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Abstract

Part-of-speech information is a pre-requisite in
many NLP algorithms. However, Twitter text
is difficult to part-of-speech tag: it is noisy,
with linguistic errors and idiosyncratic style.
We present a detailed error analysis of exist-
ing taggers, motivating a series of tagger aug-
mentations which are demonstrated to improve
performance. We identify and evaluate tech-
niques for improving English part-of-speech
tagging performance in this genre.

Further, we present a novel approach to sys-
tem combination for the case where available
taggers use different tagsets, based on vote-
constrained bootstrapping with unlabeled data.
Coupled with assigning prior probabilities to
some tokens and handling of unknown words
and slang, we reach 88.7% tagging accuracy
(90.5% on development data). This is a new
high in PTB-compatible tweet part-of-speech
tagging, reducing token error by 26.8% and
sentence error by 12.2%. The model, training
data and tools are made available.

1 Introduction
Twitter provides a wealth of uncurated text.
The site has over 200 million users active each
month (O’Carroll, 2012) generating messages at a
peak rate over 230 000 per minute (Ashtari, 2013).
Information found on Twitter has already been shown
to be useful for a variety of applications (e.g. moni-
toring earthquakes (Sakaki et al., 2010) and predicting
flu (Culotta, 2010)). However, the lack of quality
part-of-speech taggers tailored specifically to this
emerging genre impairs the accuracy of key down-
stream NLP techniques (e.g. named entity recognition,
term extraction), and by extension, overall application
results.

Microblog text (from e.g. Twitter) is characterised
by: short messages; inclusion of URIs; username men-
tions; topic markers; and threaded conversations. It
often presents colloquial content containing abbrevi-
ations and errors. Some of these phenomena com-
prise linguistic noise, which when coupled with mes-
sage brevity (140 characters for “tweets”) and the lack

of labeled corpora, make microblog part-of-speech tag-
ging very challenging. Alongside the genre’s informal
nature, such limits encourage “compressed” utterances,
with authors omitting not only needless words but also
those with grammatical or contextualising function.

Part-of-speech tagging is a central problem in natu-
ral language processing, and a key step early in manly
NLP pipelines. Machine learning-based part-of-speech
(PoS) taggers can exploit labeled training data to adapt
to new genres or even languages, through supervised
learning. Algorithm sophistication apart, the perfor-
mance of these taggers is reliant upon the quantity
and quality of available training data. Consequently,
lacking large PoS-annotated resources and faced with
prevalent noise, state-of-the-art PoS taggers perform
poorly on microblog text (Derczynski et al., 2013),
with error rates up to ten times higher than on newswire
(see Section 3).

To address these issues, we propose a data-intensive
approach to microblog part-of-speech tagging for En-
glish, which overcomes data sparsity by using the
thousands of unlabeled tweets created every minute,
coupled with techniques to smooth out genre-specific
noise. To reduce the impact of data sparsity, we intro-
duce a new method for vote-constrained bootstrapping,
evaluated in the context of PoS tagging. Further, we in-
troduce methods for handling the genre’s characteristic
errors and slang, and evaluate the performance impact
of adjusting prior tag probabilities of unambiguous to-
kens.

1. A comprehensive comparative evaluation of exist-
ing POS taggers on tweet datasets is carried out
(Section 3), followed by a detailed analysis and
classification of common errors (Section 4), in-
cluding errors due to tokenisation, slang, out-of-
vocabulary, and spelling.

2. Address tweet noisiness through handling of rare
words (Section 5.1) and adjusting prior tag prob-
abilities of unambiguous tokens, using external
knowledge (Section 5.2).

3. Investigate vote-constrained bootstrapping on a
large corpus of unlabeled tweets, to create needed
tweet-genre training data (Section 5.3).

