
Proceedings of Recent Advances in Natural Language Processing, pages 373–381,
Hissar, Bulgaria, 7-13 September 2013.

Incremental and Predictive Dependency Parsing under Real-Time
Conditions

Arne Köhn and Wolfgang Menzel
Fachbereich Informatik

Universität Hamburg
{koehn, menzel}@informatik.uni-hamburg.de

Abstract

We present an incremental dependency
parser which derives predictions about
the upcoming structure in a parse-as-you-
type mode. Drawing on the inherent
strong anytime property of the underlying
transformation-based approach, an exist-
ing system, jwcdg, has been modified to
make it truly interruptible. A speed-up
was achieved by means of parallel pro-
cessing. In addition, MaltParser is used
to bootstrap the search which increases ac-
curacy under tight time constraints. With
these changes, jwcdg can effectively uti-
lize the full time span until the next word
becomes available which results in an op-
timal quality-time trade-off.

1 Introduction

Users prefer incremental dialogue systems to their
non-incremental counterparts (Aist et al., 2007).
For a syntactic parser to contribute to an incre-
mental dialogue system or any other incremental
NLP application, it also needs to work incremen-
tally. However, parsers usually operate on whole
sentences only and few parsers exist that are capa-
ble of incremental parsing or are even optimized
for it.

This paper focuses on using a parser as part
of an incremental pipeline that requires timely re-
sponse to natural language input. In such a sce-
nario, delay imposed by a parser’s lookahead is
more severe than delay caused by parsing speed
since the parsing speed is capped by the user’s
input speed. Depending on the input method,
the maximum typing speed varies between 0.75
seconds per word (qwerty keyboard) and 6 sec-
onds per word (mobile 12-key multi-tap) (Arif and
Stuerzlinger, 2009) and is usually lower if the sen-
tence has to be phrased while typing.

In such a scenario, the objective of the parser is
to yield high quality results and produce them as
soon as they are needed by a subsequent compo-
nent. It is rarely known beforehand when the next
word will be available for processing. Therefore,
in an incremental pipeline a) computation should
continue until the next word occurs if this might
contribute to a better result, and b) a new word
should be included immediately to avoid delays. A
parser which works pull-based, i.e. processes one
prefix until it is deemed finished and then pulls the
next word, is insufficient under conditions, since
it would require to determine the time used for
processing before the processing can even start.
Either the estimated processing time will be too
short, violating a), or it will be too long, violating
b). In contrast, push-based architectures can meet
both requirements since the processing of the pre-
fix can be interrupted when new input is available.

Beuck et al. (2011) showed that Weighted Con-
straint Dependency Grammar-based parsers are
capable of producing high-quality incremental re-
sults but neglected the processing time needed for
each increment. In this paper, we will use jwcdg1,
a reimplementation of the WCDG parser written
in Java. jwcdg uses a transformation-based algo-
rithm. It comes equipped with a strong anytime
capability, causing the quality of the results to de-
pend on the processing time jwcdg is allowed to
consume. We will show that jwcdg can produce
high quality results even if only granted fairly low
amounts of processing time.

1.1 Incremental Predictive Dependency
Parsing

Dependency parsing assigns every word to another
word or NIL as its regent and the resulting edges
are annotated with a label. If dependency analyses

1http://nats-www.informatik.
uni-hamburg.de/CDG/; detailed resources for the
experiments in this paper can be found there as well.

373

are used to describe the syntactic structure of sen-
tence prefixes, different amounts of prediction can
be provided. The interesting cases are those where
either the regent or a dependent is not yet part of
the sentence prefix.

If the regent of a word w is not yet available, the
parser can make a prediction about where and how
w should be attached. One possibility is to simply
state that the regent of w lies somewhere in the
future without giving any additional information.
This can be modelled by attaching w to a generic
nonspec node (Daum, 2004). Beuck et al. (2011)
call this minimal prediction.

