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Abstract

We present an unsupervised learning
model that induces phrasal inversion
transduction grammars by introducing a
minimum conditional description length
(CDL) principle to drive search over a
space defined by two opposing extreme
types of ITGs. Our approach attacks the
difficulty of acquiring more complex
longer rules when inducing inversion
transduction grammars via unsupervised
bottom-up chunking, by augmenting its
model search with top-down segmentation
that minimizes CDL, resulting in signifi-
cant translation accuracy gains. Chunked
rules tend to be relatively short; long
rules are hard to learn through chunking,
as the smaller parts of the long rules
may not necessarily be good translations
themselves. Our objective criterion is a
conditional adaptation of the notion of
description length, that is conditioned on
a fixed preexisting model, in this case
the initial chunked ITG. The notion of
minimum CDL (MCDL) facilitates a
novel strategy for avoiding the pitfalls
of premature pruning in chunking ap-
proaches, by incrementally splitting an
ITG with reference to a second ITG that
conditions this search.

1 Introduction

We describe an unsupervised approach to induc-
ing phrasal inversion transduction grammars or
ITGs (Wu, 1997) that employs a new theoretically
well-founded minimum conditional description
length (CDL) objective to explicitly drive two op-
posing, extreme ITGs towards one single ITG.
Given one ITG initially composed of short rules
learned by bottom-up chunking of short atomic

rules, our method augments it with rules that are
learned through top-down segmentation of long
rules initialized by memorizing the parallel cor-
pus. This offers an opportunity to capture longer
non-compositional translations as explicit bitermi-
nal rules, which is hard for search to discover
solely via bottom-up chunking. Iterative bottom-
up chunking relies on composing two good trans-
lations into a longer good translation, which as-
sumes that the long rules learned in this way are
compositional. In contrast, iteratively segment-
ing an existing good translation into shorter good
translations does not depend on assumptions about
whether the resulting shorter rules can be further
decomposed. Empirically, augmenting the chun-
ked ITG with rules learned via top-down segmen-
tation helps translation quality. However, the max-
imum likelihood objective is inadequate for this
purpose; instead, we introduce theminimum con-
ditional description length (MCDL) objective to
drive the search for phrasal rules simultaneously
from the two opposing types of ITG constraints,
both of which have individually been empirically
demonstrated to match phrase reordering patterns
across translations well. In so doing, we aim to
also provide an obvious basis for generalization to
abstract translation schemas.
The necessity of MCDL as an alternative learn-

ing objective to standard maximum likelihood
(ML) arises because the top-down rule segmen-
tation search starts in a state where likelihood
is already maximized, unlike bottom-up learn-
ing which can be driven with ML. The top-down
search starts with all sentence pairs in the training
corpus as biterminals, which maximizes the likeli-
hood of the training data, but is guaranteed to gen-
eralize poorly to unseen data. There is no segmen-
tation we can make to this grammar that would in-
crease the likelihood of the training data, but we
do nonetheless want to segment the existing rules
so that the grammar has a chance to cover unseen
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data. The solution is to move away from pure ML;
in this paper we will use minimum conditional de-
scription length, which has the likelihood of the
training data as one component, but balances it
with a notion of model size. MCDL allows us to
make the training data less likely provided that the
size of the grammar becomes smaller. Since the
initial state of the top-down search has all the sen-
tence pairs in the training data explicitly stored as
biterminals, there is ample opportunity for shrink-
ing the size of the grammar by segmenting the
existing rules into reusable segments, and MCDL
helps deciding when this is a good idea and when
not. The difference betweenMCDL and minimum
description length is that the lengths are subject to
an external model. In our case, the external model
is the bottom-up chunked ITG, which means that
the auxiliary ITG being induced is tailored specif-
ically towards augmenting it.