4. Demonstrate that these techniques reduce token-
level error by 26.8% and sentence-level error by
12.2% (Section 6).
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Tagger Known Unknown Overall Sentence
TnT 96.76% 85.86% 96.46% -
SVMTool 97.39% 89.01% 97.16% -
TBL - - 93.67% -
Stanford - 90.46% 97.28% 56.79%

Table 1: Token-level labeling accuracy for four off-the-
shelf PoS taggers on newswire. Not all these perfor-
mance measures are supplied in the literature.

2 Related Work

Regarding Twitter part-of-speech tagging, the two most
similar earlier papers introduce the ARK tagger (Gim-
pel et al., 2011) and T-Pos (Ritter et al., 2011). Both
these approaches adopt clustering to handle linguis-
tic noise, and train from a mixture of hand-annotated
tweets and existing PoS-labeled data. The ARK tag-
ger1 reaches 92.8% accuracy at token level but uses a
coarser, custom tagset. T-Pos2 is based on the Penn
Treebank set and, in its evaluation, achieves an 88.4%
token tagging accuracy. Neither report sentence/whole-
tweet accuracy rates. Foster et al. (2011) introduce
results for both PoS tagging and parsing, but do not
present a tool, and focus more on the parsing aspect.

Previous work on part-of-speech tagging in noisy en-
vironments has focused on either dealing with noisy
tokens either by using a lexicon that can handle par-
tial matches through e.g. topic models (Darling et al.,
2012) or Brown clustering (Clark, 2003), or by apply-
ing extra processing steps to correct/bias tagger perfor-
mance, e.g., post-/pre-processing respectively (Gadde
et al., 2011). Finally, classic work on bootstrapped PoS
tagging is that of Clark et al. (2003), who use a co-
training approach to improve tagger performance using
unlabeled data.

3 Comparing taggers on Twitter data

In order to evaluate a new tagging approach, we must
first have a good idea of the current performance of
state-of-the art tools, and a common basis (e.g. corpus
and tagset) for comparison.

3.1 Conventional Part-of-speech Taggers

To quantify the disadvantage conventional PoS tag-
gers have when faced with microblog text, we evaluate
state-of-the-art taggers against Twitter data. We used
the same training and evaluation data for each tagger,
re-training taggers where required.

When measuring the performance of taggers, as per
popular convention we report the overall proportion of
tags that are accurately assigned. Where possible we
report performance on “unknown” words – those that

1http://www.ark.cs.cmu.edu/TweetNLP/
2https://github.com/aritter/twitter nlp

Tagger T-dev D-dev
Token Sentence Token Sentence

TnT 71.50% 1.69% 77.52% 14.87%
SVMTool 74.84% 4.24% 82.92% 22.68%
TBL 70.52% 2.54% 76.22% 11.52%
Stanford 73.37% 1.67% 83.29% 22.22%

Table 2: Token tagging performance of WSJ-trained
taggers (sections 0-18) on Twitter data. Figures listed
are the proportion of tokens labeled with the correct
part-of-speech tag, and the proportion of sentences in
which all tokens were correctly labeled.

do not occur in the training data. Further, as per Man-
ning (2011) we report the rate of getting whole sen-
tences right, since “a single bad mistake in a sentence
can greatly throw off the usefulness of a tagger to
downstream tasks”.3

We evaluated four state-of-the-art trainable and pub-
licly available PoS taggers that used the Penn Tree-
bank tagsettrereetagger: SVMTool (Giménez and Mar-
quez, 2004), the Stanford Tagger (Toutanova et al.,
2003), TnT (Brants, 2000) and a transformation-based
learning (TBL) tagger (Brill, 1995) supported by se-
quential n-gram backoff. The NLTK implementations
of TnT and TBL were used (Bird et al., 2009). The
‘left3words’ model was used with the Stanford tagger,
and ‘M0’ with SVMTool. For initial comparison, tag-
gers were tested on standard newswire text from the
Penn Treebank (Marcus et al., 1993),4 training with
Wall Street Journal (WSJ) sections 0-18 and evaluat-
ing on sections 19-21. The base performance for each
tagger is given in Table 1.

