
Proceedings of Recent Advances in Natural Language Processing, pages 319–326,
Hissar, Bulgaria, 7-13 September 2013.

A Boosting-based Algorithm for Classification of Semi-Structured Text
using Frequency of Substructures

Tomoya Iwakura
Fujitsu Laboratories Ltd

iwakura.tomoya@jp.fujitsu.com

Abstract

Research in text classification currently fo-
cuses on challenging tasks such as sen-
timent classification, modality identifica-
tion, and so on. In these tasks, approaches
that use a structural representation, like a
tree, have shown better performance rather
than a bag-of-words representation. In this
paper, we propose a boosting algorithm for
classifying a text that is a set of sentences
represented by tree. The algorithm learns
rules represented by subtrees with their
frequency information. Existing boosting-
based algorithms use subtrees as features
without considering their frequency be-
cause the existing algorithms targeted a
sentence rather than a text. In contrast,
our algorithm learns how the occurrence
frequency of each subtree is important for
classification. Experiments on topic iden-
tification of Japanese news articles and En-
glish sentiment classification shows the ef-
fectiveness of subtree features with their
frequency.

1 Introduction
Text classification is used to classify texts such
as news articles, E-mails, social media posts, and
so on. A number of machine learning algorithms
have been applied to text classification success-
fully. Text classification handles not only tasks to
identify topics, such as politics, finance, sports or
entertainment, but also challenging tasks such as
categorization of customer E-mails and reviews by
types of claims, subjectivity or sentiment (Wiebe,
2000; Banea et al., 2010; Bandyopadhyay and
Okumura, 2011). To identify difficult categories
on challenging tasks, a traditional bag-of-words
representation may not be sufficient. Therefore,
a richer, structural representation is used rather

than the traditional bag-of-words. A straightfor-
ward way to extend the traditional bag-of-words
representation is to heuristically add new types
of features such as fixed-length n-grams such as
word bi-gram or tri-gram, or fixed-length syntac-
tic relations. Instead of such approaches, learn-
ing algorithms that handle semi-structured data
have become increasingly popular (Kudo and Mat-
sumoto, 2004; Kudo et al., 2005; Ifrim et al.,
2008; Okanohara and Tsujii, 2009). This is due
to the fact that these algorithms can learn better
substructures for each task from semi-structured
texts annotated with parts-of-speech, base-phrase
information or syntactic relations.

Among such learning algorithms, boosting-
based algorithms have the following advantages:
Boosting-based learning algorithms have been ap-
plied to Natural Language Processing problems
successfully, including text classification (Kudo
and Matsumoto, 2004), English syntactic chunk-
ing (Kudo et al., 2005), zero-anaphora resolution
(Iida et al., 2006), and so on. Furthermore, clas-
sifiers trained with boosting-based learners have
shown faster classification speed (Kudo and Mat-
sumoto, 2004) than Support Vector Machines with
a tree kernel (Collins and Duffy, 2002).

However, existing boosting-based algorithms
for semi-structured data, boosting algorithms for
classification (Kudo and Matsumoto, 2004) and
for ranking (Kudo et al., 2005), have the follow-
ing point that can be improved. The weak learn-
ers used in these algorithms learn classifiers which
do not consider frequency of substructures. This
is because these algorithms targeted a sentence as
their input rather than a document or text consist-
ing of two or more sentences. Therefore, even if
crucial substructures appear several times in their
target texts, these algorithms cannot reflect such
frequency. For example, on sentiment classifica-
tion, different types of negative expressions may
be preferred to a positive expression which ap-

319

pears several times. As a result, it may happen
that a positive text using the same positive expres-
sion several times with some types of negative ex-
pressions is classified as a negative text because
consideration of frequency is lacking.

This paper proposes a boosting-based algorithm
for semi-structured data that considers the occur-
rence frequency of substructures. To simplify the
problem, we first assume that a text to be classified
is represented as a set of sentences represented by
labeled ordered trees (Abe et al., 2002). Word se-
quence, base-phrase annotation, dependency tree
and an XML document can be modeled as a la-
beled ordered tree. Experiments on topic identifi-
cation of news articles and sentiment classification
confirm the effectiveness of subtree features with
their frequency.