We choose to work with the well-defined and
theoretically sound formalism of ITGs rather than
over-engineered direct translation models (Koehn
et al., 2003) or feature-heavy transduction gram-
mars (Chiang, 2005). The reason for this is
twofold: (a) they allow for manual inspection, and
(b) the assumptions stay the same through learn-
ing and testing. Being able to inspect the learned
model is crucial for error analysis, but inspecting
a typical state-of-the-art translation system is pro-
hibitively hard. Phrasal direct translation systems
rely heavily on the language model to compen-
sate for the mistakes they make, as well as rely-
ing on a fine-tuned log-linear combination of sev-
eral features to choose which lexical units to use.
Pinning down exactly where and why an error oc-
curred in this setup is very hard. The transduction
grammar based approach is better in this respect,
but the state-of-the-art typically relies on massive
amounts, tens of thousands (Chiang et al., 2009),
of features. As a community, we still have no
clear idea of why these features help translation,
only that they do when the whole system pipeline
is treated as a black box, but treating the system
as a black box prevents effective error analysis.
The state-of-the-art systems also relies on long and
complicated learning pipelines that form ad-hoc
models of how translation happens. These ad-
hoc models differ significantly from the models of
how translation happens that are used during ac-
tual translation, which violates the basic machine
learning assumption that the same model should

be used during training and testing. In contrast,
the only difference between biparsing with ITGs
(training) and decoding (testing) is that both sen-
tences are given during biparsing, but only the
input sentence during decoding—the model itself
does not change, only the way it is used.
The space of possible ITG structures is in-

tractably large, and there have been many at-
tempts to introduce external constraints to guide
the search. We do completely unsupervised search
without introducing such constraints, which limits
the scope of error analysis to the search strategy.
Popular external constraints include word align-
ments (Chiang, 2005) and parse trees.
Word alignments are typically learned as a

many-to-one function from one language into the
other language (Brown et al., 1993; Vogel et al.,
1996), but since no translation systems in use to-
day actually rely on generating one output token at
a time from zero or more input tokens, two oppos-
ing such functions are typically combined heuris-
tically to form a many-to-many function between
the input and output tokens. This is problematic, as
it turns the alignments into hard constraints that are
external to any model learned from them. Ironi-
cally, whenever transduction grammars are used to
learn alignments these alignments are also treated
as hard external constraints to the translation mod-
els that are learned from them (Cherry and Lin,
2007; Zhang et al., 2008; Blunsom et al., 2008,
2009; Haghighi et al., 2009; Saers and Wu, 2009,
2011; Blunsom and Cohn, 2010; Burkett et al.,
2010; Riesa and Marcu, 2010; Saers et al., 2010;
Neubig et al., 2011, 2012).
When parse trees are used to constrain the search

they can be found on the input side only, making
the resulting system a tree-to-string system, on the
output side only, making it a string-to-tree system,
or on both sides, making it a tree-to-tree system
(Galley et al., 2006). The grammarians who con-
structed the treebank—or the parser that it was cre-
ated with, or the treebank that was used to train
the parser—can and should not be expected to take
into account the relationship between the language
they are working with and all other languages on
the planet, so the parse trees themselves run a real
risk of matching the translation problem poorly.
We structure the paper so that we start by in-

troducing conditional description length, which
we will use to replace description length as the
driving metric for the top-down rule-segmenting
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ITG induction (Section 2). We then describe how
we encode ITGs to measure their length in bits,
which is a necessary component of any metric
related to description length (Section 3). These
two sections are the theoretical fundamental that
we build the algorithms around. The first algo-
rithm we describe is the baseline: top-down rule-
segmenting ITG induction driven by minimum de-
scription length (Section 4). Although it is back-
ground, please bear with us as it serves an im-
portant role in contrasting conditional with uncon-
ditional, plain description length. This lays the
ground work for the experimental contribution of
the paper: Section 5 describes how we initialize
an ITG by bottom-up rule-chunking, which is then
augmented (Section 6) with rules learned through
top-down rule segmentation as described in our
second algorithm. This algorithm differs from the
first in that it minimizes conditional description
length rather than plain description length. We
also test our model empirically in an experiment
described in Section 7 and analyzed in Section 8.
Finally, we offer some concluding remarks (Sec-
tion 9).