3.2 Labeled Tweet Corpora

Three PoS-labeled microblog datasets are currently
available. The T-Pos corpus of 15K tokens introduced
by Ritter et al. (2011) uses a tagset based on the Penn
Treebank tagset,plus four new tags for URLs (URL),
hashtags (HT), username mentions (USR) and retweet
signifiers (RT). The DCU dataset of 14K tokens (Fos-
ter et al., 2011) is also based on the Penn Treebank
(PTB) set, but does not have the same new tags as T-
Pos, and uses slightly different tokenisation. The ARK
corpus of 39K tokens (Gimpel et al., 2011) uses a novel
tagset, which, while suitable for the microblog genre, is
somewhat less descriptive than the PTB sets on many
points. For example, its V tag corresponds to any verb,
conflating PTB’s VB, VBD, VBG, VBN, VBP, VBZ, and
MD tags. Intuitively, this seems to be a simpler tagging
task, and performance using it reaches 92.8% (Owoputi
et al., 2012).

3In fact, as sentence boundaries are at best unclear in
many tweets, we use a slightly stricter interpretation of “sen-
tence” and only count entire tweets that are labeled correctly.

4LDC corpus reference LDC99T42
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Tagger T-dev D-dev
Token Sentence Token Sentence

TnT 79.17% 5.08% 80.05% 16.73%
SVMTool 77.70% 4.24% 78.22% 11.15%
TBL 78.64% 8.47% 79.02% 13.75%
Stanford 83.14% 6.78% 84.19% 24.07%
T-Pos 83.85% 10.17% 84.96% 27.88%

Table 3: Performance of taggers trained on a
WSJ/IRC/Twitter (T-train) corpus. T-Pos is the only
tagger with Twitter-specific customisations.

Although it is possible to transduce data labeled us-
ing the T-Pos or PTB tagsets to the ARK tagset, the
reverse is not true. We built a tagger using the T-Pos
tagset. This choice was motivated by the tagset’s PTB
compatibility, the volume of existing tools which rely
on a PTB-like tagging schema, and the fact that la-
beling microtext using this more complex tagset is not
vastly more difficult than with the ARK tagset (e.g. Rit-
ter et al. (2011))

The following datasets were used in our study. We
shuffled and then split the T-Pos data 70:15:15 into
training, development and evaluation sets named T-
train, T-dev and T-eval. Splits are made at whole-tweet
level. For comparability, we mapped the DCU develop-
ment and evaluation datasets (D-dev and D-eval) into
the T-Pos tokenisation and tagset schema.

Some near-genre corpora are available. For ex-
ample, resources are available of IRCtext and SMS
text (Almeida et al., 2011). Of these, only one is an-
notated for part-of-speech tags – the NPS IRC cor-
pus (Forsyth and Martell, 2007) – which we use.

3.3 Performance Comparison

For training data composition, we approximate Ritter’s
approach. We use 50K tokens from the Wall Street
Journal part of the Penn Treebank (WSJ), 32K tokens
from the NPS IRC corpus, and T-train (2.3K tokens).
We vary in that we have a fixed split of Twitter data,
where earlier work did four-way cross-validation.

The first experiment was to evaluate the performance
of the news-trained taggers described in Section 3.1 on
two tweet corpora: T-dev and D-dev. As shown in
Table 2, performance on tweets is poor and, in some
cases, absolute token accuracy is 20% lower than with
newswire (Table 1). This comparison is somewhat un-
fair as not all labels in the test set are seen in the training
data. Combining training data of 10K tokens of tweets,
10K tokens of a genre similar to tweets (IRC) and 50K
tokens of non-tweets (newswire) is fairer; performance
of taggers trained on this dataset is given in Table 3.
All taggers performed better against T-dev after having
T-train and the IRC data included in their training data
(e.g. from 73.37% to 83.14% for the Stanford tagger),
showing the impact of tweet-genre training data.

