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Abstract

We describe an approach to building a
morphological analyser of Arabic by inducing
a lexicon of root and pattern templates from an
unannotated corpus. Using maximum entropy
modelling, we capture orthographic features
from surface words, and cluster the words
based on the similarity of their possible roots
or patterns. From these clusters, we extract
root and pattern lexicons, which allows us to
morphologically analyse words. Further
enhancements are applied, adjusting for
morpheme length and structure. Final root
extraction accuracy of 87.2% is achieved. In
contrast to previous work on unsupervised
learning of Arabic morphology, our approach
is applicable to naturally-written, unvowelled
Arabic text.

1 Introduction

The number and diversity of human languages
makes it impractical to manually craft lexicons and
morphological processors for more than a very
small proportion of them. Further challenges are
posed by the need to deal with dialects and
colloquial forms of languages. This has motivated
recent increased interest in approaches to
morphological analysis based on unsupervised
learning. Inspired by competitions such as the
Morpho Challenge, many techniques have been
proposed for unsupervised morphology learning.

Although these techniques are often intended to
be language independent, they are often directed to
a specific group of languages. Most work has
aimed at sequential separation or segmentation of
morphemes concatenated together in a surface
word form. This type of analysis, outputting stems
and appended morphemes aims to identify some
kind of border between the different morphemes.
However, another type of word formation consists
of the interdigitation of a root morpheme with an
affix or pattern template; in this case there is no
boundary between morphemes, since they are
rather intercalated with each other. This type of
non-concatenative morphology, which is
characteristic of the Semitic group of languages,

has attracted far less interest for unsupervised
learning.

In this paper we present an approach to
unsupervised learning of non-concatenative
morphology, applying it to Arabic. We describe an
approach to learning tri-literal roots and affix
template of Arabic by first inducing root and affix
lexicons. Our approach uses Maximum Entropy
modelling to obtain clusters1 of words based on
concatenative and non-concatenative orthographic
features, and induces the lexicons from these
clusters.

Our data is an undiacritized version of the
Quranic Arabic Corpus since we assume a realistic
setting of unvowelled text, as most Arabic text is
written without vowels; we chose this corpus since
correct roots of each word are available,
facilitating the evaluation process. The fact that the
corpus contains a relatively small vocabulary of
around 7000 words also simulates the scenario for
most of the world’s languages of scarcity of
linguistic resources and data.

This paper is structured as follows: Section 2
surveys previous related work. Section 3 provides
an introduction to Arabic root and pattern
morphology. Our approach to unsupervised lexicon
induction based on Maximum Entropy (ME)
modelling is explained in section 4. Section 5
describes the procedure for performing
morphological analysis of words, followed by
evaluation in section 6 and conclusions in section 7.

2 Related Work

An active current area of natural language
processing research is applying statistical and
information-theoretic approaches to unsupervised
learning of morphology and grammar. A common
starting point is raw (unannotated) text corpora,
inducing the target knowledge from word forms
and their patterns of usage.

Information theoretic approaches, particularly
Minimum Description Length (MDL) as
investigated by Goldsmith (2000, 2006) and others

1
Cluster here refers to a collection of words related in terms

of morpheme types, without referring to application of any
clustering algorithm.
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(Cruetz and Lagus, 2005, 2007), have brought a
theoretical perspective considering input data to be
‘compressed’ into a morphologically analysed
representation. This optimization scheme has
achieved good results, and is amongst the most
effective approaches for unsupervised
morphological analysis.

Most work on unsupervised learning of
morphology has focused on concatenative
morphology (De Pauw and Wagacha 2007;
Hammarström and Borin 2011). Another
perspective adopted by Schone and Jurafsky (2001)
incorporates orthographic and phonological
features, and induces semantic relatedness between
word pairs using Latent Semantic Indexing. Their
work shows comparable performance to
Goldsmith’s (2000) Linguistica system. Yarowsky
and Wicentowski (2000) experiment with learning
irregular mnaturaorphology using a lightly
supervised technique to align irregular words to
their lemmas by estimating the distribution of
ratios over part-of-speech classes of inflected
words to lemmas.