However, it is usually possible to predict more:
The existence of upcoming words can be antici-
pated and w can then be attached to one of these
words. Of course, most of the time it will not
be possible to predict exact words but abstract
pseudo-words can be used instead that stand for
a certain type such as nouns or verbs. Beuck et
al. (2011) call these pseudo-words virtual nodes
and the approach of using virtual nodes structural
prediction (because the virtual nodes accommo-
date crucial aspects of the upcoming structure of
the sentence). A virtual node can be included into
an analysis to represent words that are expected to
appear in later increments.

As an example, “Peter drives a red” can be
analyzed as

Peter drives a red [nonspec]

Subj
Det

Adj

using minimal prediction or as

Peter drives a red [VirtNoun]

Subj
Det Adj

Obja

using structural prediction. Minimal prediction
leads to disconnected analyses while structural
prediction allows for connected analyses which
resemble the structure of whole sentences. Tn this
case, the analysis includes the information that the
regent of “red” is the object of “drives”, which is
missing in the analysis using minimal prediction.

1.2 Challenges in Incremental Predictive
Parsing

The key difference between non-incremental and
incremental parsing is the uncertainty about the
continuation of the sentence. If a prediction about
upcoming structure is being made, there is no
guarantee that this prediction will be accurate.

Using a beam of possible prefixes, as done in

Input: "Peter ..."

Make Initial Analysis

Internal Analysis

Peter--XY--> -1
Transform

Partial Analysis

Increment: "... drives ..."

Extend Analysis

Peter--XY--> 1
drives--S--> 0 Transform

Internal Analysis

Partial Analysis

Figure 1: Incremental Parsing with jwcdg

Demberg-Winterfors (2010), is a strategy to deal
with this uncertainty. It guarantees that each new
analysis is an extension of an old one. With this
approach, the whole beam becomes incompatible
with the observed sentence continuation if no fit-
ting prediction is contained in the beam. Thus,
such sentences can not be parsed.

Minimal prediction, as another option, largely
abstains from prediction. This allows for
monotonous extensions even without a beam since
the analysis of a prefix will not be incompatible
with the continuation of the sentence. This ap-
proach is used by MaltParser (Nivre et al., 2007).

A transformation-based parser, finally, can also
deal with non-monotonic extensions. In contrast
to beam search, only a single analysis is generated
for each prefix and there is no guarantee that the
analysis of a prefix pn is a monotonic extension of
pn−1. Because the analysis of pn−1 is only used
to initialize the transformation process, the search
space is not restricted by the results that were ob-
tained in former prefixes although they still guide
the analysis.

2 WCDG Parsing

In the Weighted Constraint Dependency Grammar
formalism, a grammar is used to judge the qual-
ity of analyses. The grammar consists of con-
straints that are evaluated on one or more edges of
an analysis. If a constraint is violated, a penalty
is computed. Constraints can incorporate more
edges into their computation than the edges they
are evaluated on (McCrae et al., 2008). They can
traverse the current analysis by using special pred-
icates. This way, a constraint evaluated on one
edge could, for example, check if that edge is ad-
jacent to an edge with certain properties. If a con-
straint uses such predicates, it is considered con-
text sensitive.

In the WCDG formalism, the best analysis of a

374

sentence is defined by

ba = arg max
a∈Analyses

∏
c∈Conflicts(a)

penalty(c)

where the conflicts are the parts of an analysis that
stand in conflict with the grammar and penalty(c)
is the penalty that the grammar assigns to the con-
flict c.

2.1 The Frobbing Algorithm
jwcdg tries to find an analysis by transforming a
given one until it cannot be improved further. The
algorithm employed for this purpose is called frob-
bing (Foth et al., 2000).

Frobbing consists of two phases: first, the prob-
lem is initialized. In this phase, all possible edges
are constructed and the constraints defined for a
single edge are evaluated on them. An initial anal-
ysis is constructed using the best-scored edge for
every word, which is repeatedly transformed in the
second phase. Frobbing is described as pseudo-
code in Algorithm 1. A set of conflicts (constraints
that are violated on specific edges) is computed
and the most severe of them is attacked by trans-
forming the analysis (attackConflict, line 7). This
either results in a (not necessarily better) analysis
that does not have this conflict or in the insight that
the conflict cannot be removed (line 12). The al-
gorithm repeatedly tries to remove the most severe
conflict. If in this process a new best analysis is
found, it is marked as the new starting point. If the
conflict can not be removed, the algorithm tracks
back to the starting point. The procedure can be
interrupted at any time and the best analysis that
was found up to that point will be returned.