However, the improvements are much less impres-
sive on D-dev, which is a completely different corpus.
There, e.g. Stanford improves only from 83.29% on

Training data Token Sentence No. tokens
WSJ 73.37% 1.67% 50K
IRC 70.03% 2.54% 36K
WSJ+IRC 78.37% 5.08% 86K
Twitter (T-train) 78.19% 6.78% 10K
IRC+Twitter 79.75% 8.47% 46K
WSJ+Twitter 82.11% 8.47% 60K
All three 83.14% 6.78% 96K

Table 4: Performance of Stanford tagger over the de-
velopment dataset T-dev using a combination of three
genres of training data.

Category Count Proportion
GS error 6 6.7%
IV 24 27.0%
Pre-taggable 7 9.0%
Proper noun 10 11.2%
Slang 24 27.0%
Tokenisation 8 9.0%
Twitter-specific 2 2.2%
Typo 7 7.9%
Total Result 89

Table 5: Categorisation of mis-tagged unknown words.

WSJ to 84.19%. Candid analysis suggests that the
DCU corpus contains less noisy utterances, with bet-
ter grammatical consistency and fewer orthographic er-
rors.

Based on its strong performance, we concentrate on
the Stanford tagger for the remainder of this paper. Us-
ing this, we measured the impact that tweet and tweet-
like training data have on PoS tagging accuracy. As
shown in Table 4, the newswire-only trained Stanford
tagger performed worst, with IRC (a tweet-like genre)
training data yielding some improvement and tweet-
genre data having greatest effect.

4 Error analysis

We investigated errors made on words not in the train-
ing lexicon (unknown words). For the basic Stan-
ford tagger model trained using WSJ+IRC+Twitter (T-
train), the tagging accuracy on known tokens (e.g.
those in the training lexicon) is 83.14%, and 38.56%
on unknown words. One approach for improving over-
all accuracy is to better handle unknown words.

Tagging of unknown words forces the tagger to rely
on contextual clues. Errors on these words make up a
large part of the mis-tagged tokens. One can see the
effect that improving accuracy on unknown words has
on overall performance by comparing, for example, the
Stanford tagger when trained on non-tweet vs. tweet
data in Table 4. We identified the unknown words that
were tagged incorrectly and categorised them into eight
groups.

Gold standard error – Where the ground truth data
is wrong. For example, the Dutch dank je should in an
English corpus be tagged as foreign words (FW), but in
our dataset is marked dank/URL je/IN. These are not
tagger errors but rather evaluation errors, avoided by
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Figure 1: Stanford tagger token-level accuracy on T-
dev with increasing amounts of microblog training text.

repairing the ground truth.
In-vocabulary – Tokens that are common in general,

but do not occur in the training data. For example, In-
ternet and bake are unknown words and mis-tagged in
the evaluation corpus. This kind of error may be fixed
by a larger training set or the use of a lexicon, espe-
cially for monosemous words.

Pre-taggable – Words to which a label may be reli-
ably assigned automatically. This group includes well-
formed URLs, hash tags and smileys.

Proper noun – Proper nouns not in the training data.
Most of these should be tagged NNP, and are often
useful for later named entity recognition. Incorrectly
tagged proper nouns often had incorrect capitalisation;
for example, derek and birmingham. Gazetteer ap-
proaches may help annotate these, in cases of words
that can only occur as proper nouns.

Slang – An abundance of slang is a characteristic
feature of microblog text, and these words are often in-
correctly tagged, as well as being rarely seen due to a
proliferation of spelling variations (all incorrect). Ex-
amples include LUVZ, HELLA and 2night. Some kind
of automatic correction or expanded lexicon could be
employed to either map these back to dictionary words
or to include previously-seen spelling variations.

Tokenisation error – Occasionally the tokeniser
or original author makes tokenisation errors. Exam-
ples include ass**sneezes, which should have been
split into more than one token as indicated by spe-
cial/punctuation characters, and eventhough, where the
author has missed a space. These are hard to correct.
Specific subtypes of error, such as the joined words in
the example, could be checked for and forcibly fixed,
though this requires distinguishing intentional from un-
intentional word usage.