More recently, researchers have addressed non-
concatenative morphology, such as for Semitic
languages, using a variety of empirical approaches.
Daya et al. (2008) learn Semitic roots using
supervised learning, building a multi-class
classifier for individual root radicals. Clark (2007)
uses Arabic as a test-bed to study semi-supervised
learning of complex broken plural structure
modelled using memory-based algorithms, with the
aim of gaining insights into human language
acquisition.

Most work on unsupervised learning of
morphology has focused on concatenative
morphology (Hammarström and Borin 2011). The
few studies that have focussed on non-
concatenative morphology, such as for Semitic
languages, have not used naturally written text. For
example, Rodriguez and Ćavar (2005) learn roots 
using a number of orthographic heuristics and then
apply constraint-based learning to improve the
quality of roots. Xanthos (2008) works on phonetic
transcriptions of Arabic text to decipher roots and
patterns. The approach is to initially create crude
Root and Pattern (RP) transcriptions from words
based on vowel-consonant distinctions, and then to
apply an MDL approach similar to Goldsmith’s
(2006) in order to refine the RP structures.

In contrast to previous work, we learn
intercalated morphology, identifying the root and
transfixes/ incomplete pattern for words from
‘natural’ text without short vowels or diacritical
markers.

3 Root and Pattern Morphology

Words in Arabic are formed through three
morphological processes. The first (i) is the fusion
of a root form and pattern template to derive a base
word, which can be a noun, verb or adjective, all of
which are semantically related to the root. The
second (ii) is affixation, by means of prefixes,
suffixes or infixes, including inflectional
morphemes marking gender, plurality and/or tense,
resulting in a stem. Thirdly (iii) a final layer of
clitics may be attached to a word, including a
subset of prepositions, conjunctions, determiners
and pronouns; these appear at the beginning
(proclitics) or end (enclitics) of a word but never in
the middle.

Since techniques for concatenative morphology
learning are fairly advanced we have focused on
using stemmed words, computable through such
approaches. We used the QAC stem vocabulary
where appended morphemes of type (iii) are
mostly absent2 and hence ignored from analysis.
Most of type (ii) are present as part of the stem. In
the case of (i), most derived forms consist of short
vowels and occasional long vowels or a consonant
interdigitated with the root. In unvowelled text the
short vowels are ignored, so derived words have at
most single letter affixation.

Table 1 shows two example words with their
roots and affix pattern templates. The ‘y’ and ‘t’ in
the respective words are clitic/inflectional markers,
which are part of the affix template. ‘A’ is the
derivational infix marker for nouns.

Word Root Pattern
ktAby Ktb --A-y
tEArf Erf t-A--

Table 1: Example words with their roots and affix
pattern templates.

For analysis, each word, ݓ , is decomposed,
using a decomposition function, into a set of tuples
encoding all ݊ possible combinations of a root (of
at least 3 letters) and associated pattern:

(ݓ)݀ → {〈௫݌,௫ݎ〉}
(Eq. 1)

where ݔ ranges from 1 to �݊ . For example, the
decomposition of the word ‘yErf’, is shown in
Figure 1.

2
Stems in QAC include the attached pronoun clitics
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ݎ݂ܧݕ →

⎩
⎪
⎨

⎪
⎧

,ݎ�ܧ�ݕ〉 − − −݂�〉,

݂�ܧ�ݕ〉 , − − ,〈−ݎ
݂�ݎ�ݕ〉 , ,〈−−ܧ−
݂�ݎ�ܧ〉 , ,〈−−−ݕ

݂�ݎ�ܧ�ݕ〉 , − − − −〉 ⎭
⎪
⎬

⎪
⎫

Figure 1: Decomposition of a word into all possible
combinations of roots and patterns.

4 Using Maximum Entropy Modelling for
Unsupervised Learning

In this study we apply an supervised machine
learning technique, Maximum Entropy (ME)
modelling, in a completely unsupervised way,
taking our inspiration from the work of De Pauw
and Wagacha (2007), who applied the approach for
extracting prefixes in an African language.

