
interpret, but they can also give rise to confusion
matrices. There are as many bigram confusion
matrices as there are observed transitions between
two tags, i.e. as many as observed couples of con-
secutive POS tags (at most 30 * 30 in our case).
A bigram confusion matrix for a specific transi-



Exp. baseline (GI) | O-RI | 1-RI | 2-RI

chunk 88.25 93.00 | 93.07 | 93.08

Table 8: Labeling results of the CRFs based on the
best automata for NP-chunking

tion has 9 lines and 9 columns, because there are
9 = 3 x 3 distinct possible couples of BIO labels.
Each cell corresponds to a bigram feature and is
interpretable with respect to the transitions of the
NP automaton. Each cell can thus also be filled
with the weights associated to the corresponding
feature by the CRF model.

The weights associated to the features in a CRF
characterize their discriminative power. They are
more relevant than the simple occurrence counts
of how many times the features are satisfied in
the training dataset. The content of diagonal cells
can thus be seen as a measure of the effectiveness
of the decision taken by the automaton at a state
(resp. atransition) whereas the content of the other
cells can be seen as the gain (or loss) taken by us-
ing an alternative decision at any time, during the
labeling process. So, the whole set of confusion
matrixes can be seen as a very precise evaluation
of the relevance of the automaton.

Table 8 recalls the result of the best “pure GI”
NP-automaton of section 3.3 and gives the label-
ing result of the CRFs defined as described above
on the best automata output by k-RI, for each
value of k. We see that the CRFs significantly
improve the efficiency of the best automata, but
are not as effective as a CRF using more attributes
and features. This results can be interpreted as fol-
lows: it is sometimes beneficial to take labeling
decisions which are not those of the automata. We
still haven’t taken the time to analyze the various
confusion matrices produced by our CRFs in these
cases, but we believe that they give very interest-
ing indications about how, where and why the au-
tomata on which the features are based made right
vs. wrong predictions, and possibly correct them.

6 Conclusion and perspectives

In this paper, we have applied two distinct ma-
chine learning approaches on the same dataset and
proposed two distinct ways to combine them.
About GI alone, it is possible that other algo-
rithms would give better results than k-RI, such
as those of Garcia and Vidal (1990; Denis et al.
(2002). The choice of a greater value of k£ could
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also improve our results, but at the cost of a greater
time complexity®. More generally, it should be
necessary be to define a learnable language class
to which chunks are likely to belong. This would
allow to define specific GI algorithms for this task,
in which for example linguistic knowledge could
be used to “control” state merges .

But the most original part of our work concerns
CRFs and automata combinations. It is to be noted
that they can both be applied to hand-made au-
tomata, likely to be more linguistically relevant
than those obtained by GI. We focused here on
automata produced by machine learning to show
that, even without any linguistic expertise, it is
possible to combine symbolic and statistical mod-
els. The intuition behind this work is that both
machine learning techniques have complementary
properties and should benefit from one another.
CRFs are based on a huge number of weighted
local configurations. It is theoretically possible
to express in their features complex long-distance
properties of the initial sequence x. In practice, it
is rarely done. GI on the contrary applies to se-
quences and is able to provide a generalization of
a set of sequences. It has already been observed
that CRFs benefit from features expressing more
general properties than simple local configurations
(Pu et al., 2010). Our intuition was that GI could
provide such useful generalizations. The obtained
results confirm this intuition. It is also interesting
to see that symbolic models enhance the treatment
of rare cases, on which statistical models do not
behave well.

CRF-generated confusion matrices for the anal-
ysis of an automaton still need to be further in-
vestigated. How to better interpret or take advan-
tage of them is of particular interest. Some of the
cells of these matrices are empty, either because
the corresponding feature has not been observed
in the training set or because it has been discarded
by Wapiti during the learning step because of the
penalty. It should be possible, thanks to this in-
formation, to modify the automaton on which the
CRF is based by removing/adding states or tran-
sitions according to the diagnosis of the confusion
matrices. A CRF-directed GI strategy still needs to
be defined. This kind of GI challenge could also
benefit from existing learning algorithms targeting
probabilistic automata (Thollard et al., 2000).

8%-RI time complexity is of |X|*|Q|"*2 where |Q| is the
number of states of the PTA.
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