2 Related Works
Prior boosting-based algorithms for semi-
structured data, such as boosting algorithms for
classification (Kudo and Matsumoto, 2004) and
for ranking (Kudo et al., 2005), learns classifiers
which do not consider frequency of substructures.
Ifrim et. al (Ifrim et al., 2008) proposed a logistic
regression model with variable-length N-gram
features. The logistic regression learns the
weights of N-gram features. Compared with these
two algorithms, our algorithm learns frequency
thresholds to consider occurrence frequency of
each subtree.

Okanohara and Tsujii (Okanohara and Tsujii,
2009) proposed a document classification method
using all substrings as features. The method uses
Suffix arraies (Manber and Myers, 1990) for effi-
ciently using all substrings. Therefore, the trees
used in our method are not handled. Their method
uses feature types of N-grams features, such as
term frequency, inverted document frequency, and
so on, in a logistic regression. In contrast, our al-
gorithm differs in the learning of a threshold for
feature values. Tree kernel (Collins and Duffy,
2002; Kashima and Koyanagi, 2002) implicitly
maps the example represented in a labeled or-
dered tree into all subtree spaces, and Tree kernel
can consider the frequency of subtrees. However,
as discussed in the paper (Kudo and Matsumoto,
2004), when Tree kernel is applied to sparse data,
kernel dot products between similar instances be-
come much larger than those between different in-
stances. As a result, this sometimes leads to over-
fitting in training. In contrast, our boosting algo-

rithm considers the frequency of subtrees by learn-
ing the frequency thresholds of subtrees. There-
fore, we think the problems caused by Tree ker-
nel do not tend to take place because of the dif-
ference presented in the boosting algorithm (Kudo
and Matsumoto, 2004).

3 A Boosting-based Learning Algorithm
for Classifying Trees

3.1 Preliminaries
We describe the problem treated by our boosting-
based learner as follows. Let X be all labeled or-
dered trees, or simply trees, and Y be a set of la-
bels {−1, +1}. A labeled ordered tree is a tree
where each node is associated with a label. Each
node is also ordered among its siblings. Therefore,
there are a first child, second child, third child, and
so on (Abe et al., 2002).

Let S be a set of training samples
{(x1, y1), ..., (xm, ym)}, where each exam-
ple xi ∈ X is a set of labeled ordered trees, and
yi ∈ Y is a class label.

The goal is to induce a mapping

F : X → Y
from S.

Then, we define subtrees (Abe et al., 2002).

Definition 1 Subtree
Let u and t be labeled ordered trees. We call t a

subtree of u, if there exists a one-to-one mapping
φ between nodes in t to u, satisfying the condi-
tions: (1) φ preserves the parent relation, (2) φ
preserves the sibling relation, and (3) φ preserves
the labels. We denote t as a subtree of u as

t ⊆ u .

If a tree t is not a sbutree of u, we denote it as

t ⊈ u .

We define the frequency of the subtree t in u as
the number of times t occurs in u and denoted as

|t ⊆ u| .

The number of nodes in a tree t is referred as
the size of the tree t and denote it as

|t| .

To represent a set of labeled ordered trees, we
use a single tree created by connecting the trees
with the root node of the single tree in this paper.
Figure 1 is an example of subtrees of a tree consist-
ing of two sentences “a b c” and “a b” connected
with the root node R⃝. The trees in the right box
are a portion of subtrees of the left tree. Let u be

320

Figure 1: A labeled ordered tree and its subtrees.

the tree in the left side. For example, the size of the
subtree a⃝- b⃝ (i.e. | a⃝- b⃝|) is 2 and the frequency
| a⃝- b⃝ ∈ u| is also 2. For the subtree a⃝- c⃝, the
size | a⃝- c⃝| is also 2, however, the frequency | a⃝-
c⃝∈ u | is 1.

3.2 A Classifier for Trees with the
Occurrence Frequency of a Subtree

We define a classifier for trees - that is used as
weak hypothesis in this paper. A boosting algo-
rithm for classifying trees uses subtree-based de-
cision stumps, and each decision stump learned
by the boosting algorithm classifies trees whether
a tree is a subtree of trees to be classified or not
(Kudo and Matsumoto, 2004). To consider the fre-
quency of a subtree, we define the following deci-
sion stump.