In its incremental mode, jwcdg works as de-
picted in Figure 1. The new word is added to the
previous analysis using the best edge. The frob-
bing algorithm is then run until no better result
can be found or the parser is interrupted. To al-
low for prediction, either a nonspec node (Daum,
2004) or a set of virtual nodes (Beuck et al., 2011)
is added to the set of words. This way, all changes
regarding incrementality are completely transpar-
ent to the frobbing algorithm, only the constraints
in the grammar need to be aware of virtual nodes
and nonspec.

3 Related Work

One of the few broad-coverage parsers that are ca-
pable of incremental processing is PLTAG, a Tree

Data: sentence S
Result: Analysis of S

1 List removedConflicts← [];
2 Analysis best← makeInitialAnalysis(S);
3 Analysis current← best;
4 Conflict initialConflict←

getHardestSolvableConflict(current);
5 while solvable conflicts remain do
6 Conflict c←

getHardestSolvableConflict(current);
7 current← attackConflict(c, current,

removedConflicts);
8 if score(current) > score(best) then
9 best← current;

10 reset();
11 initialConflict←

getHardestSolvableConflict(current);
12 else if current == null then
13 setUnresolvable(initialConflict);
14 current← best;
15 removedConflicts← [];
16 end
17 end
18 return best;

Algorithm 1: frobbing

Adjoining Grammar parser that tries to model psy-
cholinguistic phenomena such as surprisal, paying
less attention to high parsing accuracy or fast pars-
ing speed. It works incrementally and provides
predictions for upcoming structure. Since PLTAG
uses beams that get expanded, it needs a looka-
head of one word to reduce ambiguity (Demberg-
Winterfors, 2010, p. 217). Even with this looka-
head, some sentences can not be parsed: PLTAG
has a coverage of 93.8% on sentences of the Penn
Treebank with less than 40 words.

MaltParser is a shift-reduce based parser. It uses
a classifier to determine locally optimal actions
from a set of possible actions of a parsing algo-
rithm. The classifier is trained using manually an-
notated sentences. MaltParser can use several dif-
ferent parsing algorithms. In this paper, the 2pla-
nar algorithm described in Gómez-Rodrı́guez and
Nivre (2010) will be used, which is able to pro-
duce non-projective analyses.

While MaltParser’s processing is fast compared
to jwcdg, a lookahead of one word already trans-
lates into a delay of one to three seconds, depend-
ing on the input speed of the user. Beuck et al.
(2011) showed that, at least for German, Malt-

375

input: The fox jumped over

tagger: The/DT fox/NN jumped/VBD

parser: stack: [The]

output: [none]

Figure 2: Effect of lookahead for MaltParser

Parser suffers from a fairly small decrease in ac-
curacy if only features from the next two words
instead of three are used. However, since the PoS
tags are needed and a PoS tagger needs lookahead
as well to achieve good accuracy, a lookahead of at
least three words is needed for the whole tagger-
parser pipeline to achieve a high accuracy. The
effect of this delay is illustrated in Figure 2. In
addition, MaltParser is not capable of producing
structural predictions.

4 Parallelizing jwcdg

Among the two phases of frobbing, only the sec-
ond one can be interrupted. Therefore, initializa-
tion needs to be faster than the shortest time limit
we would like to impose. Initialization is mostly
concerned with evaluating constraints on all edges
that come from or point towards the new word.
To make this judgement faster, the code has been
changed so that it can be done in parallel, using
worker threads instead of a sequential constraint
evaluation.

Table 1 shows the time needed to construct new
edges and judge them while parsing a subset of the
NEGRA corpus (Brants et al., 2003).2 Although
the median time is already relatively good in the
non-parallelized case, its maximum amounts to
almost two seconds. Parallelization brings most
benefits for the more complex initializations: the
time needed for the 3rd quartile scales nearly lin-
ear up to eight cores. More than sixteen cores yield
no further improvement.