Genre-specific – Words that are unique to specific
sites, often created for microblog usage, such as unfol-
lowing. Extra tweet-genre-specific training data may to
reduce genre-specific word errors.

Orthographic error – Finally, although it is diffi-
cult to detect the intent of the user, some content seems
likely to have been accidentally mis-spelled. Examples
include Handle] and suprising. Automatic spelling

Figure 2: Token-level performance on T-dev with vary-
ing amounts of WSJ text, in addition to T-train and IRC
data.

correction may improve performance in these cases.
We also examined the impact the volume of train-

ing data had on performance. Figure 1 shows a con-
tinuing performance increase as ground-truth tweets
are added, suggesting more tweet-genre training data
will yield improvements. Conversely, there is already
enough newswire-type training data and adding more
is unlikely to greatly increase performance (Figure 2).
Consequently, subsequent experiments do not include
more newswire beyond the 50K-token WSJ corpus ex-
cerpt also used in T-Pos.

5 Addressing Noise and Data Sparseness

Our examination of frequent PoS tagging errors identi-
fied some readily rectifiable classes of problem. These
were: slang, jargon and common mis-spellings; genre-
related phrases; smileys; and unambiguous named en-
tities. In addition, observations suggested that more
tweet training data would help. Thus, we augmented
our approach in three ways: improved handling of
unknown and slang words; conversion of unambigu-
ous tags into token prior probabilities; and addition of
semi-supervised training data.

5.1 Normalisation for Unknown Words

Tagging accuracy on tokens not seen in the training
data (out-of-vocabulary, or OOV tokens) is lower than
that on those previously encountered (see Table 1).
Consequently, reducing the proportion of unknown
words is likely to improve performance. Informal er-
ror analysis suggested that slang makes up a notable
proportion of the unknown word set. To provide in-
vocabulary (IV) versions of slang words (i.e. to nor-
malise them), we created a set of mappings from OOV
words to their IV equivalents, using slang dictionaries
and manual examination of the training data. The map-
ping is applied to text before it is tagged, and the origi-
nal token is labeled with a PoS tag based on the mapped
(normalised) word.

Many texts contain erroneous or slang tokens, which
can be mapped to in-lexicon versions of themselves
via normalisation. A critical normalisation subtask is
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Features Token Sent.
Baseline7 83.14% 6.78%
Word shape features8 87.91% 22.88%
As above, excl. company suffixes 88.34% 25.42%
Low common word threshold9 88.36% 25.42%
Low common & rare word thresh.10 88.49% 25.42%

Table 6: Impact of introduction of word shape features,
as token accuracy on T-dev.

distinguishing previously-unseen but correctly spelled
words (such as proper nouns) from those with ortho-
graphic anomalies. Anomalous tokens are those with
unusual orthography, either intentional (e.g. slang) or
unintentional (e.g. typos). Slang words account for a
large proportion of mislabeled unknowns (Table 5).

Normalisation is a difficult task and current ap-
proaches are complex (Kaufmann and Kalita, 2010;
Han and Baldwin, 2011; Liu et al., 2012). Rather than
apply sophisticated word clustering or multi-stage nor-
malisation, we took a data-driven approach to investi-
gating and then handling problematic tokens.

Setup In our data, a small subset of orthographic er-
rors and otherwise-unusual words account for a large
part of the total anomalous words. We use a lookup list
(derived from unknown words in the training corpus)
to map these to more common forms, e.g. luv→love
and hella→very.5 This lookup list is based upon both
external slang gazetteers and observations over T-train.

To supplement this knowledge-based approach, we
enable and fine-tune unknown-word handling features
of the Stanford tagger. The tagger contains highly-
configurable feature generation options for handling
unknown words. These extra rare word features ac-
counted for information such as word shape, word
length and so on.6 Their inclusion should increase the
amount of unknown word handling information in the
final model. Results are given in Table 6.