Definition 2 Classifier for trees
Let t and u be trees, z be a positive integer,

called frequency threshold, and a and b be a real
number, called a confidence value, then a classi-
fier for trees is defined as

h⟨t,z,a,b⟩(u) =


a t ⊆ u ∧ z ≤ |t ⊆ u|
−a t ⊆ u ∧ |t ⊆ u| < z

b otherwise

.

Each decision stump has a subtree t and its fre-
quency threshold z as a condition of classification,
and two scores, a and b. If t is a subtree of u (i.e.
t ⊆ u), and the frequency of the subtree |t ⊆ u|
is greater than or equal to the frequency threshold
z, the score a is assigned to the tree. If u satisfies
t ⊆ u and |t ⊆ u| is less than z, the score - a is
assigned to the tree. If t is not a subtree of u (i.e.
t ⊈ u), the score b is assigned to the tree.

This classifier is an extension of decision trees
learned by learning algorithms like C4.5 (Quin-
lan, 1993) for classifying trees. For example, C4.5
learns the thresholds for features that have contin-
uous values, and C4.5 uses the thresholds for clas-
sifying samples including continuous values. In a
similar way, each decision stump for trees uses a
frequency threshold for classifying samples with a
frequency of a subtree.

3.3 A Boosting-based Rule Learning for
Classifying Trees

To induce accurate classifiers, a boosting algo-
rithm is applied. Boosting is a method to create
a final hypothesis by repeatedly generating a weak
hypothesis in each training iteration with a given
weak learner. These weak hypotheses are com-
bined as the final hypothesis. We use real Ad-
aBoost used in BoosTexter (Schapire and Singer,
2000) since real AdaBoost-based text classifiers
show better performance than other algorithms,
such as discrete AdaBoost (Freund and Schapire,
1997).

Our boosting-based learner selects R types of
rules for creating a final hypothesis F on several
training iterations. The F is defined as

F (u) = sign(
∑R

r=1h⟨tr,zrar,br⟩(u)).

We use a learning algorithm that learns a subtree
and its frequency threshold as a rule from given
training samples S = {(xi, yi)}m

i=1 and weights
over samples {wr,1, ..., wr,m} as a weak learner.
By training the learning algorithm R times with
different weights of samples, we obtain R types of
rules.

wr,i is the weight of sample number i after se-
lecting r − 1 types of rules, where 0<wr,i, 1 ≤
i ≤ m and 1 ≤ r ≤ R. We set w1,i to 1/m.

Let Wr⟨y,≤,z⟩(t) be the sum of the weights of
samples that satisfy t ⊆ xi (1 ≤ i ≤ m), z ≤
|t ⊆ xi| and yi = y (y ∈ {±1}),

Wr⟨y,≤,z⟩(t) =
∑

i∈{i′|t⊆xi′}
wr,i[[C≤(xi, t, y, z)]],

where [[C≤(x, t, y, z)]] is

[[yi = y ∧ z ≤ |t ⊆ x|]]
and [[π]] is 1 if a proposition π holds and 0 oth-
erwise. Similarly, let Wr⟨y,<,z⟩(t) be the sum
of the weights of samples that satisfy t ⊆ xi,
|t ⊆ xi| < z and yi = y,

Wr⟨y,<,z⟩(t) =
∑

i∈{i′|t⊆xi′}
[[C≤(xi, t, y, z)]],

where [[C<(x, t, y, z)]] is

[[yi = y ∧ |t ⊆ x| < z]].

Wr⟨y,z⟩(t) is the sum of Wr⟨y,≤,z⟩(t) and
Wr⟨−y,<,z⟩(t),

Wr⟨y,z⟩(t) = Wr⟨y,≤,z⟩(t) + Wr⟨−y,<,z⟩(t).

Wr⟨y,z⟩(t) means the sum of the weights of sam-
ples that are classified correctly or incorrectly with
a rule, t and z. For example, if a confidence value
of the rule is positive, Wr⟨+1,≤,z⟩(t) is the weight

321

of correctly classified samples that have +1 as their
labels, and Wr⟨−1,<,z⟩(t) is the weight of correctly
classified samples that have -1 as their labels.

W¬
r⟨y⟩(t) is the sum of the weights of samples

that a rule is not applied to (i.e. t ⊈ xi) and yi =
y,

W¬
r⟨y⟩(t) =

∑
i∈{i′|t⊈xi′∧yi=y}

wr,i.

