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Abstract

The purpose of part-of-speech tagging is
to automatically tag the words of a text,
written in a certain language, with labels
that usually take the form of acronyms that
designate the appropriate parts-of-speech.
In this paper we propose a new approach to
the problem that divides it in two different
tasks: a learning task and an optimization
task. We tackled each of those tasks with
evolutionary computation techniques: ge-
netic algorithms and a particle swarm op-
timizer. We emphasize the use of swarm
intelligence, not only for the good results
achieved, but also because it is one of the
first applications of such algorithms to this
problem. We believe that this approach is
generic enough so that it can be though as
an alternative approach to solve other nat-
ural language processing tasks that share
some fundamental characteristics with the
part-of-speech tagging problem. The re-
sults obtained in two different English cor-
pora are among the best published ones.

1 Introduction

In most languages, each word has a set of lexical
categories that represent the roles that they can as-
sume in a sentence. When the cardinality of this
set is greater than one, we say that the word is am-
biguous. Typically, the context of a word, i.e., the
lexical categories of the surrounding words, is the
fundamental piece of information for determining
its role in a sentence. For instance, the word fly
can assume the function of a verb, if it follows
the word to, or can be used as a noun if it is pre-
ceded by a determiner like the. According to this,
most taggers take into consideration the context of
a word to decide which should be its tag. However,
each of the words belonging to a word’s context

can also be used in different ways, and that means
that, in order to solve the problem, a tagger should
have some type of disambiguation mechanism that
allows it to choose the proper POS tags for all the
words of a sentence.

The methods used for solving the POS tagging
problem can be divided into two distinct groups,
based on the information they use. In one group,
we can gather the approaches that use statisti-
cal information about the possible contexts of the
various word tagging hypotheses. Most of the
stochastic taggers are based on hidden Markov
models. In the other group, we find rule based tag-
gers (Brill (1995); Wilson and Heywood (2005);
Nogueira Dos Santos et al. (2008)). The rules are
usually discovered automatically, and its purpose
is to correct errors resulting from an initial basic
tagging. Brill’s tagger (Brill (1995)) is perhaps the
most popular tagger based on rules.

More recently, several works following an evo-
lutionary approach have been published. These
taggers can also be divided by the type of infor-
mation they use to solve the problem: statistical
information (Araujo (2002); Alba et al. (2006)),
and rule-based information (Wilson and Heywood
(2005)). In the former, an evolutionary algorithm
is used to assign the most likely tag to each word
of a sentence, based on a training table that basi-
cally has the same information that is used in the
traditional probabilistic approaches. The later is
inspired by Brill’s rule based tagger. In this case
a genetic algorithm (GA) is used to evolve a set
of transformations rules, which will be used to tag
a text in much the same way as in Brill’s tagger.
While in Araujo (2002) and Alba et al. (2006), the
evolutionary algorithm is used to discover the best
sequence of tags for the words of a sentence, us-
ing an information model based on statistical data,
in Wilson and Heywood (2005) the evolutionary
algorithm is used to evolve the information model
itself, in the form of a set of transformation rules.

619



In this paper, we present a new evolutionary ap-
proach to the POS tagging problem. Our strategy
implies a division of the problem into two dif-
ferent tasks: a learning task and an optimization
task. These are tackled using not only evolution-
ary algorithms, but also particle swarm optimiza-
tion (PSO), resulting, as far as we know, in the first
attempt to approach this problem using swarm in-
telligence. Although focusing mainly on the POS
tagging problem, we believe that this work may be
the foundation for a new paradigm to solve other
NLP tasks.

2 Rules Discovery Using Evolutionary
Computation

It is our belief that the information stored in the
training tables of the probabilistic approach can
be interpreted as a set of instances. Each of these
instances is typically described by a set of mea-
surable attributes related to the tags of the sur-
rounding words, and is associated with a numer-
ical value that identifies the number of times each
one occurs in the training corpus. Naturally, this
information is specific to the corpus from which
it was collected and does not show any degree of
generalization, instead it can easily be interpreted
as an extensive and comprehensive collection of
information. Hence we are convinced that it is ad-
missible to investigate the possibility of general-
izing this information using a classification algo-
rithm. From this generalization we expect to be
able to reduce the amount of information needed
to solve the problem and also to improve the tag-
ging accuracy. The learned rules may be used, in
a similar way to the training table, to guide the
search of the POS tagging problem state space.
They aim not to classify a given word, but rather
assess the quality of a particular classification.