Unlike for supervised learning, no annotated text
is used. Instead we simply derive features
automatically from the vocabulary words of the
dataset. Each word is represented as an output
class mapped to by the corresponding features of
the words. These word-features are used to train a
classifier. Rather than applying the classifier to
classify unseen data, we apply the model back to
the ‘training data’ to obtain, not the classification
but the proximities of each word/class with every
other word/class. These proximities are then
utilized to derive root and pattern lexicons.

The advantage of this approach to gauge
relatedness of words over other approaches, such
as minimum edit distance, is the ability to better
capture morpheme dependencies between words
with common roots which may be
orthographically quite different due to substantial
affixing.

4.1 Building the Lexicons

We derive two lexicons: a root lexicon and an affix
or pattern lexicon. We do this by training ME
classifiers on orthographic features computed from
each word in the corpus dataset. The classifiers are
then applied to the same data to obtain word
clusters relating each word to every other word
with respect to either common roots or common
patterns. Thus, for the root lexicon we obtain
neighbours of words that have the same or similar
patterns. Conversely, for the pattern lexicon we
obtain neighbours of words that have common root
radicals.

4.2 Modelling Orthographic Features

We first extract orthographic features for obtaining
word clusters with similar roots (i.e. for pattern
lexicon acquisition). We then construct the inverse

of these features for obtaining word clusters with
similar patterns (i.e. for root lexicon acquisition).

In the former case, feature extraction proceeds
as follows: we first enclose each word with
beginning and end boundary markers, ‘@’ and ‘#’
respectively. (This is in order to provide context
information for the first and last characters of a
word). We next compute the power-set of all the
character combinations in a word, and then exclude
features where the first and last letter of the word
appear without the boundary markers (to give
emphasis to word boundary features). The final set
of these features for the word ‘yErf’ is shown in
the first column of Table 2.

In the latter case, pattern features are obtained
such that corresponding to each root feature, we
replace root radicals with a placeholder; characters
between root radicals that are omitted from the root
features appear as potential affix characters in the
pattern template. These inverse features are shown
in the second column of Table 2.

Root Features
(for Pattern

Lexicon)

Pattern features
(for Root Lexicon)

@y, @yE,
@yEr, @yErf#,
@yEr#, @yEf#,
@yE#, @yr,
@yrf#, @yr#,
@yf#, @y#,
@E, @Er,
@Erf#, Er#,
@Ef#, @E#,
@r, @rf#,
@r#, @f#,
E, Er,
Erf#, Er#,
Ef#, E#,
r, rf#,
r#, f#

@-, @--,
@---, @----#,
@---f#, @--r-#,
@--rf#, @-E-,
@-E--#, @-E-f#,
@-Er-#, @-Erf#,
@y-, @y--,
@y---#, @y--f#,
@y-r-#, @y-rf#,
@yE-, @yE--#,
@yE-f#, @yEr-#,
-, --,
---#, --f#,
-r-#, -rf#,
-, --#,
-f#, -#

Table 2: Features for the word ‘yErf’.

4.3 Word Nearest Neighbors

The classifier is trained using Limited Variable
LBFGS optimization method. The number of
iterations for training is stopped automatically
when 100% accuracy on the training data is
achieved. Each trained classifier is reapplied to its
respective training data features to get proximity
values between each word and every other word.
Sorting the list gives us the most related word in
terms of root based or pattern based proximity
values, with the highest value (≈ 1) for the 
headword, ℎ, i.e. the word’s own features. Table 3
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shows an example of the closest neighbours in a
cluster, along with their headword.

Using these words and proximity measures we
next apply a strategy to induce the morpheme. Not
all words in the list of N elements for each word
are relevant to us since the proximity value starts
to drop rapidly towards zero as we go down the
ranked list. With each headword we choose a 500
nearest neighbours cluster for each type of
morpheme as a sufficient number beyond which
we expect no gain in efficiency is expected.