To select a tree t and a frequency threshold z
the following gain is used as the criterion:

gain(t, z)
def
= |

√
Wr⟨+1,z⟩(t)−√

Wr⟨−1,z⟩(t)|+ |
√

W¬
r⟨+1⟩(t)−

√
W¬

r⟨−1⟩(t)|.

To find the decision stump that maximizes gain
is the equivalent of finding the decision stump that
minimizes the upper bound of the training error for
real AdaBoost (Schapire and Singer, 2000; Collins
and Koo, 2005). At boosting round r, a weak
learner selects a subtree tr (tr ∈ X) and a fre-
quency threshold zr that maximizes gain as a rule
from training samples S with the weights of train-
ing samples {wr,1, ..., wr,m}:

(tr, zr) = arg max
(t′,z′)∈ZT

gain(t′, z′),

where ZT is

{(t, z) | t ∈ ∪m
i=1{t|t ⊆ xi} ∧ 1 ≤ z ≤

max
1≤i≤m

|t ⊆ xi|}.

Then the boosting-based learner calculates the
confidence value of tr and updates the weight of
each sample. The confidence values ar and br are
defined as follows:

ar = 1
2 log(

Wr⟨+1,z⟩(tr)

Wr⟨−1,z⟩(tr)), and

br = 1
2 log(

W¬
r⟨+1⟩(tr)

W¬
r⟨−1⟩(tr)).

After the calculation of the confidence values
for tr and z, the learner updates the weight of each
sample with

wr+1,i = wr,i exp(−yih⟨tr,zrar,br⟩(xi))/Zr, (1)

where Zr is a normalization factor for∑m
i=1 wr+1,i = 1. Then the learner adds tr, zrar,

and br, to F as the r-th rule and its confidence
values. The learner continues training until the al-
gorithm obtains R rules.

3.4 Learning Rules Efficiently
We use an efficient method, rightmost-extension,
to enumerate all subtrees from a given tree with-
out duplication (Abe et al., 2002; Zaki, 2002) as

S = {(xi, yi)}m
i=1 : xi⊆X , yi ∈ {+1}

Wr = {wr,i}m
i=1: Weights of samples after

learning r types of rules. w1,i = 1/m
r : The current rule number.
The initial value of r is 1.
Tl: A set of subtrees of size l.
T1 is a set of all nodes.
procedure BoostingForClassifyingTree()
While (r ≤ R)
Learning a rule with the weak-learner
{tr, zr} = weak-learner(T1, S, Wr);
Update weights with {tr, zr}
ar = 1

2 log(
Wr⟨+1,≤,zr⟩(tr)

Wr⟨−1,≤,zr⟩(tr))

br = 1
2 log(

W¬
r⟨+1⟩(tr)

W¬
r⟨−1⟩(tr))

Update weights. Zr is a normalization
factor for

∑m
i=1 wr+1,i = 1.

For i=1,..,m
wr+1,i = wr,i exp(−yih⟨tr,zrar,br⟩(xi))/Zr

r++;
end While
return F (u) = sign(

∑R
r=1h⟨tr,zrar,br⟩(u)).

learning a rule
procedure weak-learner(Tl, S, Wr)
Select the best rule from
subtrees of size l in Tl.
(tl, zl) = selectRule(Tl, S, Wr)
If the selected (tl, zl) is better than
current optimal rule (to, zo),
the (to, zo) is replaced with (tl, zl).
If (gain(to, zo) < gain(tl, zl))
(to, zo) = (tl, zl);
The gain of current optimal rule τ .
τ = gain(to, zo);
Size constraint pruning
If (ζ ≤ l) return (to, zo);

Generate trees that size is l + 1.
Foreach (t ∈ Tl)
The bound of gain
If (u(t) < τ) continue;

Generate trees of size l + 1 by rightmost
extension of a tree t of size of l.
Tl+1 = Tl+1 ∪RME(t, S);

end Foreach
return weak-learner(Tl+1, S, Wr);

end procedure

Figure 2: A pseudo code of the training of a boost-
ing algorithm for classifying trees.