2 Conditional Description Length

Conditional description length (CDL) is a general
method for evaluating a model and a dataset given
a preexisting model. This makes it ideal for aug-
menting an existing model with a variant model
of the same family. In this paper we will apply
this to augment an existing inversion transduction
grammar (ITG) with rules that are foundwith a dif-
ferent search strategy. CDL is similar to descrip-
tion length (Solomonoff, 1959; Rissanen, 1983),
but the length calculations are subject to additional
constraints. When minimum CDL (MCDL) is
used as a learning objective, all the desired proper-
ties of minimum description length (MDL) are re-
tained: the model is allowed to become less certain
about the data provided that it shrinks sufficiently
to compensate for the loss in precision. MDL is a
good way to prevent over-fitting, and MCDL re-
tains this property, but for the task of inducing a
model specifically to augment an existing model.
Formally, CDL is:

DL (Φ, D|Ψ) = DL (D|Φ,Ψ) + DL (Φ|Ψ)

where Ψ is the fixed preexisting model, Φ is the
model being induced, and D is the data. The total

unconditional length is :

DL (Ψ, Φ, D)

= DL (D|Φ,Ψ) + DL (Φ|Ψ) + DL (Ψ)

In minimizing CDL, we fix Ψ instead of allowing
it to vary as we would in full MDL; to be precise,
we seek:

argmin
Φ

DL (Ψ, Φ, D)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ) + DL (Ψ)

= argmin
Φ

DL (Φ, D|Ψ)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ)

To measure the CDL of the data, we turn to infor-
mation theory to count the number of bits needed
to encode the data given the two models under an
optimal encoding (Shannon, 1948), which gives:

DL (D|Φ, Ψ) = −lg P (D|Φ, Ψ)

The CDL of the model is not necessarily express-
ible as a probability, and in this paper we will mea-
sure its length as the number of bits required to en-
code the model using a theoretical encoding.
To determine whether a model Φ has a shorter

conditional description length, than another model
Φ′, it is sufficient to be able to subtract one length
from the other. For the model length, this is trivial
as wemerely have to calculate the length of the dif-
ference between the two models in our theoretical
encoding. For data length, we need to solve:

DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

= −lg P
(
D|Φ′, Ψ

)
−−lg P (D|Φ,Ψ)

= −lg P (D|Φ′, Ψ)

P (D|Φ, Ψ)

3 Encoding ITGs

By encoding an ITG, we turn the relatively com-
plex data structure into a series of symbols—a
message, whose length can be measured in bits.
This section describes how we device this encod-
ing scheme. An ITG consists of a set of nontermi-
nal symbols, a set of L0 symbols, a set of L1 sym-
bols, a set of rules and a start symbol. We notice
that the only significance of the sets of nontermi-
nal, L0 and L1 symbols is to categorize the sym-
bols that occur in the rules, and the identity of the
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start symbol constitutes a per-grammar constant.
To measure the length of a grammar it is thus suf-
ficient to measure and sum the lengths of all rules.
We will measure the length by encoding the rule
set as a sequence of symbols. We need one symbol
for each of the nonterminal, L0 and L1 symbols of
the ITG, as well as a meta symbol to separate rules
and determine whether they are straight or inverted
(unary rules are assumed to be straight). For con-
ditional description length, rules that are found in
Ψ can be excluded when measuring the length of
Φ. Consider the following toy ITG:

S → A, A→ ⟨AA⟩, A→ [AA] ,
A→ have/有, A→ yes/有, A→ yes/是

which is conditioned on the following ITG:

S → A, A→ ⟨AA⟩, A→ [AA] ,
A→ · · · , · · ·

Its serialized form would be:

[]Ahave有[]Ayes有[]Ayes是

Assuming a uniform distribution over the sym-
bols, each symbol will require−lg 1

N bits to encode
(whereN is the number of different symbols in the
ITG). The above toy ITG has 8 symbols, mean-
ing that each symbol requires 3 bits. The encoded
message is 12 symbols long, making the ITG 36
bits long.

4 Baseline ITG

The natural baseline to compare ITGs learned by
minimizing conditional description length is ITGs
learned by minimizing unconditional description
length, which we will describe in this section. This
is the same model as described in Saers et al.
(2013), which is repeated here to highlight themin-
imum changes needed to switch the objective func-
tion fromminimumdescription length tominimum
conditional description length.
The ITG is initialized with all sentence pairs as

biterminals:

S → A

A → e0..T0/f0..V0

A → e0..T1/f0..V1

...