Head-
Word,

h

Proximity for
Root Cluster
k P(k)

Proximity for
Pattern Cluster
k P(k)

yErf

yErf 0.9897420
Erf 0.0023982
yEf 0.0022552
tErf 0.0015299
yErD 0.0014147
yEr$ 0.0011525
yErj 0.0009722
Ef 0.0001968
yr 0.0001052
'Etrf 2.5629E-05
yrd 8.6797E-06
… …

yErf 0.99999
yHrf 2.59E-07
ysrf 2.58E-07
ySrf 2.32E-07
yEkf 2.31E-07
tErf 1.10E-09
yErj 4.24E-10
yErD 3.29E-10
yEr$ 2.36E-10
msrf 2.14E-12
zxrf 1.51E-12
… …

Table 3: ME values for the word yErf.

4.4 Dictionary Induction

Using the respective word clusters we create
dictionaries for two types of morphemes, roots and
patterns, such that we score the morphemes thus:
Higher scoring morphemes are more plausible and
ranked higher in the lexical list than lower ones.
The procedure for scoring is adapted and amended
from the work of De Pauw and Wagacha (2007).

For the pattern lexicon, we score each pattern in
the following manner: for each headword, hi

(having probability value ≈ 1) in cluster ci (with
each of the i = 1,2,…N words in the vocabulary),
we obtain all possible decompositins(equation 1)
into template patterns ௛݌

௫ (shown in column 1 of
Table 4) and roots, ௛ݎ

௫ (column 2 of Table 4) with
respect to the headword, ℎ௜. Each pattern is scored
with a function ௛݌�ܵ)

௫) (equation 2) which
aggregates the Logarithmically Scaled ( ܮܵ )
probability value, ௞ܲ௝ of words kj (j = 1,2,…500

words in each cluster), such that ௛ݎ
௫ matches any of

the roots in word k, ௞ݎ
௬

(y=1,2,…m root
combinations in k). This aggregation is not only
local to each cluster but covers all occurrences of
the pattern in each of the N clusters.

௛݌�ܵ)
௫) = ෍ ෍ ቀܵܮ ൫ܲ ௞௝൯× ௛݌|)ܣܮ

௫|)ቚݎ�௛೔
௫ = ௞௝ݎ

௬
ቁ

ହ଴଴

௝ୀଵ

ே

௜ୀଵ

(Eq. 2)

Logarithmic scaling is necessary since the
probability drops too rapidly and too low in order
to provide a feasible ratio between words. After
taking the log of the probability the resulting ratios
are negative which are then adjusted by subtracting
the log of a base probability value,�ܲ଴, thus linearly
inverting the ratios (equation 3). ଴ܲ is hence
chosen to be small enough to ensure the resulting
logarithmic score is positive. We chose the
smallest occurring probability value in our clusters
as the value for ଴ܲ.

ܮܵ ൫ܲ ௞௝൯= logܲ( ௝݇) − log ଴ܲ

(Eq. 3)

The score is also exponentially Length Adjusted
(ܣܮ) for each pattern,݌�, according to the length of
the pattern, ,|݌| in terms of the number of affix
charaters in .݌ This boosts the score for lengthier
morphemes which are relatively infrequent. The
intuition for adjustment formula comes from the
work of (Chung and Gildea, 2009) and (Liang and
Klein, 2009), who use a exponential Length
Penalty measure to adjust their model for
morpheme length.

(|݌|)ܣܮ = ݁|௣|

(Eq. 4)

Thus the pattern is scored according to the score
of words containing plausible roots. Commonly
occurring patterns such as ‘y---’ gather weight and
ascend the list of the most frequent (and hence
potentially sound) affix templates. Table 4 shows
how each pattern for the headword ‘yErf’ is scored,
aggregating the logarithmic score over words (in
column 4 of Table 4) containing the roots in
column 2 of Table 4.