We also tuned the rare word thresholds for our cor-
pus, changing the threshold for inclusion of a token’s
rare word features. We tried values from zero to 20
in steps of 1; per-token performance peaked at 88.49%
for rarewordthreshold = 3. It slowly declined for
higher values up to 700 (tested in larger steps). This
modest improvement indicates value in optimising the
rare word threshold.

Unknown Handling Results Thus, we were able to
increase part-of-speech tagging performance in three
ways: by adapting the idea of normalisation and im-
plementing it with both fixed word-lists (repairing all
but 20% of problem tokens), with extra features en-
coding word shapes to handle OOV terms, and with a

5An intensifier, from the original “one hell of a ...”.
6http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford

/nlp/tagger/maxent/ExtractorFramesRare.html
8The tagger’s naacl2003unk feature set
9veryCommonWordThresh = 40

10veryCommonWordThresh = 40, rarewordthreshold = 3

Entity pre-labeled Token
Baseline 88.49%
Slang 88.76%
Named Entities 88.71%
Smileys 88.54%
Genre-specific 88.58%
All 89.07%
Error reduction 5.03%

Table 7: Impact of prior labeling and mapping slang to
IV terms on T-dev; rare word threshold is 3.

more sensitive threshold to inclusion of rare words in
the model.

5.2 Tagging from External Knowledge

It is possible to constrain the possible set of sentence
labelings by pre-assigning probability distributions to
tokens for which there is an unambiguous tag. In these
cases, the distribution is just P (tcorrect) = 1.0. This
strategy not only improves accuracy on these tokens,
but also reduces uncertainty regarding the set of poten-
tial sentence taggings.

For example, in a simplified HMM bigram tagging
scenario, one has a sequence of words w0, w1..wn hav-
ing corresponding tags t0, t1..tn, and is concerned with
emission distributions P (wi|ti) and tag transition prob-
abilities P (ti|ti−1). Knowing P (ti) for one word af-
fects all subsequent tag distributions. As the tagger
is typically used in a bidirectional mode (effectively
adding reverse transition probabilities P (ti|ti+1)), us-
ing prior knowledge to inform labels reduces tagging
uncertainty over the whole sentence.

Setup In the above error analysis, off-the-shelf tag-
gers made errors on some Twitter-specific phenomena.
Some errors on tokens where the four tweet-specific
labels URL, USR, RT and HT apply can be reliably
and automatically prevented by using regular expres-
sion patterns to detect pertinent tokens.

A second category of mistakes was smileys (aka
emoticons), of which the most frequent can be labeled
UH unambiguously using a look-up list. Some flexibil-
ity is required to capture smiley variations, e.g. - -
vs. - - (Park et al., 2013), which was implemented
again with high-accuracy regular expressions.

Proper noun errors (NN/NNP) were relatively com-
mon – an observation also made by Ritter et al. (2011).
It is possible to recognise unambiguous named entities
(i.e. words that only ever occur as NNP) using exter-
nal knowledge sources, such as a gazetteer list or an
entity database. In this case, we used GATE’s ANNIE
gazetteer lists of personal first-names and cities (Cun-
ningham et al., 2002) and, in addition, a manually
constructed list of corporation and website names fre-
quently mentioned in the training data (e.g. YouTube,
Toyota). Terms were excluded from the latter list if
their PoS tag is ambiguous (e.g. google may occur as a
proper noun or verb and so is not included).
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Figure 3: Bootstrapping the tagger using data with vote-constrained labelings.