Previous experience with classification rules
discovery (Sousa et al. (2004)), using evolution-
ary computation, has led us to define the classifi-
cation algorithm based on a covering algorithm.
We divided the problem into n distinct classifi-
cation problems, n being the number of different
tags used in the annotated corpus, from which the
rules will be learned and that define the tag set E.
Each tag e ∈ E presented in the corpus determines
a classifying object, with possible classes taking
values from the discrete set Y = {Y es,No}. The
covering algorithm receives as input a set of pos-
itive examples and a set of negative examples. It

then invokes the search algorithm with the current
sets of examples. This algorithm is responsible for
determining the best classification rule for the set
of training examples it receives as input. At each
execution, the rule obtained is stored, along with
its quality value, and the set of positive examples
is updated by eliminating all the instances covered
by the rule. The search algorithm will be executed
as many times as necessary, so that all positive ex-
amples are covered, i.e., the set of positive exam-
ples is the empty set. Therefore, the complete set
of rules is obtained by executing the search algo-
rithm m times. Two different search algorithms
were tested: one based on a GA and another based
on a PSO.

2.1 Prediction attributes and representation

As prediction attributes we used two groups of in-
formation. The first group includes six attributes
related with the context: the lexical categories of
the third, second and first words to the left, and
the lexical categories of the first, second, and third
words to the right of a particular word. The second
group comprises the following information about
the words: if the word is capitalized, if the word
is the first word of the sentence, if the word has
numbers or ’.’ and numbers, and some words’ ter-
minations like ed, ing, es, ould, ’s, s. The pos-
sible values for each of the first group’s attributes
are the values of the corpus tag set from which the
search algorithm will learn the rules. This set will
depend on the annotated corpus used, since the tag
set will vary for different annotated corpora. The
remaining attributes were defined as boolean.

The training sets were built from the Brown cor-
pus. For each word of the corpus, we collected the
values of every attribute in the rule’s antecedent,
creating a specific training example. Next, for
each tag of the tag set, we built a training set made
by positive and negative examples of that tag. The
building process used to define each of the training
sets was the following: for each example ei of the
set of examples, with word w and tag t, if w is an
ambiguous word, with S the set of all its possible
tags, then put ei in the set of positive examples of
tag t, and put ei in the set of negative examples of
all the tags in S, except t.

We used a binary representation for the rules.
The attributes related with the context were codi-
fied, each one, by six bits. The first bit indicates
whether the attribute should or should not be con-
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sidered, and the following five bits represent the
assumed value of the attribute in question. We
adopted a table of 20 entries to store the tag set,
and used the binary value represented by five bits
to index this table. If the value exceeds the number
20, we used the remainder of the division by 20.
The remaining attributes were encoded by 18 bits,
two bits for each of the nine attributes. In the same
way, the first bit indicates if the attribute should or
shouldn’t be considered, while the second bit, in-
dicates whether the property is, or is not, present.
We adopted a Michigan approach, thus, in both
implementations of the search algorithm, each par-
ticle/individual represents a rule using the codifi-
cation described. In short, each particle/individual
was composed by 6× 6 + 2× 9 = 54 bits.

2.2 Search Algorithm
As we said in the previous section, we imple-
mented the search algorithm in two different ways:
using a genetic algorithm and a particle swarm op-
timizer. For the PSO based search algorithm we
adopted the binary version presented by Kennedy
(Kennedy and Eberhart (2001)). The genetic algo-
rithm based version follows the classical GA with
binary representation (Holland (1992)). We used,
as genetic operators, the two point crossover (with
0.75 probability) and the binary mutation (with
0.01 probability). The selection scheme used was
a tournament selection with tournaments of size
two and k = 0.8.