322

in (Kudo and Matsumoto, 2004). The rightmost-
extension starts with a set of trees consisting of
single nodes, and then expands a given tree of size
k−1 by attaching a new node to this tree to obtain
trees of size k. The rightmost extension enumer-
ates trees by restricting the position of attachment
of new nodes. A new node is added to a node ex-
isting on the unique path from the root to the right-
most leaf in a tree, and the new node is added as
the rightmost sibling. The details of this method
can be found in the papers (Abe et al., 2002; Zaki,
2002).

In addition, the following pruning techniques
are applied.

Size constraint: We examine subtrees whose
size is no greater than a size threshold ζ.

A bound of gain: We use a bound of gain u(t):

u(t)
def
= max

y∈{±1}, 1≤z≤ max
1≤i≤m

|t⊆xi|

√
Wr⟨y,z⟩(t) +

max
u∈{±1}

Ur⟨u⟩(t),

where

Ur⟨u⟩(t) =

|
√∑m

i=1 wr,i[[yi = u]]−
√

W¬
r⟨−u⟩(t)|.

For any tree t′ ∈ X that has t as a subtree (i.e. t ⊆
t′), the gain(t′, z) for any frequency thresholds z’
of t′, is bounded under u(t), since, for y ∈ {±1},

|
√

Wr⟨+1,z′⟩(t′)−
√

Wr⟨−1,z′⟩(t′)| ≤

max(
√

Wr⟨+1,z′⟩(t),
√

Wr⟨−1,z′⟩(t)) ≤√
Wr⟨y,z⟩(t), 1

and

|
√

W¬
r⟨+1⟩(t

′)−
√

W¬
r⟨−1⟩(t

′)| ≤ Ur⟨u⟩(t),
2

where z, y and u maximize u(t).
Thus, if u(t) is less than or equal to the gain of

the current N -th optimal rule τ , candidates con-
taining t are safely pruned.

Figure 2 is a pseudo code representation of
our boosting-based algorithm for classifying trees.
First, the algorithm sets the initial weights of sam-
ples. Then, the algorithm repeats the rule learning
procedure until it obtains R rules. At each boost-
ing round, a rule is selected by the weak-learner.

1We see it from Wr⟨y,z′⟩(t
′) ≤ Wr⟨y,z′⟩(t) for t ⊆ t′

and y ∈ {±1}.
2We see it from W¬

r⟨y⟩(t) =
∑

i∈{i′|t⊈xi′∧yi=y}
wr,i ≤∑

i∈{i′|t′⊈xi′∧yi=y}
wr,i ≤

∑
1≤i≤m

wr,i[[yi = y]] for t ⊆ t′

and y ∈ {±1}.

The weak-learner starts to select a rule from sub-
trees of size 1 and the new candidates are gener-
ated by rightmost extension. After a rule is se-
lected, the weights are updated with the rule.

4 Data Set
We used the following two data sets.

• Japanese news articles: We used Japanese
news articles from the collection of news ar-
ticles of Mainichi Shimbun 2010 which have
at least one paragraph3 and one of the follow-
ing five categories: business, entertainment,
international, sports, and technology. Table
1 shows the statistics of the Mainichi Shim-
bun data set. The training data is 80% of the
selected news articles and test and develop-
ment data are 10%. We used the text data
represented by bag-of-words as well as text
data represented by trees in this experiment.
To convert sentences in Japanese news arti-
cles to trees, we used CaboCha (Kudo and
Matsumoto, 2002), a Japanese dependency
parser. 4 Parameters are decided in terms
of F-measure on positive samples of the de-
velopment data, and we evaluate F-measure
obtained with the decided parameters. F-
measure is calculated as 2×r×p

p+r , where r and
p are recall and precision.

• English Amazon review data: This is a data
set from (Blitzer et al., 2007) that contains
product reviews from Amazon domains. The
5 most frequent categories, book, dvd, elec-
tronics, music, and video, are used in this
experiment. The goal is to classify a prod-
uct review as either positive or negative. We
used the file, all.review, for each domain in
the data set for this evaluation. By follow-
ing the paper (Blitzer et al., 2007), review
texts that have ratings more than three are
used as positive reviews, and review texts that
have ratings less than three are used as neg-
ative reviews. We used only the text data
represented by word sequences in this exper-
iment because a parser could not parse all
the text data due to either the lack of mem-
ory or the parsing speed. Even if we ran the
parser for two weeks, parsing on a data set

3There are articles that do not have body text due to copy-
right.