Pattern Root
Word, k,
with Root

Pattern
Weight

y--- Erf Erf, tErf, 'Etrf 19.97328
-E-- Yrf – 0.0
--r- yEf yEf 7.353
---f yEr yErD,yEr$, yErj 21.200

Table 4: Example pattern candidate scoring.
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Similarly, we score the root, ௛ݎ�ܵ)
௫), with respect

to the pattern occurrence in each word k of cluster
ci:

௛ݎ�ܵ)
௫) = ෍ ෍ ቀܵܮ ൫ܲ ௞௝൯ቚ݌�௛೔

௫ = ௞௝݌
௬
ቁ

ହ଴଴

௝ୀଵ

ே

௜ୀଵ

(Eq. 5)

The scoring aggregates over the log scaled
probability of words in the affix-based clusters
having pattern occurrences in a word in each
cluster. There is no need for length adjustment to
these ratios since we are considering only three
letter roots. Table 5 exemplifies this for scoring
roots with words (in column 3 of Table 5) that
have corresponding patterns (in column 2 of
Table 5).

Root Pattern
Word, k, with

Pattern
Pattern
weight

Erf y--- yHrf, ysrf, ySrf, … 25.190
Yrf -E-- yEkf, tErf, yErj, … 20.032
yEf --r- yHrf, ysrf, ySrf,… 54.259
yEr ---f yHrf, ysrf, ySrf,… 46.104

Table 5: Example pattern candidate scoring.

Table 6 shows the top lexicon entries for roots
and patterns along with their respective scores. The
top entries in the lexicon would plausibly be
correct morphemes while lower entries would be
not so plausible.

Root Lexicon Pattern Lexicon
'mn 49067.2
Sdq 44801.4
xlf 42768.4
$hd 42607.8
xrj 40872.8
nSr 40111.4
k*b 37881.9
HfZ 37784.5
Elm 35639.1
kfr 35585.5
…

y--- 62987.8
'--- 61905.4
t--- 54634.3
---A 51777.1
n--- 44257
--y- 31058.9
---t 30770
m--- 29784.2
--A- 28105.6
-A-- 24129.8
…

Table 6: Top Entries in Root and Pattern Lexicons

5 Morphological Analysis

A word is analysed into its root and pattern
template by considering every possible
combination of trilateral root and corresponding
pattern pairs, 〈௫݌,௫ݎ〉 , as defined in equation 1 for
the word, wi, in the vocabulary, scoring each
analysis with the sum of the scores for the root, ,௫ݎ

and pattern, ௫݌ , in the root lexicon and pattern
lexicon, respectively. Due to the different ranges of
scores for root and pattern, the score
for the former is scaled with respect to the latter, as
in equation 6, in order to guarantee equal
contributions.

ܵܵ (ݎ) = (ݎܵ) ×
max( ((݌ܵ)

max( ((ݎܵ)
(Eq. 6)

The analysis, x, with the highest score is
selected as the output, as illustrated in equation 7.

max
௫ୀଵ..௡

�௪ݎ)ܵ�)
௫) + ܵܵ ௪݌)

௫) )

(Eq. 7)

Since we are considering text without diacritics,
due to absence of short vowels, we only expect
words to contain single letter infixes. Hence we
experiment with an alternative configuration of the
word decomposition, :〈௭݌,௭ݎ〉 non-contiguous root
radicals formed with more than one intervening
character are dropped; correspondingly patterns
with more than one consecutive character between
radical place holder markers are dropped.

6 Evaluation

We carry out our evaluation using the Quranic
Arabic Corpus (QAC) 3, since it identifies the root

of each word, facilitating the evaluation.
In this section, we first detail some information

about our dataset before going onto evaluation of
the analyses for correct root extraction.

6.1 Data

The QAC consists of approximately 77,900 word
tokens, with a total of around 19,000 unique tokens.
Since we are interested in investigating learning
from undiacritized text, we removed all short
vowels and diacritical markers. The size of the
resulting vocabulary, after removal of vowels, is
approximately 14,850.