With the parallelized initialization, jwcdg can
spend more time on transforming analyses. In ad-
dition, it is able to perform anytime parsing with a
lower bound of about 200 ms per word on current
hardware.

The heart of the frobbing algorithm is the at-
tackConflict method which, given an analysis a
and a conflict c, systematically tries all changes of
edges that are part of c. It then returns the best

2All experiments have been carried out on a 48-core ma-
chine with four AMD Opteron 6168 processors.

resulting analysis that does not violate the con-
straints constr(c). Since these transformations all
work independently, they have been parallelized
in the same manner as the initialization. The re-
sult can be seen in Table 2. While the introduction
of parallelized code causes a small overhead, us-
ing two cores already provides a noticeable ben-
efit. The parallelized code can benefit from up to
32 cores, yet the overhead of managing more cores
results in a sub-linear speedup.

These optimizations have a noticeable impact
on parsing performance under time pressure: With
a time limit of two seconds per word, jwcdgbase

scores an unlabeled accuracy of 72.54% for the fi-
nal analyses, while jwcdgparallel scores 76.29%.
jwcdgbase only reaches this accuracy with a time
limit of four seconds. Unless otherwise noted,
all evaluations have been carried out on sentences
18602 to 19601 of the NEGRA corpus.

5 MaltParser as a Predictor for jwcdg

When facing a tight time limit, jwcdg has only
very little time to improve an analysis by trans-
forming it. Therefore, with tighter time limits a
good initial attachment becomes more important
and a method which provides frobbing with a good
initial analysis could help to achieve drastically
better results.

Foth and Menzel (2006) showed that WCDG
can be augmented by trainable components to
raise the accuracy of WCDG. The output of these
predictors was converted into constraints to help
WCDG finding a good analysis. One of the com-
ponents was a shift-reduce parser modeled after
Nivre (2003), which was the first description of the
MaltParser architecture. Although the shift-reduce
parser was relatively simple compared to Malt-
Parser and had a labeled accuracy of only 80.7
percent, it helped to raise the accuracy of WCDG
from 87.5 to 89.8 percent. This approach has later
been used by Khmylko et al. (2009) to integrate
MST-Parser (McDonald et al., 2006) (which does
not work incrementally) as an external data source
for WCDG. We integrated MaltParser in a similar
way.

MaltParser consumes the input from left to right
and, if using the 2planar algorithm, constructs
edges as soon as possible: An edge can only be
created between the word on top of the stack and
the current input word. This means that every edge
has to be constructed as soon as the second word

376

number of threads used

np 1 2 4 8 16 32 48

1st Qu. 43 45 23 13 9 8 8 9
Median 86 91 46 26 17 14 14 15

Mean 161 170 86 47 30 25 24 27
3rd Qu. 186 197 100 56 36 31 31 34

Max. 1940 2049 1029 553 433 200 197 555

Table 1: Timing requirements in ms of the initialization phase for different thread numbers; np = not
parallelized (time limit per word = 16 seconds)

number of threads used

np 1 2 4 8 16 32 48

1st Qu. 19 20 14 10 8 7 6 6
Median 62 64 48 36 28 24 22 22

Mean 181 190 141 110 92 81 76 79
3rd Qu. 193 199 153 117 95 84 76 77

Max. 12112 13611 8033 8734 8469 6376 8554 6297

Table 2: Timing requirements in ms of attacking conflicts (Algorithm 1, Line 7) for different thread
numbers; np = not parallelized (time limit per word = 16 seconds)

of the edge is the current input word. As soon as
that word gets shifted onto the stack, the creation
of the edge would no longer be possible.

The parser works monotonically since edges are
only added to but never removed from the set of
edges. This means that all decisions by the parser
are final; if word a is not attached to word b, we
can be sure that a will never be attached to b in
subsequent analyses. As a corollary, if MaltParser
has an accuracy of X percent on whole sentences,
the probability that a newly created edge is correct
will also be X percent.