4http://code.google.com/p/cabocha/

323

Table 1: Statistics of Mainichi Shimbun data set. #P, #N and #W relate to the number of positive samples,
the number of negative samples, and the number of distinct words, respectively.

Mainichi Shimbun
Category Training Development Test

#P #N #W #P #N #W #P #N #W
business 4,782 18,790 67,452 597 2,348 29,023 597 2,348 29,372
entertainment 938 22,632 67,682 117 2,829 29,330 117 2,829 28,939
international 4,693 18,879 67,705 586 2,359 28,534 586 2,359 29,315
sports 12,687 10,884 67,592 1,586 1,360 28,658 1,585 1,360 29,024
technology 473 23,097 67,516 59 2,887 29,337 59 2,887 28,571

Table 2: Statistics of Amazon data set. #N, #P and #W relate to the number of negative reviews, the
number of positive reviews, and the number of distinct words, respectively.

Amazon review data
Category Training Development Test

#N #P #W #N #P #W #N #P #W
books 357,319 2,324,575 1,327,312 44,664 290,571 496,453 44,664 290,571 496,412
dvd 52,674 352,213 446,628 6,584 44,026 157,495 6,584 44,026 155,468
electronics 12,047 40,584 85,543 1,506 5,073 26,945 1,505 5,073 26,914
music 35,050 423,654 571,399 4,381 52,956 180,213 4,381 52,956 179,787
video 13,479 88,189 161,920 1,685 11,023 61,379 1,684 11,023 61,958

would not finish. Table 2 shows the statistics
of the Amazon data set. Each training data
is 80% of samples in all.review of each cate-
gory, and test and development data are 10%.
Parameters are decided in terms of F-measure
on negative reviews of the development data,
and we evaluate F-measure obtained with the
decided parameters. The number of positive
reviews in the data set is much larger than
negative reviews. Therefore, we evaluated
the F-measure of the negative reviews.

To represent a set of sentences represented by
labeled ordered trees, we use a single tree created
by connecting the sentences with the root node of
the single tree.

5 Experiments
5.1 Experimental Results
To evaluate our classifier, we compare our learn-
ing algorithm with an algorithm that does not
learn frequency thresholds. For experiments on
Mainichi Shimbun, the following two data repre-
sentations are used: Bag Of Words (BOW) (i.e.
ζ = 1), and trees (Tree). For the representations
of texts of Amazon data set, BOW and N-gram are
used. The parameters, R and ζ, are R = 10, 000
and ζ = {2, 3, 4, 5}.

Table 3 and Table 4 show the experimental re-
sults on the Mainichi Shimbun and on the Ama-
zon data set. +FQ suggests the algorithms learn

frequency thresholds, and -FQ suggests the algo-
rithms do not. A McNemars paired test is em-
ployed on the labeling disagreements. If there is a
statistical difference (p < 0.01) between a boost-
ing (+FQ) and a boosting (-FQ) with the same
feature representation, better results are asterisked
(∗).

The experimental results showed that classifiers
that consider frequency of subtrees attained bet-
ter performance. For example, Tree(+FQ) showed
better accuracy than Tree(-FQ) on three categories
on the Mainichi Shimbun data set. Compared with
BOW(+FQ), Tree(+FQ) also showed better perfor-
mance on four categories.

On the Amazon data set, N-gram(+FQ) also had
better performance than BOW and N-gram(-FQ).
N-gram(+FQ) performed better performances than
BOW on all five categories, while performing bet-
ter than N-gram(-FQ) on four categories. These
results show that our proposed methods con-
tributed to improved accuracy.

5.2 Examples of Learned Rules
By learning frequency thresholds, classifiers
learned by our boosting algorithm can distinguish
subtle differences of meanings. The following are
some examples observed in rules learned from the
book category training data. For example, three
types of thresholds for “great” were learned. This
seems to capture more occurrences of “great” in-
dicated positive meaning. For classifying texts as
positive, “I won’t read” with 2 ≤, which means

324

Table 3: Experimental Results of the training on
the Mainichi Shinbun. Results in bold show the
best accuracy, and while an underline means the
accuracy of a boosting is better than the booting al-
gorithm with the same feature representation (e.g.
Tree(-FQ) for Tree(+FQ)) on each category.