Tagging with Priors Results In our experiments,
the tagger was adapted to take prior probabilities into
account, and experiments run using a model trained
on WSJ+IRC+T-train that includes the noise-handling
augmentations described in Section 5.1. Table 7 shows
the performance difference on each of the four cate-
gories of token discussed above. Each has an effect,
combining to yield a 5.0% error reduction (P<0.005,
McNemar’s test). When the original model detailed
in Table 3 is used, token performance improves from
83.14% accuracy to 86.93%. Assignment of priors af-
fords 22.5% error reduction in this scenario. We com-
pare fixing the tag before tagging the rest of the sen-
tence, with tagging the whole sentence and overwriting
such tokens’ tags. While the latter only affects unam-
biguous tokens, the former affects the other tags in the
sentence during tagging, via e.g. transmission prob-
abilities and window features. This is a novel adap-
tation of this tagger. To compare, when correcting
this model’s labels post-tagging, error reduction is only
19.0% (to 86.34%).

5.3 Vote-constrained Bootstrapping

Having seen the impact that tweet data has on per-
formance, one choice is to increase the amount of la-
beled training tweets. We have only a small amount of
ground-truth, labeled data. However, large amounts of
unlabeled data are readily accessible; a day’s discourse
on Twitter comprises 500 million tweets of unlabeled
data (Terdiman, 2012). In this scenario, one option
is bootstrapping (Goldman and Zhou, 2000; Cucerzan
and Yarowsky, 2002).

In bootstrapping, the training data is bolstered us-
ing semi-supervised data, a “pool” of examples not hu-
man curated but labeled automatically. To maintain
high data quality, one should only admit to the pool
instances in which there is a high confidence. We pro-
pose vote-constrained bootstrapping as bootstrapping
where not all participating systems (or classifiers) use
the same class label inventory. This allows different
approaches to the same task to be combined into an en-
semble. It is less strict than classic voting, because al-
though both approaches constrain the set of labels that
are seen in agreement with each other, classic voting

constrains this maximally, to a 1:1 mapping.
In this scenario, equivalence classes are determined

for class labels assigned by systems. Matches oc-
cur when all outputs are in the same class, thus only
constraining the set of agreeing votes. This permits
the constraint of valid responses through voting. The
caveat is that at least one voting classifier must use the
same class inventory as the eventual trained classifier.
Given unlabeled data, the method is for each system
to perform feature extraction and then classifications of
instances. For instances where all classifiers assign a
label in the same equivalence class, the instance may
be admitted to the pool, using whichever class label is
that belonging to the eventual output system.

In this instances, our approach is to use T-Pos and
the ARK tagger to create semi-supervised data. We
used a single tokeniser based on the T-Pos tokenisa-
tion scheme (PTB but catering for Twitter specific phe-
nomena such as hashtags). To label the unlabeled data
with maximum accuracy, we combined the two tag-
gers, which are trained on different data with different
features and different tagsets. The ARK tagger uses a
tagset that is generally more coarse-grained than that
of T-Pos, and so instead of requiring direct matches be-
tween the two taggers’ output, the ARK labelings con-
strain the set of tags that could be considered a match.

To increase fidelity of data added to the pool, for
PoS-tagging, we add a further criterion to the vote-
constraint requirement. We define high-confidence in-
stances as those from the tweets where the T-Pos label-
ings fit within the ARK tagger output’s constraints on
every token.

Setup We gathered unlabeled data directly from
Twitter using the “garden hose” (a streaming 10% sam-
ple of global messages). Tweets were collected, au-
tomatically filtered to remove non-English tweets us-
ing the language identification of Preotiuc-Pietro et al.
(2012), tokenised, and then labeled using both tag-
gers. The labelings were compared using manually-
predefined equivalence classes, and if consistent for
the whole tweet, the tweet-specific tags re-labeled us-
ing regular expressions (see Section 5.2) and the T-Pos
tagset labeled tweet added to the pool.
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Tagger T-eval D-eval
Token Sentence Token Sentence

T-Pos (Ritter et al., 2011) 84.55% 9.32% 84.83% 28.00%
Our Augmented tagger 88.69% 20.34% 89.37% 36.80%
Error reduction 26.80% 12.15% 29.93% 12.22%

Table 8: Performance of our augmented tagger on the held-out evaluation data. ER is error reduction.