A → e0..TN
/f0..VN

where S is the start symbol, A is the nontermi-
nal, N is the number of sentence pairs, Ti is the

length of the ith output sentence (making e0..Ti

the ith output sentence), and Vi is the length of
the ith input sentence (making f0..Vi the ith input
sentence). After the ITG has been initialized, its
preterminal rules are iteratively segmented until no
segmentations can be found that would shorten its
description length. The parameters of the model
is initialized as relative frequency of the sentence
pairs/biterminals.
The segmentation algorithm relies on identi-

fying parts of existing biterminals that could be
validly used in isolation, and allow them to com-
bine with other segments. We do this by proposing
a number of sets of biterminal rules and a place to
segment them, evaluate how the description length
would change if we were to apply one of these sets
of segmentations to the grammar, and commit to
the best set. That is: we do a greedy search over the
power set of possible segmentations of the rule set.
The key component in the approach is the ability to
evaluate how the description length would change
if a specific segmentation was made in the gram-
mar. This can be extended to a set of segmenta-
tions, which only leaves the problem of generating
suitable sets of segmentations.
The key to a successful segmentation is to maxi-

mize the potential for reuse, either by being able to
identify a segment across multiple rules. Consider
the terminal rule:

A → five thousand yen is my limit/
我最多出五千日元

(Chinese romanization: wŏ zùi dūo chū wŭ qīan rì
yúan). This rule can be split into three rules:

A → ⟨AA⟩,
A → five thousand yen/五千日元,

A → is my limit/我最多出

Note that the original rule consists of 16 symbols
(in our encoding scheme), whereas the new three
rules consists of 4 + 9 + 9 = 22 symbols. The
bracketing inverted rule is likely to already be in
the ITG, but the lexical rules still contain 18 sym-
bols, which is decidedly longer than 16 symbols—
and we need to get the length to be shorter if we
want to see a net gain, since the length of the data is
likely to be longer with the segmented rules. What
we really need to do is find a way to reuse the lex-
ical rules that came out of the segmentation. Now
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suppose the ITG also contained this terminal rule:

A → the total fare is five thousand yen/
总共的费用是五千日元

(Chinese romanization: zŏng gòng de fèi yòng shì
wŭ qīan rì yúan). This rule can also be split into
three rules:

A → [AA] ,

A → the total fare is/总共的费用是,

A → five thousand yen/五千日元

Again, the structural rule is likely to already be
present in the ITG, the old rule was 19 symbols
long, and the two new terminal rules are 12 + 9 =
21 symbols long. Again we are out of luck, as the
new rules are longer than the old one, and three
rules are likely to be less probable than one rule
during parsing. The way to make this work is to
realize that the two existing rules share a bilingual
affix—a biaffix: five thousand dollars translating
into 五千日元. If we make the two changes at the
same time, we get rid of 16 + 19 = 35 symbols
worth of rules, and introduce a mere 9 + 9 + 12 =
30 symbols worth of rules. Making these two
changes at the same time is essential, as the length
of the five saved symbols can be used to offset the
likely increase in the length of the data. And of
course: the more rules we can find with shared bi-
affixes, the more likely we are to find a good set of
segmentations.
The top-down search algorithm takes advantage

of the above observation by focusing on the biaf-
fixes found in the training data. Each biaffix de-
fines a set of lexical rules paired up with a possible
segmentation. We evaluate the biaffixes by esti-
mating the change in description length associated
with committing to all the segmentations defined
by a biaffix. This allows us to find the best set of
segmentations, but rather than committing only to
the one best set of segmentations, we will collect
all sets which would improve description length,
and try to commit to as many of them as possi-
ble. The pseudocode can be found in Algorithm 1.
It uses the methods collect_biaffixes, eval_dl,
sort_by_delta and make_segmentations. These
methods collects all the biaffixes in an ITG, evalu-
ate the difference in description length, sorts candi-
dates by these differences, and commits to a given
set of candidates, respectively. To evaluate the
DL of a proposed set of candidate segmentations,

we need to calculate the difference in DL between
the current model, and the model that would result
from committing to the candidate segmentations:

DL
(
Φ′, D

)
−DL (Φ, D)

= DL
(
D|Φ′)−DL (D|Φ)

+ DL
(
Φ′)−DL (Φ)

The model lengths are trivial, as we merely have
to encode the rules that are removed and inserted
according to our encoding scheme and plug in the
summed lengths in the above equation. This leaves
the length of the data, which is:

DL
(
D|Φ′)−DL (D|Φ) = −lg P (D|θ′)