As a delay is not acceptable for our application
scenario, we will use MaltParser and the TnT tag-
ger (Brants, 2000) without lookahead despite their
inferior accuracy in that mode3.

5.1 An Interface Between MaltParser and
jwcdg

A predictor (MaltPredictor) for jwcdg has been
implemented that uses a newly written incremen-
tal interface for MaltParser so that the regents and
labels predicted by MaltParser can be accessed
by constraints as soon as they become available.
MaltPredictor uses the PoS-tags that are provided

3both were trained on sentences 1000 to 18000 of the ne-
gra corpus

by the tagger predictor. Each time a new word
w is pushed to jwcdg, MaltPredictor forwards w
together with its PoS-tag onto MaltParsers input
queue and runs MaltParser’s algorithm until a shift
operations occurs. With this shift operation, w is
consumed from the input queue. If the sentence is
marked as being finished, MaltParser is run until it
has fully parsed the sentence. MaltPredictor then
reads the state of MaltParser and stores for each
word the regent it has been assigned to by Malt-
Parser. If Maltparser did not assign a regent to a
word, this fact is also stored. Since – as already
mentioned – MaltParser works eagerly (i. e. con-
structs every edge as soon as possible), the regent
of such a word must either lie in the future or be
the root node.

The three constraints that are used for accessing
MaltParser’s analyses are depicted as pseudocode
in Figure 3. If only these constraints and the tag-
ger constraint (which selects the PoS-tag for ev-
ery word) are used as a grammar, jwcdg will parse
sentences exactly as MaltParser does. This way,
jwcdg acts as an incremental interface to Malt-
Parser.

The first two constraints are only applicable if
MaltPredictor has made a prediction for the word
in question. The first constraint checks whether

377

prediction_exists(word)
-> regent_of(word) =

predicted_regent(word)

prediction_exists(word)
-> label_of(word) =

predicted_label(word)

not prediction_exists(word)
-> (regent(word) is virtual or

regent(word) is nonspec or
regent(word) is NIL or
word is virtual)

Figure 3: Constraints for incorporating Malt-
Parser’s results into jwcdg

the regent of a word is the one that has been
selected by MaltParser. The second constraint
checks that the predicted label matches the la-
bel of the edge in the analysis given that a label
has been predicted. The third constraint is not as
straightforward as the other two: Since we know
that MaltParser creates edges as soon as possible
and we know that MaltParser has not created an
edge with this word as dependent, either the re-
gent lies in the future (i. e. it should be a virtual
node in jwcdg’s analysis) or the regent is NIL (as
MaltParser does not explicitly create edges to NIL
while parsing). In the other possible case, the de-
pendent of the current edge is a virtual node. In
this case MaltParser cannot possibly predict an at-
tachment. A parameter tuning on sentences 501
to 1000 of the NEGRA corpus has shown that a
penalty of 0.9 works best for these constraints.

When the input sentence is going to be ex-
tended, the new word is attached using the edge
that violates the least unary, non context-sensitive
constraints. The MaltParser constraints are unary
and not context sensitive and therefore jwcdg will
use the edge predicted by MaltParser if no other
constraints prevent it from doing so.

5.2 Comparison of MaltParser and jwcdg

To compare MaltParser and jwcdg, the richer pre-
diction of jwcdg has to be transformed into min-
imal prediction. In this mode, every attachment
of a word to a virtual node is considered correct
if the word is attached to an upcoming word in
the gold standard. The two accuracies that are
used for evaluation are initial attachment accuracy

(how often is the newest word attached correctly?)
and the final accuracy (how many attachments are
correct in the parse trees for the whole sentences?).

Figure 4 shows the accuracy for initial attach-
ment and final accuracy as a function of a given
time limit. Since MaltParser does not use an any-
time algorithm, its results are the same for all time
limits4. Note that the labeled initial attachment
score is fairly low because MaltParser can not pre-
dict labels for edges that have nonspec as the
regent. When ignoring labels, Maltparser’s initial
attachment accuracy is higher than its final accu-
racy since it does not change edges it has created
(therefore the accuracy cannot rise) and words can
be counted as correct initially but wrong in the fi-
nal analysis: If the correct regent of a word lies
somewhere in the future, the initial decision to not
attach it is counted as correct. If it is later attached
to a wrong word, it will be counted as wrong in the
final accuracy.