Vote-constraint results We set out to From our un-
labeled data, taggers reached agreement on 19.2% of
tweets. This reduced an initial capture of 832 135 En-
glish tweets (9 523 514 tokens) to 159 492 tweets with
agreed PoS labelings (1 542 942 tokens). To see how
confident we can be in taggings generated with this
method, we checked accuracy of agreed tweets on T-
dev. When tested on the T-dev dataset, the taggers
agreed on 17.8% of tweets (accounting for 15.2% of
tokens). Of the labelings agreed upon over T-dev, these
were correct for 97.4% of tokens (71.3% of sentences).

After an initial dip, adding bootstrapped training
data gave a performance increase. Figure 3 shows the
benefit of using vote-constrained bootsrapping, giving
90.54% token accuracy (28.81% for sentences) on T-
dev after seeing 1.5M training tokens. The shape of the
curve suggests potential benefit from even more boot-
strapping data.

6 Results

We set out to improve part-of-speech tagging on tweets,
using the full, rich Penn Treebank set. We made a
series of improvements based on observed difficulties
with microblog tagging, including the introduction of a
bootstrapping technique using labelers that have differ-
ent tag sets.

Based on our augmentations, we evaluated against
the held-out evaluation sets T-eval and D-eval. Results
are in Table 8, comparing with T-Pos (the other tag-
gers are far behind as to not warrant direct compari-
son). Significance is at P<0.01 using the McNemar
(1947) test with Yates’ continuity correction.

Note that we use different evaluation splits in this pa-
per compared to that used in the original T-Pos work. In
this paper, training data and evaluation data are always
the same across compared systems.

The augmentations offered significant improve-
ments, which can be both extended (in terms of boot-
strapping data, prior-probability lists and slang lists)
as well as readily distributed independent of platform.
The performance on the development set is even higher,
reaching over 90.5% tagging accuracy. Both these tag-
ging accuracies are significantly above anything previ-
ously reached on the Penn Treebank tagset. Critically,
the large gains in sentence-level accuracy offer signifi-
cant improvements for real world applications.

Regarding limits to this particular approach, the
technique is likely sensitive to annotator errors given
the size of the initial data, and probably limited by
inter-annotator agreement. We have partially quantified

the linguistic noise this genre presents, but it is still a
significant problem – unknown word tagging does not
reach nearly as high performance as on e.g. newswire.
Finally, the wide variation in forms of expression (pos-
sibly encouraged by message length limits) may reduce
the frequency of otherwise common phrases, making
data harder to generalise over.

7 Conclusion
Twitter is a text source that offers much, but is diffi-
cult to process, partially due to linguistic noise. Ad-
ditionally, existing approaches suffer from insufficient
labeled training data. We introduced approaches for
overcoming this noise, for taking advantage of genre-
specific structure in tweets, and for generating data
through heterogeneous taggers. These combined to
provide a readily-distributable and improved part of
speech tagger for twitter. Our techniques led to signif-
icant reductions in error rate, not only at the token but
also at sentence level, and the creation of a 1.5 million
token corpus of high-confidence PoS-labeled tweets.

Resources Presented – Our twitter part-of-speech
tagger is available in four forms. First, as a stan-
dalone Java program, including handling of slang and
prior probabilities. Second, a plugin for the popu-
lar language processing framework, GATE (Cunning-
ham et al., 2013). Third, a model for the Stanford
tagger, distributed as a single file, for use in existing
applications. Finally, a high-speed model that trades
about 2% accuracy for doubled pace. We also provide
the bootstrapped corpus and its vote-constraint based
creation tool, allowing replication of our results and
the construction of new taggers with this large, high-
confidence dataset.

This tagger is now part of the GATE TwitIE toolkit
for processing social media text (Bontcheva et al.,
2013). The tagger and datasets are also distributed via
the GATE wiki, at:

http://gate.ac.uk/wiki/twitter-postagger.html
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