We take as input lightly stemmed text, with
clitics removed, but with most inflectional markers
attached. We assume that stemmed words are
obtainable using existing tools for unsupervised
concatenative morphology learning. For example,
the technique of Poon et al (2009) could be used to
obtain accurate stems for each word. The stemmed
unvowelled vocabulary size is around 7370.

The original corpus is annotated with roots for
all derived and inflected words. More than 95% of
words are tagged with their root forms since the

3
http://corpus.quran.com/
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Quran consists mostly of words of derivable forms,
with very few proper nouns. There are 7192
stemmed words with available roots.

In Arabic, sometimes alterations in root radicals
take place; for example, in hollow roots, when
moving from a root containing a long vowel to the
surface word, the long vowel might change its
form to another type or get dropped. Such words
with hollow roots or reduplicated radicals, whose
characters do not match every radical of the root,
were removed from the evaluation as they are
beyond the scope of the learning algorithm to
identify. Leaving aside these word and root
evaluation pairs we evaluated with 5468 stemmed
types.

6.2 Baseline

As a baseline for evaluation, we derived lexicons
in a similar manner to procedure for derivation
from clusters (section 5.3). Instead of using
clusters we simply scored patterns that matched the
largest number of vocabulary words having
corresponding roots. Likewise, the root score was
obtained by counting the number of words with
corresponding patterns.

Comparing our system to the baseline is meant
to elucidate the advantage of using the machine
learning technique to enhance our lexicons. In the
baseline we do not have the ME based word
clusters with proximities to the target word; only
one cluster exist: the vocabulary set with unit
promitiy of 1.

6.3 Evaluation of Lexicons

In this section we compare our lexicons, built
using maximum entropy modeling approach, (ME),
to the baseline(BL).

We evaluated the effect of logarithmic scaling
(ME_LS) comparing it to using raw probability
values(ME_RW). Also we gauged the performance
improvement with Length Adjustment
(ME_LS_LA) for morphemes.

Finally, we evaluated morphological analysis
restricted to patterns with single affixes which
correspond to roots with single non-contiguous
characters from words (ME_NC1).

We evaluate morphological analysis through
correct identification of the root. The accuracy is
measured in terms of percentage of the roots that
are correctly identified. As stated above, we
evaluate on a total of 5468 words. The results for
the different configuration evaluations is given in
table 7.

Configuration Total
Correct

Percentage
Correct

Baseline 4055 74.16
ME_RW 3597 65.78
ME_LS 4415 80.74

ME_LS_LA 4700 85.95
ME_LS_LA_NC1 4768 87.20

Table 7: Evaluation of System Configurations

The accuracy of 74% shows a sound and
competitive baseline. The low results for ME_RW
highlights the weakness of considering raw
probability values which are too low to provide
adequate weightage to morphemes. Hence the
dismal performace. The true value for the ME
based processing is realized in ME_LS, where the
probabilities have been logarithmically scaled be
summing. We see an accuracy gain of 6% over the
baseline which is quite significant and encouraging.
Further improvements can be seen when the score
has been adjusted for morpheme length,
ME_LS_LA, with performance increase by further
5%. Still more improvement is seen using
knowledge of word structure of undiacritized text,
ME_LS_LS_NC1, with further accuracy gain of
2.25 %. The final result for ME based analysis
with further enhancements gives an promising
accuracy result of 87.20%.

7 Conclusion and Future directions

In this paper we have presented an approach to
solve the problem of learning intercalated
morphology in an unsupervised manner with no
parameter settings and minimal linguistic
knowledge. We applied the machine learning
based techniques to learn clusters of words related
on basis of either root or pattern morpheme.
Thereafter, plausible morphemes are extracted
using a scoring method which takes advantage of
knowledge of word proximities from clusters built
using a maximum entropy classifier. We further
apply enhancements to the procedure by
accommodating for length and structure of
morphemes. The finalized procedure offers
significant boost in performance.

The dynamicity of the technique allows its
applicability to other types of morphological
structures. Also, the system can easily be extended
to cater to roots beyond tri-literals by adapting the
soring function to accommodate for morpheme
length.
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