P (D|θ)

where θ and θ′ are the parameters of Φ and Φ′ re-
spectively. This lets us determine the probability
through biparsing with the model being induced.
Biparsing is, however, a very expensive operation,
and we are making relatively small changes to the
ITG, so we will further assume that we can esti-
mate the DL difference in closed form based on the
model parameters. Given that we are splitting the
rule r0 into the three rules r1, r2 and r3, and that
the probability mass of r0 is distributed uniformly
over the new rules, the new grammar parameters
θ′ will be identical to θ, except that:

θ′
r0 = 0

θ′
r1 = θr1 +

1

3
θr0

θ′
r2 = θr2 +

1

3
θr0

θ′
r3 = θr3 +

1

3
θr0

Weestimate the probability of the corpus given this
new parameters to be:

−lg P (D|θ′)

P (D|θ)
≈ −lg θ′

r1θ
′
r2θ

′
r3

θr0

To generalize this to a set of rule segmentations,
we construct the new parameters θ′ to reflect all
the changes in the set in a first pass, and then sum
the differences in DL for all the rule segmentations
with the new parameters in a second pass.

5 Initial ITG

The initial ITG that we start with is learned fol-
lowing the best bootstrapping approach reported in
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Algorithm 1 Iterative rule segmenting learning
driven by minimum description length.
1: Φ ▷ The ITG being induced
2: repeat
3: δsum ← 0
4: bs← collect_biaffixes(Φ)
5: bδ ← []
6: for all b ∈ bs do
7: δ ← eval_dl(b, Φ)
8: if δ < 0 then
9: bδ ← [bδ, ⟨b, δ⟩]
10: end if
11: end for
12: sort_by_delta(bδ)
13: for all ⟨b, δ⟩ ∈ bδ do
14: δ′ ← eval_dl(b, Φ)
15: if δ′ < 0 then
16: Φ← make_segmentations(b, Φ)
17: δsum ← δsum + δ′

18: end if
19: end for
20: until δsum ≥ 0
21: return Φ

Saers et al. (2012). That is: we start by initializ-
ing a token-based bracketing finite-state transduc-
tion grammar, or FSTG, parameterized with rel-
ative frequencies from the training corpus. We
then tune the parameters to the training corpus, and
then change the structure of the grammar to in-
clude lexical rules that can be formed by chunking
adjacent preterminals. The tune–chunk step is re-
peated twice, before transforming the FSTG into a
bracketing linear inversion transduction grammar,
or LITG (Saers et al., 2010), whose parameters
are also tuned to the training corpus. The LITG
is then transformed into a full ITG whose param-
eters are again tuned to the training corpus. All
parameter tuning is carried out with our in-house
biparser, which is based on beam search (Saers et
al., 2009), and expectation maximization (Demp-
ster et al., 1977). We also prune away very improb-
able rules to reduce noise, which makes the model
perform better than reported in the original paper,
providing a more solid baseline for comparison.

6 Augmenting the initial ITG

To augment the initial ITG we will search top-
down for rules that the chunking approach were
unable to find. We do this by initializing an auxil-
iary ITG that merely contains all sentence pairs as

Algorithm 2 Iterative rule segmenting learning
driven byminimum conditional description length.
1: Φ, Ψ ▷ The auxiliary and initial ITG
2: repeat
3: δsum ← 0
4: bs← collect_biaffixes(Φ)
5: bδ ← []
6: for all b ∈ bs do
7: δ ← eval_cdl(b, Ψ,Φ)
8: if δ < 0 then
9: bδ ← [bδ, ⟨b, δ⟩]
10: end if
11: end for
12: sort_by_delta(bδ)
13: for all ⟨b, δ⟩ ∈ bδ do
14: δ′ ← eval_cdl(b, Ψ, Φ)
15: if δ′ < 0 then
16: Φ← make_segmentations(b, Φ)
17: δsum ← δsum + δ′

18: end if
19: end for
20: until δsum ≥ 0
21: return Φ

biterminals. This auxiliary ITG is then iteratively
segmented until we arrive at a set of rules which
cannot be segmented to further reduce the condi-
tional description length of the auxiliary ITG given
the initial ITG. The initial and auxiliary ITGs are
then combined to form the augmented ITG.
Learning the auxiliary ITG is very similar to

learning the baseline ITG. The motivation and ini-
tialization are identical, but rather than driving the
segmentation by evaluating description length, it is
driven by evaluating conditional description length
(CDL). Algorithm 2 is thus very similar to Algo-
rithm 1, except that there is an initial ITG, and
that Algorithm 2 calls eval_cdl on lines 7 and 14,
where Algorithm 1 calls eval_dl. To evaluate the
CDL of a proposed set of candidate segmentations,
we now need to calculate the difference in CDL be-
tween the current model, and the model that would
result from committing to the candidate segmenta-
tions:

DL
(
Φ′, D|Ψ

)
−DL (Φ, D|Ψ)

= DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

+ DL
(
Φ′|Ψ

)
−DL (Φ|Ψ)

The model lengths are still trivial, as we merely
have to encode the rules that are removed and in-
serted according to our encoding scheme, but we
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Table 1: The results of decoding.
ITG model BLEU NIST Rules
Baseline 17.44 4.3909 47,298
Initial only 15.71 4.1267 251,947
Auxiliary only 16.11 3.9334 60,133
Augmented 19.32 4.4243 301,293

still need to calculate the change in the length of
the data, which is:

DL
(
D|Φ′,Ψ

)
−DL (D|Φ, Ψ)=−lgP (D|Φ′,Ψ)

P (D|Φ, Ψ)

For the sake of convenience in efficiently calculat-
ing this probability, we make the simplifying as-
sumption that:

P (D|Φ, Ψ) ≈ P (D|Φ) = P (D|θ)

where θ is the model parameters, which allow us
to approximate the difference in data CDL as:

−lg P (D|θ′)

P (D|θ)

This is the same problem that we had for the base-
line model, and we solve it in the same way: by
assuming probability mass to be distributed uni-
formly over over the new rules and by approxi-
mating the change in corpus probability in closed
form.
Although this simplifying assumption is reason-

able for calculating the difference in probability of
the data given the augmented model, it might not
be such a good assumption during decoding. So,
when using the augmented model for translation,
we interpolate the initial and auxiliary ITG to pro-
duce the augmented ITG. The parameters of the
augmented ITG are set such that:

θΦ,Ψ
r = αθΦ

r + (1− α)θΨ
r

for all rules r, where θ is the probability of a rule
under a specific ITG, and α is a weighting param-
eter that determine which ITG we trust more. For
the experiments in this paper, we fixed α = 1

2 .

7 Experimental setup

To test the new learning algorithm, we will in-
duce two ITGs: one using the baseline learning
algorithm and one using the presented augment-
ing algorithm that relies on minimizing the intro-
duced conditional description length. We use the

Chinese–English translation task from IWSLT07
(Fordyce, 2007) as training and test data. In con-
tains 46,867 sentence pairs of training data, and
489 sentence pairs of test data with 6 reference
translations each. To decode with the learned
model, we use our in-house ITG decoder with a tri-
gram language model learned on the English part
of the training data. The decoder uses CKY-style
parsing (Cocke, 1969; Kasami, 1965; Younger,
1967) with cube pruning to integrate the language
model (Chiang, 2007). The language model is
trained with SRILM (Stolcke, 2002). To evaluate
the output we use BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002).

8 Results

The results (Table 1) show the baseline ITG and the
proposed augmented ITG, as well as test scores for
the two intermediate steps: the initial and auxiliary
ITGs. The augmented ITG is significantly better
(19.32 compared to 17.44 BLEU) than the baseline
ITG, but also significantly larger (301,293 com-
pared to 47,298). The number of rules is known to
be somewhat correlated with the translation qual-
ity, so it is hard to draw any conclusions from these
data. The fact that the augmented ITG is signifi-
cantly better than the initial ITG (19.32 compared
to 15.71 BLEU) with only a modest increase in the
number of rules (49,346 extra rules) is, however,
very interesting. It shows that the auxiliary ITG
is indeed learning rules that complement the initial
ITG well. This picture is further corroborated by
the fact that the auxiliary ITG is far behind the full
augmented ITG in terms of translation quality.

9 Conclusion

We have presented conditional minimum descrip-
tion length, a theoretically well-founded learn-
ing objective particularly suited for searching for
a supplemental model tailored to augmenting a
preexisting model, which we have applied to the
task of inducing ITGs by augmenting a bottom-
up chunked inversion transduction grammar with
rules obtained by iteratively splitting existing rules
into smaller rules. We have further shown empiri-
cally that the proposed augmentation strategy sig-
nificantly boosts the quality of an initial ITG. The
model provides an obvious foundation for gener-
alization to more abstract transduction grammars
with informative nonterminals.
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