The formula used to evaluate each rule, and
therefore to set its quality, is expressed by the well
known Fβ-measure (see Equation 1). The Fβ-
measure can be interpreted as a weighted average
of precision and recall. We used β = 0.09, which
means we put more emphasis on precision than re-
call. Each time the search algorithm is invoked
by the covering algorithm it returns the best rule
found and a numerical value that represents the
value of the Fβ-measure to that rule. This value
will be used as the quality value of the rule by
the POS-Tagger, which we will present in the next
section.

Fβ(X) = (1 + β2)× P (X)×R(X)

β2 × P (X) +R(X)
(1)

P (X) =
TP

TP + FP
(2)

R(X) =
TP

TP + FN
(3)

In Equation 3 TP represents the number of true
positives, i.e. the number of instances covered
by the rule that are correctly classified; FP repre-
sents the number of false positives, i.e. the number
of instances covered by the rule that are wrongly
classified; FN the number of false negatives, i.e.
the number of instances not covered by the rule,
whose class matches the training target class.

3 POS-Tagger

By definition, a POS-tagger should receive as in-
put a non annotated sentence, w, made of nwords,
wi, and should return the same sentence, but now
with all the wi marked with the appropriate tag.
Assuming we know all the possibilities, Wi, of
tagging each of the wordswi of the input sentence,
the search space of the problem can be defined by
the setW1×W2×· · ·×Wm. Therefore the solution
can be found by searching the problem state space.
We believe that this search can be guided by the
disambiguation rules found earlier. We tested two
different global search algorithms: a genetic al-
gorithm (GA-Tagger) and a binary particle swarm
optimizer (PSO-Tagger).

The taggers developed were designed to receive
as inputs a sentence, w, a set of sets of disam-
biguation rules, Dt, and a dictionary, returning as
output the input sentence with each of its words
labeled with the correct POS tag. The search
algorithm evolves a swarm/population of parti-
cles/individuals, that encode, each of them, a se-
quence of tags for the words of the input sentence.
The quality of each particle/individual is measured
using the sets of disambiguation rules given as in-
put.

3.1 Representation

The representation used in the two implemented
algorithms is slightly different. In the GA-Tagger,
we adopted a symbolic representation. An individ-
ual is represented by a chromosome g made of a
sequence of genes. The number of genes in a chro-
mosome equals the number of words in the input
sentence. Each gene, gi, proposes a candidate tag
for the word, wi, in the homologous position. The
possible alleles for gene gi, are the elements of the
set Wi.

Since we adopted the binary version of the PSO
algorithm, we used, in this case, a binary represen-
tation. To encode each of the tags belonging to the
tag set, we used a string of 5 bits. Therefore, a par-
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ticle that proposes a tagging for a sentence with n
ambiguous words will be represented by n×5 bits.
Each five bits of a particle encode a integer num-
ber that indexes a table with as much entries as
the possible tags for the correspondent ambiguous
word. If the integer number, given by the binary
string, exceeds the table size, we use as index the
remainder of the division by the table size value.

3.2 Tagging Evaluation
The quality of the overall tagging, t, is given
by the sum of the evaluation results of each
tag assignment, ti for each word wi. A parti-
cle/individual representing a sequence of n tags,
t, for a sentence with n words will give rise to a
set of n pairs 〈xi, ti〉, with xi denoting the corre-
spondent 15-tuple collecting the values of the 15
attributes presented in the disambiguation rule’s
antecedent. The quality of each tag assignment,
ti, is measured by assessing the quality of the pair
〈xi, ti〉, with xi using Equation 4.

h(〈xi, ti〉) =


qk If 〈rk, qk〉 ∈ Dti

and rk covers xi
0 Otherwise

(4)

The quality of a particle/individual is given by
Equation 5, with T representing the set of all n
pairs 〈xi, ti〉.