As can be seen, jwcdg outperforms MaltParser
in most aspects when given enough time. The
only exception is the unlabeled attachment score
for the initial attachment. Here, however, one has
to keep in mind that jwcdg produces more infor-
mative predictions with virtual nodes, which is not
honored in this evaluation.

5.3 Enhancing jwcdg with MaltParser

jwcdgmalt has been derived from jwcdgparallel by
adding the MaltParser constraints discussed before
to the grammar.

The results (Figure 4) show that jwcdgmalt

has a considerably higher initial accuracy than
jwcdgparallel, more than ten percentage points for
a time limit of one second. The final accuracy is
noticeably better as well. This shows that Malt-
Parser’s output helps jwcdg find a good initial
analysis which can then be optimized by jwcdg.

6 Evaluation on Additional Corpora

The evaluations discussed so far have been carried
out on the NEGRA corpus. NEGRA consists of
newspaper texts and thus represents a very spe-
cific kind of text. However, most sentences from
other text types (e.g. chat) are shorter and have a
lower structural complexity. This section tries to
measure the impact of these differences between
different data sources.

4MaltParser parses fast enough to never violate the time
limit of one second per word.

378

65
70
75
80
85
90

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (unlabeled)

65
70
75
80
85
90

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

final accuracy (unlabeled)

50
55
60
65
70
75
80
85

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (labeled)

50
55
60
65
70
75
80
85

1 2 4 8 16
%

co
rr

ec
tly

at
ta

ch
ed

time limit per word in seconds

final accuracy (labeled)

jwcdgparallel
jwcdgmalt

MaltParser

Figure 4: Comparison of jwcdg and MaltParser using minimal prediction

6.1 Evaluation on Subsets of NEGRA

To evaluate how sentence length influences the
parsing results, jwcdg has been evaluated on a sub-
set of the NEGRA corpus. Sentences with a length
of less than three have been excluded. In addi-
tion, sentences longer than twenty have been ex-
cluded. The resulting subset NEGRA-3-20 con-
tains 57.8% of the sentences of the original NE-
GRA test set.

The results shown in Figure 5 confirm the as-
sumption that jwcdg’s accuracy increases when
being evaluated only on short sentences. This dif-
ference could be due to the syntactic simplicity of
short sentences and the shorter initialization time
needed for short increments leaving more time for
the transformation. In addition, jwcdgmalt already
approaches its best result with a time limit of four
seconds.

6.2 Evaluation on the creg-109 Corpus

Since interactive Computer-Assisted Language
Learning could be an interesting application do-
main for an incremental parser, an additional eval-
uation has been conducted on the creg-109 corpus,
a set of 109 sentences of the corpus described in
Meurers et al. (2010). The creg-109 corpus “con-
sists of answers to German reading comprehen-
sion questions written by American college stu-

dents learning German” (Meurers et al., 2010).
Figure 6 shows the accuracy of the different

parser versions on this corpus. The results have a
different pattern than the ones for the NEGRA cor-
pus: jwcdgparallel has nearly the same initial at-
tachment accuracy as jwcdgmalt and even slightly
outperforms it in the final score. In addition to
that, the result does not improve much with a time
limit of more than two seconds. Both phenomena
could be due to the lesser syntactic complexity of
the sentences so that the MaltParser’s analyses are
not so beneficial for guiding jwcdg.

7 Conclusion

We have shown that it is possible to gain parse-as-
you-type speed with good accuracy using a com-
bination of different incremental approaches to de-
pendency parsing. Our solution based on a paral-
lelized version of jwcdg benefits from using up to
32 cores. In contrast to other approaches, which
have to make algorithmic refinements, jwcdg can
take advantage from the advances in processing
speed due to its anytime property. MaltParser
turned out to be a good predictor that helps jwcdg
to produce good analyses earlier.