BOW Tree
Category +FQ -FQ +FQ -FQ
business 88.79 88.87∗ 91.45∗ 90.89
entertaiment 95.07∗ 94.27 95.11∗ 94.64
international 85.25 85.99∗ 87.91 88.28∗
sports 98.17 98.52∗ 98.70∗ 98.64
technology 83.02∗ 78.50 79.21 80.77∗

Table 4: Experimental Results of the training on
the Amazon data set. The meaning of results in
bold and each underline are the same as Figure 3.

BOW N-gram
Category +FQ -FQ +FQ -FQ
books 74.35∗ 74.13 87.33∗ 87.20
dvd 83.18∗ 82.96 93.35 93.66∗
electronics 89.39∗ 89.06 93.36 93.57∗
music 77.85∗ 77.57 91.65∗ 91.30
video 95.09∗ 95.04 97.10∗ 96.86

more than once, was learned. Generally, “I won’t
read” seems to be used in negative reviews. How-
ever, reviews in training data include “I wont’
read” more than once is positive reviews. In a
similar way, “some useful” and “some good” with
< 2, which means less than 2 times, were learned
for classifying as negative. These two expression
can be used in both meanings like “some good
ideas in the book.” or “... some good ideas, but
for ... ”. The learner seems to judge only one time
occurrences as a clue for classifying texts as nega-
tive.

6 Conclusion
We have proposed a boosting algorithm that learns
rules represented by subtrees with their frequency
information. Our algorithm learns how the occur-
rence frequency of each subtree in texts is impor-
tant for classification. Experiments with the tasks
of sentiment classification and topic identification
of new articles showed the effectiveness of subtree
features with their frequency.

References
Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki

Arimura, and Setsuo Arikawa. 2002. Optimized
substructure discovery for semi-structured data. In
PKDD’02, pages 1–14.

Sivaji Bandyopadhyay and Manabu Okumura, editors.
2011. Sentiment Analysis where AI meets Psychol-

ogy. Asian Federation of Natural Language Process-
ing, Chiang Mai, Thailand, November.

Carmen Banea, Rada Mihalcea, and Janyce Wiebe.
2010. Multilingual subjectivity: are more languages
better? In Proc. of COLING ’10, pages 28–36.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proc. of ACL’07, pages 440–447.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In
Proc. of ACL’02, pages 263–270.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70.

Yoav Freund and Robert E. Schapire. 1997. A
decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer
and system sciences 55(1).

Georgiana Ifrim, Gökhan Bakir, and Gerhard Weikum.
2008. Fast logistic regression for text categorization
with variable-length n-grams. In Proc. of KDD’08,
pages 354–362.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2006.
Exploiting syntactic patterns as clues in zero-
anaphora resolution. In Proc. of Meeting of Asso-
ciation for Computational Linguistics.

Hisashi Kashima and Teruo Koyanagi. 2002. Kernels
for semi-structured data. In ICML’02, pages 291–
298.

Taku Kudo and Yuji Matsumoto. 2002. Japanese
dependency analysis using cascaded chunking. In
Proc. of CoNLL’02, pages 1–7.

Taku Kudo and Yuji Matsumoto. 2004. A boosting
algorithm for classification of semi-structured text.
In Proc. of EMNLP’04, pages 301–308, July.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005.
Boosting-based parse reranking with subtree fea-
tures. In Proc. of ACL’05, pages 189–196.

Udi Manber and Gene Myers. 1990. Suffix arrays: a
new method for on-line string searches. In Proceed-
ings of the first annual ACM-SIAM symposium on
Discrete algorithms, SODA ’90, pages 319–327.

Daisuke Okanohara and Jun’ichi Tsujii. 2009. Text
categorization with all substring features. In SDM,
pages 838–846.

J. R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.

Robert E. Schapire and Yoram Singer. 2000. Boostex-
ter: A boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168.

325

Janyce Wiebe. 2000. Learning subjective adjectives
from corpora. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of
Artificial Intelligence, pages 735–740. AAAI Press.

Mohammed Javeed Zaki. 2002. Efficiently mining fre-
quent trees in a forest. In Proc. of KDD’02, pages
71–80.

326