Quality(T ) =
n∑
j=1

h(Tj) (5)

4 Experimental Results

We developed our system in Python and used the
resources available on the NLTK (Natural Lan-
guage Toolkit) package in our experiences. The
experimental work was done in two phases. First
the disambiguation rules were discovered and, af-
ter that, the POS taggers were tested. The results
achieved in each phase are presented in the next
subsections.

4.1 Disambiguation rules discovery
We used a simplified tag set, composed by 20 tags.
This simplified tag set establishes the set of classes
we use in our classification algorithm. We ran the
covering algorithm for each one of these classes
and built, for each one, the respective sets of posi-
tive and negative examples. We processed 90% of
the Brown corpus in order to extract the training

examples, and, for each word found, we built the
corresponding instance. The total number of ex-
amples extracted from the corpus equaled 929286.
We used 6 subsets of this set (with different cardi-
nality) to conduct our experiments. We used sets
of size: 3E4, 4E4, 5E4, 6E4, 7E4 and 8E4,
which we identified with labels A, B, ..., F. For
each subset, we built the sets of positive and neg-
ative examples for each tag, using the process de-
scribed in the previous section.

We tested the classification algorithm both with
the GA and the PSO implementation of the search
algorithm. We ran the classification algorithm two
times with each different implementation for each
of the training sets. The GA was run with pop-
ulations of size 200 for a maximum of 80 genera-
tions and the PSO with swarms of 20 particles over
200 generations. In table 1 we present the average
number of rules achieved by both algorithms and
the correspondent reduction, considering the total
number of positive examples (+) adopted.

Although the publications describing previous
evolutionary approaches, based on training tables,
do not clearly indicate the number of entries of
those tables, their size is explicitly mentioned as a
sensitive point concerning the algorithm time ex-
ecution (Araujo (2002)). While unknowing these
values, the total number of positive examples con-
sidered from each of the training sets adopted, can
give us an idea of the size of these tables, since the
information used is similar. However, while the
large training set in our case has a total of8E4, the
previous approaches use sets with typically more
than 1.5E5. As we can see in Table 1, the rules
discovered by both algorithms, allowed a signifi-
cant reduction (around 90%) in the number of pos-
itive examples considered. The results also show
that there are no significant differences in the num-
ber of rules discovered by the GA and the PSO.

4.2 POS tagging results

We tested the PSO-Tagger and the GA-Tagger on a
test set made of 22562 words of the Brown corpus
using the best set of rules found (AG F.1). We ran
the PSO-Tagger 20 times with swarms of 10 and
20 particles during 50 and 100 generations. The
GA-Tagger was also executed 20 times with popu-
lations of 50 and 100 individuals during 10 and 20
generations. These values were chosen so that we
could test both algorithms with similar computa-
tional effort, considering the number of necessary
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Table 1: Average number of rules discovered by the classification algorithm.

Average number of rules
Set + GA Reduction PSO Reduction
A 25859 2719 89.49% 2715.5 89.49%
B 33513 3081 90.81% 3124.5 90.68%
C 41080 3358.5 91.82% 3327.0 91.90%
D 48612 3735.5 92.32% 3696.5 92.39%
E 55823 4137 92.59% 4033.0 92.78%
F 63515 4399 93.07% 4288.5 93.25%

Table 2: Tagging accuracy results achieved by both POS-taggers on a test set made of 22562 words of the Brown corpus

using as heuristic the set AG F.1.

Tagger Part/Ind Generations Average Best Standard Deviation
PSO-Tagger 10 50 0.9672658 0.9679550 2.6534E − 4

100 0.9673123 0.9676004 1.9373E − 4
20 50 0.9674896 0.9678220 1.9158E − 4

100 0.9673921 0.9678663 2.1479E − 4

GA-Tagger 50 10 0.9672170 0.9675561 1.9200E − 4
20 0.9672968 0.9674231 1.1707E − 4

100 10 0.9672591 0.9675561 1.4097E − 4
20 0.9672835 0.9675117 1.0978E − 4

evaluations the effort measure.