379

70
75
80
85
90
95

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (unlabeled)

70
75
80
85
90
95

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

final accuracy (unlabeled)

jwcdgparallel
jwcdgmalt

MaltParser

55
60
65
70
75
80
85
90

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (labeled)

55
60
65
70
75
80
85
90

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

final accuracy (labeled)

Figure 5: Comparison on NEGRA-3-20 using minimal prediction

76
78
80
82
84
86
88

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (unlabeled)

76
78
80
82
84
86
88

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

final accuracy (unlabeled)

jwcdgparallel
jwcdgparallel

MaltParser

45
50
55
60
65
70
75

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

initial attachment (labeled)

75
76
77
78
79
80
81

1 2 4 8 16

%
co

rr
ec

tly
at

ta
ch

ed

time limit per word in seconds

final accuracy (labeled)

Figure 6: Comparison on creg-109 using minimal prediction

380

References
Gregory Aist, James Allen, Ellen Campana, Car-

los Gomez Gallo, Scott Stoness, Mary Swift, and
Michael K. Tanenhaus. 2007. Incremental dia-
logue system faster than and preferred to its nonin-
cremental counterpart. In Proceedings of the 29th
Annual Meeting of the Cognitive Science Society,
pages 761–766.

A.S. Arif and W. Stuerzlinger. 2009. Analysis of text
entry performance metrics. In Science and Technol-
ogy for Humanity (TIC-STH), 2009 IEEE Toronto
International Conference, pages 100–105.

Niels Beuck, Arne Köhn, and Wolfgang Menzel. 2011.
Incremental parsing and the evaluation of partial de-
pendency analyses. In Proceedings of the 1st In-
ternational Conference on Dependency Linguistics.
Depling 2011.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
2003. Syntactic annotation of a german newspa-
per corpus. In Anne Abeillé and Nancy Ide, editors,
Treebanks, volume 20 of Text, Speech and Language
Technology, pages 73–87. Springer Netherlands.

Thorsten Brants. 2000. TnT: a statistical part-of-
speech tagger. In Proceedings of the sixth confer-
ence on Applied natural language processing, pages
224–231, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Michael Daum. 2004. Dynamic dependency pars-
ing. In Proceedings of the Workshop on Incre-
mental Parsing: Bringing Engineering and Cogni-
tion Together, IncrementParsing ’04, pages 67–73,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Vera Demberg-Winterfors. 2010. A Broad-Coverage
Model of Prediction in Human Sentence Processing.
Ph.D. thesis, University of Edinburgh.

Kilian A. Foth and Wolfgang Menzel. 2006. Hybrid
parsing: Using probabilistic models as predictors for
a symbolic parser. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and 44th Annual Meeting of the ACL, pages
321–328, Sydney, Australia. Association for Com-
putational Linguistics.

Kilian A. Foth, Wolfgang Menzel, and Ingo Schröder.
2000. A transformation-based parsing technique
with anytime properties. In 4th Int. Workshop on
Parsing Technologies, IWPT-2000, pages 89 – 100,
Trento, Italy.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1492–1501, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Lidia Khmylko, Kilian A. Foth, and Wolfgang Menzel.
2009. Co-parsing with competitive models. In Pro-
ceedings of the International Conference RANLP-
2009, pages 173–179, Borovets, Bulgaria. Associ-
ation for Computational Linguistics.

Patrick McCrae, Kilian A. Foth, and Wolfgang Menzel.
2008. Modelling global phenomena with extended
local constraints. In Jørgen Villadsen and Henning
Christiansen, editors, Proceedings of the 5th Interna-
tional Workshop on Constraints and Language Pro-
cessing (CSLP 2008, Hamburg, Germany), pages
48–60. Roskilde University.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning, CoNLL-X ’06, pages 216–220,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Detmar Meurers, Niels Ott, and Ramon Ziai. 2010.
Compiling a task-based corpus for the analy-
sis of learner language in context. In Pre-
Proceedings of Linguistic Evidence 2010, pages
214–217, Tübingen.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT, pages 149–160.

381