The results achieved are shown in table 2.
As we can see, the best average accuracy was
achieved with the PSO-Tagger using a swarm of
20 particles evolving during 50 generations. The
best accuracy result returned by the GA-Tagger is
worst than the best result obtained with the PSO-
Tagger and it needs the double number of evalu-
ations required by the PSO-Tagger. However, the
accuracy values displayed by the GA-Tagger are
still very competitive when compared with others
published using similar approaches.

We also tested the taggers on a test set of the
WSJ corpus of the Penn Treebank. As expected,
the results achieved by the two taggers on the WSJ
corpus, using as heuristic the disambiguation rules
learned from the Brown corpus, are inferior to the
ones obtained on the Brown corpus. However, we
believe that they allow us to conclude that the dis-
covered rules are sufficiently generic so that they
can be used in different corpora. This conviction
emerges from comparing the obtained results with
those published by other evolutionary approaches
(see Table 3). Indeed, we found that the accuracy
achieved is comparable with the best published re-
sults. It is also important to stress that this val-
ues are achieved with no previous training on this

corpus. The accuracy values for the WSJ corpus
presented in Table 3 were achieved using all the
corpus available in the NLTK package, in a total
of 100676 words.

Table 3, presents the accuracy values achieved
by the taggers in both English corpora used, along
with the results published by works using simi-
lar approaches. These results only reveal that the
accuracy values obtained by the two taggers are
competitive with those of past approaches. We
can not directly compare our results with those
published since we have no access to the test set
used in the experiments made in the cited works.
Nevertheless, we may conclude that for compara-
ble size words sets (in the case of the evolution-
ary approaches), taken from the same corpora, the
results obtained in this work are among the best
published. The values shown in Table 3 were con-
verted to percentage values and rounded to the sec-
ond decimal place, so that they could be more eas-
ily compared with the ones presented in the publi-
cations cited.

5 Conclusions

We described a new evolutionary approach to the
POS tagging problem, which we tested using two
distinct algorithms from the evolutionary compu-

623



Table 3: Results achieved by the two taggers on two english corpora along with the ones published by similar approaches.

(Araujo - Araujo (2002); Alba, Alba-GA, Alba-PGA, Alba - Alba et al. (2006); Wilson - Wilson and Heywood (2005); Brill -

Brill (1995)).

Corpus Tagger Training set Test set Best
Brown PSO-Tagger 80000 22562 96.78

GA-Tagger 80000 22562 96.76
Araujo 185000 2500 95.40
Alba-GA 165276 17303 96.67
Alba-PGA 165276 17303 96.75

WSJ PSO-Tagger ∅ 100676 96.67
GA-Tagger ∅ 100676 96.66
Wilson 600000 =Training 89.80
Brill 600000 150000 97.20
Alba 554923 2544 96.63

tation field: a GA and a PSO. We would like to
emphasize the fact that, to the best of our knowl-
edge, this was the first attempt to apply a PSO to
solve the POS tagging problem, and that, in gen-
eral, there are few approaches based on swarm in-
telligence to solve NLP tasks.

The experiments made using the WSJ corpus
and the disambiguation rules extracted from the
Brown corpus gave us an idea of the degree of
generalization achieved by the adopted classifica-
tion algorithm. From those results, we were able
to confirm that the rules obtained are sufficiently
generic to be applied on different corpora. The
attained generalization also reflected a substan-
tial reduction in the information volume needed to
solve the problem, while contemplating, besides
the typical context information, other aspects re-
lated, not to the POS tags, but to the words’ char-
acteristics. Although we didn’t present any exam-
ple of the learned rules, we would like to point out
the advantages of representing the information in
the typical classification rule format, when com-
pared to the numerical values used in the proba-
bilistic approaches. The comprehensibility of the
learned rules, which can be represented by predi-
cate logic, allows its easy application in different
contexts.

It is our conviction that the presented approach
can be viewed as a new paradigm for solving a
set of NLP tasks that share some of the features
of the POS tagging problem and that are cur-
rently mainly solved by probabilistic approaches.
Therefore, we are planning to extend this method
to other tasks that also need some kind of dis-

ambiguation in the resolution process, like noun-
phrase chunking, the named-entity recognition
problem, sentiment analysis, etc.
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